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Abstract: Dung beetles are important ecosystem engineers as they bury manure produced by animals
and contribute to nutrient cycling. This study assessed the impact of four dung beetle species,
a roller (Gymnopleurus sturmi) and three tunnelers (Onthophagus vacca, Onthophagus marginalis subsp.
andalusicus and Euonthophagus crocatus), on manure removal and soil fertility by using microcosms
in a greenhouse setting. The four species contributed significantly to the removal of manure from
the soil surface and increased the nutrient content of the soil, notably potassium, phosphorus, and
nitrogen, but the amount varied depending on the species. These results highlight the importance
of dung beetles in facilitating soil organic matter and nutrient flows and the need to preserve their
populations to support the sustainability of grazing systems.
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1. Introduction

The rapid growth of the human population and the increasing demand for food are
applying unprecedented pressure on agricultural production, making soil health crucial [1].
However, soil degradation threatens the ability to support food production, thereby com-
promising global food security [2]. In many rural areas, livestock farming is the primary
economic activity, often at the expense of ecosystem health. Therefore, understanding
the complex relationships between land use, the land itself, local biodiversity, and the
ecosystem services they provide is essential for sustainable land management.

Dung beetles (Coleoptera: Scarabaeidae) play a vital role in grazed ecosystems by
significantly contributing to soil fertility [3–8]. These beetles feed on the microorganism-rich
liquid in dung and use the fibrous material to raise their larvae [9]. By burying a substantial
portion of the dung at various depths, depending on the species, they stimulate the activity
of microorganisms responsible for nitrogen mineralization and nitrification [10]. Thus,
dung beetle activity improves nutrient mobilization, soil aeration, and, consequently,
soil fertility [11]. In addition to their contributions to soil fertility, dung beetles play
a crucial role in regulating harmful fly populations, some of which are hematophagous
and can affect livestock productivity [7,12]. Reducing these fly populations results in
significant economic benefits for farmers [13]. While performing these ecosystem services,
dung beetles act as ecosystem engineers because they modify habitat conditions and
nutrient availability for other species [14,15]. However, land conversion due to intensive
agriculture has resulted in a worldwide decline in insect fauna, with dung beetles being
particularly affected [16–20]. Different land management practices, grazing intensities, and
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pasture management methods affect dung beetle assemblages, although the underlying
mechanisms often remain unclear [7]. Previous studies reported either positive effects
of increased grazing intensity due to greater dung availability [21,22] or negative effects
due to habitat deterioration [21,23] and the use of veterinary pharmaceuticals [20,24,25].
The ecosystem services provided by dung beetles are well known and valued [26], but
it was important to quantify the impact on soil fertility of very common dung beetles in
Morocco [27] and explore their role as ecosystem engineers.

In this study, we evaluated the efficiency of four dung beetle species belonging to two
different guilds—a roller species, Gymnopleurus sturmi (MacLeay, 1821), and three tunneler
species, Onthophagus marginalis subsp. andalusicus Waltl, 1835, Onthophagus vacca (Linnaeus,
1767), and Euonthophagus crocatus (Mulsant & Godart, 1870)—in burying dung and also
their role in soil fertility by analyzing soil nitrogen, phosphorus, potassium, and organic
matter content, at different depths.

These species are currently being introduced into Australia as part of the Dung Beetle
Ecosystem Engineers (DBEE) national research project [28], which aims to fill in the gaps
in the distribution of exotic dung beetles in southern Australia used to degrade the dung
of cattle, which are exotic to Australia, by introducing new species active in spring and
originating from regions with a Mediterranean bioclimate. The project also aims to quantify
the ecosystem services and economic benefits provided by dung beetles and is expected
to provide significant benefits to livestock producers by improving soil health in grazing
systems, reducing the spread of diseases and insect pests, such as bush flies, increasing
pasture health, and reducing nutrient run-off into waterways.

The choice of the four dung beetle species described above is particularly relevant
because in Morocco, they are active in spring and are very abundant in the study area [27],
and they have different ways of using animal dung. Three of the species dig galleries under
the dung and bury the excrement in pedotrophic nests, while the other species form balls
of dung from the dung pad, which are then rolled some distance away and buried [29].

