Indirect Effects of Cattle Trampling on the Structure of Fruit-Feeding Butterfly Assemblages Inhabiting Restinga Forests in Southern Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Determination of Disturbance Level
2.3. Environmental and Structural Variables
2.4. Sampling Design
2.5. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaureguiberry, P.; Titeux, N.; Wiemers, M.; Bowler, D.E.; Coscieme, L.; Golden, A.S.; Guerra, C.A.; Jacob, U.; Takahashi, Y.; Settele, J.; et al. The direct drivers of recent global anthropogenic biodiversity loss. Sci. Adv. 2022, 8, eabm9982. [Google Scholar] [CrossRef] [PubMed]
- Gurevitch, J.; Padilla, D.K. Are invasive species a major cause of extinctions? Trends Ecol. Evol. 2004, 19, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Savadogo, P.; Sawadogo, L.; Tiveau, D. Effects of grazing intensity and prescribed fire on soil physical and hydrological properties and pasture yield in the savanna woodlands of Burkina Faso. Agric. Ecosyst. Environ. 2007, 118, 80–92. [Google Scholar] [CrossRef]
- Schowanek, S.; Davis, M.; Lundgren, E.; Middleton, O.; Rowan, J.; Pedersen, R.; Ramp, D.; Sandom, C.; Svenning, J. Reintroducing extirpated herbivores could partially reverse the late Quaternary decline of large and grazing species. Glob. Ecol. Biogeogr. 2021, 30, 896–908. [Google Scholar] [CrossRef]
- Dias-Filho, M.B.; Ferreira, J.N. Influência do pastejo na biodiversidade do ecossistema da pastagem. In Simpósio Sobre Manejo Estratégico da Pastagem, 1st ed.; Pereira, O.G., Obeid, J.Á., Fonseca, D.M., Nascimento Júnior, D., Eds.; Universidade Federal de Viçosa: Viçosa, Brazil, 2008; Volume 1, pp. 47–74. [Google Scholar]
- Gill, R.M.A.; Fuller, R.J. The effects of deer browsing on woodland structure and songbirds in lowland Britain. IBIS 2007, 149, 119–127. [Google Scholar] [CrossRef]
- Vefago, M.B.; Silva, A.C.; Cuchi, T.; Santos, G.N.; Nunes, A.D.S.; Rodrigues Júnior, L.C.; Lima, C.L.; Gross, A.; Kilca, R.V.; Higuchi, P. What explains the variation on the regenerative component dynamics of Araucaria Forests in southern Brazil? For. Sci. 2019, 76, 405–414. [Google Scholar] [CrossRef]
- Adams, S.N. Sheep and Cattle Grazing in Forests: A Review. J. Appl. Ecol. 1975, 12, 143–152. [Google Scholar] [CrossRef]
- Gough, L.; Grace, J.B. Herbivore effects on plant species density at varying productivity levels. Ecology 1998, 79, 1586–1594. [Google Scholar] [CrossRef]
- Parsons, A.J.; Dumont, B. Spatial heterogeneity and grazing processes. Anim. Res. 2003, 52, 161–179. [Google Scholar] [CrossRef]
- Milchunas, D.G.; Sala, O.E.; Lauenroth, W.K. A generalized model of the effects of grazing by large herbivores on grassland community structure. Am. Nat. 1988, 132, 87–106. [Google Scholar] [CrossRef]
- Augustine, D.J.; McNaughton, S.J. Ungulate effects on the functional species composition of plant communities: Herbivore selectivity and plant tolerance. J. Wild. Manag. 1998, 62, 1165–1183. [Google Scholar] [CrossRef]
- Sankaran, M.; McNaughton, S.J. Determinants of biodiversity regulate compositional stability of communities. Nature 1999, 401, 691–693. [Google Scholar] [CrossRef]
- Collins, S.L.; Knapp, A.K.; Briggs, J.M.; Blair, J.M.; Steinauer, E.M. Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 1998, 280, 745–747. [Google Scholar] [CrossRef] [PubMed]