We hypothesized that dung burial by these four species increases nutrient concentra-
tions in the soil by incorporating surface dung into the soil and constructing galleries that
facilitate the movement of nutrients through the soil profile. To test this hypothesis, we
experimentally assessed organic matter and nutrient incorporation into the soil at three
different depths by the four dung beetle species. Our aim was to understand the impact
of dung beetles on the distribution of organic matter and nutrients in the soil by targeting
the levels where dung beetle activity was most significant and where changes in nutrients
were most likely to be observed, as determined in preliminary testing.

2. Materials and Methods
2.1. Background to This Study and Species Selection

The dung beetles Onthophagus vacca, O. m. andalusicus, E. crocatus, and G. sturmi
were collected in April 2022 in the rural district of Ain Aicha in the province of Taounate,
Morocco (34◦28′59.99′′ N–4◦41′59.99′′ W). These species were chosen because of their
activity in spring, which makes them particularly relevant to this study. Quite similar in
size, they differ in their behavior: the first three species belong to the guild of tunnelers,
while G. sturmi is a roller species (Table 1). Rollers form balls of dung that they roll and bury
some distance from the source, whereas tunnelers bury dung at or very near the source by
burying it at varying depths, depending on the species.

Specimens were collected from cattle dung and the soil below and brought back to
the laboratory. Beetles were installed in microcosms in a greenhouse with the temperature
maintained to reflect natural conditions, thereby favoring the activity of all species. It is
noteworthy that during a prior laboratory breeding experiment, all species were active and
successfully produced brood balls from April to late May, except for E. crocatus. Although
the full reproductive cycle of E. crocatus was not completely observed, egg-laying and brood
ball production were documented. Overall, this species demonstrated substantial dung
burial activity, highlighting its role in nutrient recycling and soil fertility enhancement.
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Table 1. Life traits of the dung beetle species used in this study specifying their guild, body length
(mm), and activity period.

Species Dung Relocation Behavior Body Length Activity Period

Gymnopleurus sturmi Roller 8–18 Spring-summer
Onthophagus vacca Tunneler 7–13 Spring
Onthophagus marginalis subsp. andalusicus Tunneler 6–12 Spring
Euonthophagus crocatus Tunneler 6–12 Spring

2.2. Experimental Procedure

For the dung beetle microcosm experiment, we followed the protocol proposed by
Barragán et al. [30]. The beetles were placed in containers, with three replicates for each
species. Each container housed both sexes of each species (five males and five females),
as they generally act as mating pairs. Additionally, we included two control groups, each
with three replicates: “only dung controls” (dung deposited on the soil, without beetles) to
account for dung dehydration and soil nutrient changes due to factors other than dung
beetle activity and “only soil controls” (no manure nor dung beetles). This allowed us to
assess the effect of beetles on nutrient recycling.

The size of containers, 10 cm in diameter and 25 cm in depth was selected after
a preliminary study evaluating different sizes, with the beetles nesting no deeper than
18 cm. The containers were filled with soil collected from the original site, characterized
by a loamy-clay texture, with mainly clay (38.8%), fine silt (35.1%), and sand (18%). Each
container was supplied with 100 g of fresh cow dung. All the containers were covered with
wire mesh to prevent the beetles’ escape. Every three days over the following 40 days, 100 g
of fresh dung was supplied, and the manure remains were weighed to quantify manure
removal rates. To ensure measurement consistency, we weighed the dung residues while
still wet, both in the containers with the beetles and in the controls. Despite the potential
variability in the drying process, standardizing the weighing procedure at regular intervals
and under similar conditions makes it possible to characterize the changes in dung weight
attributed to beetle activity [30].

2.3. Soil Sample Collection and Chemical Analyses

After 40 days, 100 g samples of soil were collected from all the containers (beetles and
controls) at three depths: 0–7 cm, 7–14 cm, and 14–21 cm. We first collected a blend of 100 g
of soil from the 0–7 cm zone, and then the remaining topsoil from this layer was carefully
removed before accessing the next zone (7–14 cm) to collect another 100 g sample of soil;
then, the remaining soil in this soil layer was also removed to access the 14–21 cm zone to
collect another 100 g sample. The samples were then air-dried, crushed, and analyzed to
determine their nutrient (P, K, N) concentrations and organic matter content. Ammonium
acetate was used to extract potassium from the soil; the Olsen method was employed to
analyze phosphorus concentration, with phosphorus extracted using a 0.5 M NaHCO3
solution adjusted to a pH of 8.5 [31,32]; moreover, the Kjeldahl method was utilized
to measure nitrogen content [33,34] using Kjeldahl Catalyst (Cu-TiO2) tablets [35]. To
determine the organic matter (OM) content, the samples were heated to 500 degrees Celsius
for 5 hours to completely evaporate the moisture and burn the OM and then weighed.

2.4. Data Analyses

The nutrient concentrations at different depths and dung removal proportions by
different species were compared by using R software (version 4.1.3) [36]. An ANOVA
and/or a Kruskal–Wallis test was performed for non-normal data, followed by post hoc
comparisons using the anova, kruskal-wallis.test and HSD.test, and pairwise.wilcox.test
functions of the stats and agricolae packages, respectively. R software and the stats and
agricolae packages were used to compare nutrient concentrations at different soil depths
and dung removal rates for the different species. When the conditions of normality and/or
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homoscedasticity were fulfilled, ANOVA was performed, followed by Tukey tests. Con-
versely, when these conditions were not satisfied, a Kruskal–Wallis test was used, followed
by Wilcoxon tests. The statistical significance level was set at the 0.05 probability level.

3. Results
3.1. Nutrient Analyses

Nutrient concentrations varied with soil depth and dung beetle species. In this section,
we compared soil potassium, phosphorus, and nitrogen concentrations for the four dung
beetle species; the differences in organic matter levels were also analyzed for the three soil
zones.

3.1.1. Potassium

Potassium concentrations varied significantly between the three soil zones for the
four dung beetle species (Figure 1). Potassium concentration increased significantly
(p ≤ 0.001) compared with the “soil only” and “soil with dung” controls. In the first
1–7 cm, the highest concentration was recorded for G. sturmi (337.4 ± 26.5 mg/kg), fol-
lowed by O. vacca (202.0 ± 38.4 mg/kg) and E. crocatus (180.5 ± 16.09 mg/kg), although
the difference between the latter two species was not significant. The difference between
O. m. andalusicus and the “only dung” control was not significant. Such differences between
species were maintained at all depths. The differences in potassium concentration were
not significant between the “only dung” and “only soil” controls, with the concentration in
the “only soil” control being slightly lower than when dung was deposited alone on the
surface (99.0 ± 0 mg/kg vs. 118 ± 2.56 mg/kg, respectively).
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Figure 1. Potassium concentrations in the soil at different depth zones (1–7, 7–14, and 14–21 cm)
resulting from dung beetle activity. Gym. stur: Gymnopleurus sturmi; Ont. vacc: Onthophagus vacca;
Euo. croc: Euonthophagus crocatus; Ont. anda: Onthophagus marginalis subsp. andalusicus. Only dung =
“Only dung control”; Control = “Only soil control” (no manure nor dung beetles). Means with the
same letters are not significantly different. K: Kruskal-Wallis. p-values: *** ≤ 0.001.

3.1.2. Phosphorus

The phosphorus concentration increased significantly for the individual species and for
the same species for depth (Figure 2) in comparison with the controls. For the 1–7 cm level,
the highest phosphorus concentration was observed for G. sturmi (42.69 ± 4.09 mg/kg),
which was significantly different (p ≤ 0.001) from that of E. crocatus (35.60 ± 3.92 mg/kg),
which was itself significantly different (p ≤ 0.001) from those of both O. vacca
(30.05 ± 2.93 mg/kg) and O. m. andalusicus (27.17 ± 1.96 mg/kg). For the 7–14 cm level,
E. crocatus activity produced the highest phosphorus concentration (21.30 ± 0.42 mg/kg),
followed by O. andalusicus (19.29 ± 1.35 mg/kg), but the difference between the two species
was not significant. For the 14–21 cm level, phosphorus concentrations were highest for
O. m. andalusicus and O. vacca (21.93 ± 0.38 mg/kg and 21.43 ± 1.23 mg/kg, respectively)
but not significantly different from E. crocatus (19.74 ± 1.49 mg/kg), and the concentration
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for G. sturmi was slightly lower (18.7 ± 1.35 mg/kg). Overall, the phosphorus concentra-
tions obtained for all species were significantly higher (p ≤ 0.001) than those measured in the
two controls (“only soil” and “only dung”; 8.68 ± 0 and 12.2 ± 2.35 mg/kg, respectively).
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from dung beetle activity. Gym. stur: Gymnopleurus sturmi; Ont. vacc: Onthophagus vacca; Euo. croc:
Euonthophagus crocatus; Ont. anda: Onthophagus marginalis subsp. andalusicus. Only dung = “Only
dung control”; Control = “Only soil control” (no manure nor dung beetles). Means with the same
letters are not significantly different. K: Kruskal-Wallis. p-values: *** ≤ 0.001.