- Olff, H.; Ritchie, M.E. Effects of herbivores on grassland plant diversity. Trends Ecol. Evol. 1998, 13, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Rook, A.J.; Tallowin, J.R.B. Grazing and pasture management for biodiversity benefit. Anim. Res. 2003, 52, 181–189. [Google Scholar] [CrossRef]
- Hickman, K.R.; Hartnett, D.C.; Cochran, R.C.; Owensby, C.E. Grazing management effects on plant species diversity in tallgrass prairie. Rangel. Ecol. Managem. 2004, 57, 58–65. [Google Scholar]
- Bakker, E.S.; Ritchie, M.E.; Olff, H.; Milchunas, D.G.; Knops, J.M. Herbivore impact on grassland plant diversity depends on habitat productivity and herbivore size. Ecol. Lett. 2006, 9, 780–788. [Google Scholar] [CrossRef]
- Stein, A.; Gerstner, K.; Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol. Lett. 2014, 17, 866–880. [Google Scholar] [CrossRef]
- Rivers-Moore, N.A.; Samways, M.J. Game and cattle trampling, and impacts of human dwellings on arthropods at a game park boundary. Biodivers. Conserv. 1996, 5, 1545–1556. [Google Scholar] [CrossRef]
- Tamartash, R.; Jalilvand, H.; Tatian, M.R. Effects of grazing on chemical soil properties and vegetation cover (Case study: Kojour rangelands, Noushahr, Islamic Republic of Iran). Pak. J. Biol. Sci. 2007, 10, 4391–4398. [Google Scholar] [CrossRef]
- Proesmans, W.; Andrews, C.; Gray, A.; Griffiths, R.; Keith, A.; Nielsen, U.N.; Spurgeon, D.; Pywell, R.; Emmett, B.; Vanbergen, A.J. Long-term cattle grazing shifts the ecological state of forest soils. Ecol. Evol. 2022, 12, e8786. [Google Scholar] [CrossRef] [PubMed]
- Olden, J.D. Biotic Homogenization. In Encyclopedia of Life Sciences (ELS), 1st ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2008; Volume 1. [Google Scholar] [CrossRef]
- Dunne, T.; Western, D.; Dietrich, W.E. Effects of cattle trampling on vegetation, infiltration, and erosion in a tropical rangeland. J. Arid Environ. 2011, 75, 58–69. [Google Scholar] [CrossRef]
- Tallowin, J.R.B.; Rook, A.J.; Rutter, S.M. Impact of grazing management on biodiversity of grasslands. Anim. Sci. 2005, 81, 193–198. [Google Scholar] [CrossRef]
- Didham, R.K.; Barker, G.M.; Costall, J.A.; Denmead, L.H.; Floyd, C.G.; Watts, C.H. The interactive effects of livestock exclusion and mammalian pest control on the restoration of invertebrate communities in small forest remnants. N. Z. J. Zool. 2009, 36, 135–163. [Google Scholar] [CrossRef]
- Jeddi, K.; Chaieb, M. Changes in soil properties and vegetation following livestock grazing exclusion in degraded arid environments of South Tunisia. Flora-Morphol. Distrib. Funct. Ecol. Plants 2010, 205, 184–189. [Google Scholar] [CrossRef]
- Foster, C.N.; Barton, P.S.; Lindenmayer, D.B. Effects of large native herbivores on other animals. J. Appl. Ecol. 2014, 51, 929–938. [Google Scholar] [CrossRef]
- Denmead, L.H.; Barker, G.M.; Standish, R.J.; Didham, R.K. Experimental evidence that even minor livestock trampling has severe effects on land snail communities in forest remnants. J. Appl. Ecol. 2015, 52, 161–170. [Google Scholar] [CrossRef]
- Aide, T.M.; Zimmerman, J.K.; Rosario, M.; Marcano, H. Forest Recovery in Abandoned Cattle Pastures Along an Elevational Gradient in Northeastern Puerto Rico. Biotropica 1996, 28, 537–548. [Google Scholar] [CrossRef]