3.1.3. Nitrogen

The activity of the dung beetles resulted in much higher nitrogen concentrations in
the soil than those initially found in the controls, whatever the soil depth (Figure 3). At all
levels, G. sturmi contributed significantly more nitrogen to the soil (p ≤ 0.001) (0.32 ± 0.06,
0.30 ± 0.05 and 0.30 ± 0.06 mg/kg for depths 0–7, 7–14 and 14–21 cm, respectively),
compared with the “only soil” and “only dung” controls (0.03 ± 0 and 0.05± 0.01 mg/kg,
respectively). Euonthophagus crocatus and O. vacca were significantly less efficient than
G. sturmi, with nitrogen concentrations ranging from 0.12 ± 0.04 to 0.13 ± 0.06 mg/kg
for O. vacca, depending on depth. Onthophagus m. andalusicus activity facilitated the
lowest nitrogen level in the soil (0.10 ± 0.02 and 0.08 ± 0.01 mg/kg for depths 0–7 and
14–21 cm, respectively), although these values were still significantly higher than those of
the controls.
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same letters are not significantly different. K: Kruskal-Wallis. p-values: *** ≤ 0.001.

3.1.4. Organic Matter

When the experiment was established, the initial organic matter content of the soil in
the containers was 2.03 ± 0%. After 40 days, the activity of the dung beetles (dung buried
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for nesting) led to a significant increase in the organic matter content at all depths (Figure 4).
Gymnopleurus sturmi regularly buried a significant amount of organic matter at all depths
(6.24 ± 0.51, 5.53 ± 0.38 and 5.84 ± 0.39% at 0–7, 7–14, and 14–21 cm depth, respectively)
(p ≤ 0.001) but not in significantly higher amounts than E. crocatus (5.66 ± 0.49, 5.21 ± 0.38
and 5.66 ± 0.89% for the same depths, respectively. The quantity buried by O. vacca was
significantly less (p ≤ 0.001) than that buried by G. sturmi and E. crocatus at the three depth
levels (5.11 ± 0.20, 4.41 ± 0.09 and 4.99 ± 0.34%, respectively), and O. m. andalusicus
buried even less organic matter (4.57 ± 0.45, 3.73 ± 0.26 and 4.39 ± 0.51% at the three
levels, respectively).

Diversity 2024, 16, x FOR PEER REVIEW 6 of 10 
 

 

 
Figure 3. Nitrogen concentration in the soil at different depths (1–7 cm, 7–14 cm, and 14–21 cm) 
according to the dung beetle activity. Gym. stur: Gymnopleurus sturmi; Ont.vacc: Onthophagus vacca; 
Euo. croc: Euonthophagus crocatus; Ont. anda: Onthophagus marginalis subsp. andalusicus. Only dung = 
“Only dung control”; Control = “Only soil control” (no manure nor dung beetles). Means with the 
same letters are not significantly different. K: Kruskal-Wallis. p-values: *** ≤ 0.001. 

3.1.4. Organic Matter 
When the experiment was established, the initial organic matter content of the soil in 

the containers was 2.03 ± 0%. After 40 days, the activity of the dung beetles (dung buried 
for nesting) led to a significant increase in the organic matter content at all depths (Figure 
4). Gymnopleurus sturmi regularly buried a significant amount of organic matter at all 
depths (6.24 ± 0.51, 5.53 ± 0.38 and 5.84 ± 0.39% at 0–7, 7–14, and 14–21 cm depth, 
respectively) (p ≤ 0.001) but not in significantly higher amounts than E. crocatus (5.66 ± 
0.49, 5.21 ± 0.38 and 5.66 ± 0.89% for the same depths, respectively. The quantity buried 
by O. vacca was significantly less (p ≤ 0.001) than that buried by G. sturmi and E. crocatus 
at the three depth levels (5.11 ± 0.20, 4.41 ± 0.09 and 4.99 ± 0.34%, respectively), and O. m. 
andalusicus buried even less organic matter (4.57 ± 0.45, 3.73 ± 0.26 and 4.39 ± 0.51% at the 
three levels, respectively). 

 
Figure 4. Organic matter content in the soil (%) at different depths (1–7 cm, 7–14 cm, and 14–21 cm) 
according to the dung beetle activity. Gym. stur: Gymnopleurus sturmi; Ont.vacc: Onthophagus vacca; 
Euo.croc: Euonthophagus crocatus; Ont. anda: Onthophagus marginalis subsp. andalusicus. Only dung = 
“Only dung control”; Control = “Only soil control” (no manure nor dung beetles). Means with the 
same letters are not significantly different. K: Kruskal-Wallis. p-values: *** ≤ 0.001. 

3.2. Rate of Dung Removal by Dung Beetles 
The ability of the different species to remove dung from the soil surface differed 

significantly (p ≤ 0.001) (Figure 5). Gymnopleurus sturmi was the best-performing species, 
with a removal rate of 62.9 ± 0.50%, followed by O. m. andalusicus (58.33 ± 1.97%) and O. 
vacca (52.07 ± 1.07%), both differences being significant. Euonthophagus crocatus had a 
significantly lower removal rate (43.07 ± 1.50%; p ≤ 0.001). 

Figure 4. Organic matter content in the soil (%) at different depths (1–7 cm, 7–14 cm, and 14–21 cm)
according to the dung beetle activity. Gym. stur: Gymnopleurus sturmi; Ont.vacc: Onthophagus vacca;
Euo.croc: Euonthophagus crocatus; Ont. anda: Onthophagus marginalis subsp. andalusicus. Only dung =
“Only dung control”; Control = “Only soil control” (no manure nor dung beetles). Means with the
same letters are not significantly different. K: Kruskal-Wallis. p-values: *** ≤ 0.001.

3.2. Rate of Dung Removal by Dung Beetles

The ability of the different species to remove dung from the soil surface differed
significantly (p ≤ 0.001) (Figure 5). Gymnopleurus sturmi was the best-performing species,
with a removal rate of 62.9 ± 0.50%, followed by O. m. andalusicus (58.33 ± 1.97%) and
O. vacca (52.07 ± 1.07%), both differences being significant. Euonthophagus crocatus had
a significantly lower removal rate (43.07 ± 1.50%; p ≤ 0.001).
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In the absence of dung beetles (control “only dung”), the loss of dung weight at the
surface (25.8 ± 0.35%) can be considered as the mean loss of water from the samples, which
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effectively reduced the percentage of wet dung removed by each of the different species.
That moisture loss (25.8%) must be subtracted from the dung removal rate totals for each
of the four species to obtain the effective removal rates, e.g., [62.9%–25.8%] for G. sturmi.

4. Discussion and Conclusions

In the present microcosm experiment, G. sturmi, O. vacca, O. marginalis subsp. andalusicus,
and E. crocatus all contributed significantly to dung burial, leading to an enrichment of the
different soil levels with organic matter and mineral nutrients, with different performance
levels among the species. Gymnopleurus sturmi appeared to be more effective in enriching
the soil with nutrients at all depths, achieved with a relatively high rate of removal of
dung from the surface. Rollers handle dung differently from tunnelers, which may affect
the distribution of nutrients. Gymnopleurus sturmi is larger than other species, allowing it
to bury larger dung balls, explaining the higher nutrient levels and more efficient dung
removal observed. It is interesting to note that although it was expected that the burrowing
species, because of their ability to create complex galleries and accumulate large quantities
of dung, would be more effective in enriching the deep layers of the soil, G. sturmi defied
these expectations. This better performance could be attributed to the combination of its
larger size and its unique behavior as a roller. Previous field research [29] showed that
G. sturmi was very effective in dung removal, corroborating the results of the current study.

Onthophagus m. andalusicus also performed well in enriching the lower soil levels
with organic matter and nutrients, despite a significantly lower rate of dung disper-
sion and use at the surface. The ability of this species to dig deeper tunnels could con-
tribute to its efficiency in incorporating nutrients at greater depths. Onthophagus vacca and
E. crocatus showed weaker performance, which could be due to slight variations in the depth
of their burrows. Our results contrast with studies that suggest tunneling dung beetles play
a more important role in dung removal compared with rollers and dwellers [37,38]. In the
present study, overall, G. sturmi demonstrated higher performance in terms of dung removal
and nutrient incorporation, highlighting the potential variability in dung beetle efficiency
depending on species-specific behaviors and environmental context. A caveat on this find-
ing is that the microcosm experimental environment likely forced the roller, G. sturmi, to
behave more like a tunneler in that it could not roll balls away from the dung mass, thereby
likely making its dung burial more concentrated and, therefore, more efficient.

In combination with body size, several morphological traits, such as head area and
width, pronotum length and width, prothorax height and volume, and anterior and pos-
terior tibia size, were positively related to dung removal, as reported by [39–42]. Larger
dung beetles, such as G. sturmi, with features such as larger head size and width, as well as
larger pronotal dimensions, were found to be more efficient at dung removal, supporting
the findings that body size and morphology significantly influence dung beetle function.

The differences in results between the treatments with dung beetles and control
treatments (dung only and no dung) underline the overall importance of dung beetles
in soil fertilization and nutrient cycling. Maintaining and even enhancing the diversity
of dung beetle communities, with their varied ecologies, is a key element in pasture
management [43,44]. Our results are consistent with earlier studies that demonstrated
the importance of dung beetles in contributing to soil nutrient levels [26]. Through dung
relocation and dung burying activities, dung beetles influence the physical and chemical
properties of soils [42], as well as their biological properties. For example, dung relocation
and brood ball construction facilitate the activation of soil microorganisms involved in
the nitrogen cycle [8,45]. By tunneling, dung beetles help to reduce soil compaction and
increase soil aeration [6], facilitating nitrogen mineralization [46].

Dung relocation strategy determines where mineralization and nitrification take place:
inside the dung pad, at the dung–soil interface (dweller species), or below the surface
(tunnelers and rollers). Body size of dung beetles also affects the amount of dung removed;
larger individuals dig larger holes and galleries, enhancing aerobic processes [42]. Nervo
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et al. [40] and Stanbrook et al. [47] reported a positive relationship between dung beetle
size and the ability to influence nutrient recycling.

In the present study, G. sturmi, a roller beetle slightly larger than the other species,
buried only one dung ball in the soil at a time, intended as food for a single offspring, but
also scattered large quantities of dung on the surface, as reported by [29], whereas the
tunneling Onthophagus and Euonthophagus species dug complex nests containing numer-
ous small dung pellets intended for their offspring. Maldonado et al. [48] found that the
presence of dung beetles led to a significant increase in the availability of soil nutrients,
including nitrogen, ammonium, and phosphorus. Dung beetles also contribute signifi-
cantly to the decomposition of organic matter, promoting the release of nutrients into the
soil [30]. Plant growth is facilitated by dung beetle activity, which increases soil nutrient
levels [7,10,11,26,49].

However, our study on three tunneling and one ball-rolling dung beetle species had
limitations in that greenhouse and microcosm experiments cannot fully replicate the com-
plex interactions between dung beetles and their environments under natural conditions.
Additionally, the relatively short duration of this study would not have captured the in-
cremental, long-term effects of dung beetle activities on soil fertility and organic matter
levels. Moreover, the small sample sizes, timing constraints, and the use of relatively
small containers for experimentation were other constraints that should be pointed out.
Despite these limitations, it is important to note that this greenhouse microcosm study was
complemented by field studies [27,29], which provided additional insights into the biology,
ecology, and ethology of the four subject species in a semi-natural environment in Morocco
in north-western Africa.
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