- Guo, T.; Guo, M.; Pang, Y.; Sun, X.; Ryo, M.; Liu, N.; Zhang, Y. Ungulate herbivores promote beta diversity and drive stochastic plant community assembly by selective defoliation and trampling: From a four-year simulation experiment. J. Ecol. 2024. Early View. [Google Scholar] [CrossRef]
- WallisDeVries, M.F.; Ramakers, I. Does Extensive Grazing Benefit Butterflies in Coastal Dunes? Restor. Ecol. 2001, 9, 179–188. [Google Scholar] [CrossRef]
- Kruess, A.; Tscharnkte, T. Contrasting responses of plant and insect diversity to variation in grazing intensity. Biol. Conserv. 2002, 106, 293–302. [Google Scholar] [CrossRef]
- Collinge, S.K.; Prudic, K.L.; Oliver, J.C. Effects of local habitat characteristics and landscape context on grassland butterfly diversity. Conserv. Biol. 2003, 17, 178–187. [Google Scholar] [CrossRef]
- Pöyry, J.; Luoto, M.; Paukkunen, J.; Pykälä, J.; Raatikainen, K.; Kuussaari, M. Different responses of plants and herbivore insects to a gradient of vegetation height: An indicator of the vertebrate grazing intensity and successional age. Oikos 2006, 115, 401–412. [Google Scholar] [CrossRef]
- Tasker, E.M.; Bradstock, R.A. Influence of cattle grazing practices on forest understorey structure in north-eastern New South Wales. Austral Ecol. 2006, 31, 490–502. [Google Scholar] [CrossRef]
- Van Uytvanck, J.; Hoffmann, M. Impact of grazing management with large herbivores on forest ground flora and bramble understorey. Acta Oecologica 2009, 35, 523–532. [Google Scholar] [CrossRef]
- Fortuny, X.; Carcaillet, C.; Chauchard, S. Selective and taxon-dependent effects of semi-feral cattle grazing on tree regeneration in an old-growth Mediterranean mountain forest. For. Ecosyst. 2020, 7, 11. [Google Scholar] [CrossRef]
- Van Uytvanck, J.; Milotic, T.; Hoffmann, M. Interaction between large herbivore activities, vegetation structure, and flooding affects tree seedling emergence. Plant Ecol. 2010, 206, 173–184. [Google Scholar] [CrossRef]
- Mazzini, F.; Relva, M.A.; Malizia, L.R. Impacts of domestic cattle on forest and woody ecosystems in southern South America. Plant Ecol. 2018, 219, 913–925. [Google Scholar] [CrossRef]
- Ferreira, P.M.; Andrade, B.O.; Podgaiski, L.R.; Dias, A.C.; Pillar, V.D.; Overbeck, G.E.; Mendonça, M., Jr.; Boldrini, I.I. Long-term ecological research in southern Brazil grasslands: Effects of grazing exclusion and deferred grazing on plant and arthropod communities. PLoS ONE 2020, 15, e0227706. [Google Scholar] [CrossRef]
- Baggio, R.; Overbeck, G.E.; Durigan, G.; Pillar, V. To graze or not to graze: A core question for conservation and sustainable use of grassy ecosystems in Brazil. Perspect. Ecol. Conserv. 2021, 19, 256–266. [Google Scholar] [CrossRef]
- Scherer, A.; Maraschin-Silva, F.; Baptista, L.R.M. Florística e estrutura do componente arbóreo de matas de Restinga arenosa no Parque Estadual de Itapuã, RS, Brasil. Acta Bot. Bras. 2005, 19, 717–726. [Google Scholar] [CrossRef]
- Araujo, D.S.D.; Lacerda, L.D. A natureza das restingas. Ciência Hoje 1987, 6, 42–48. [Google Scholar]
- Teixeira, M.B.; Coura-Neto, A.B.; Pastore, U.; Rangel-Filho, A. Vegetação: As regiões fitoecológicas, sua natureza e seus recursos econômicos—Estudo fitogeográfico. In Levantamento de Recursos Naturais, 1st ed.; IBGE: Rio de Janeiro, Brazil, 1986; pp. 541–620. [Google Scholar]
- Streck, E.V.; Kämp, N.; Dalmolin, R.S.D.; Klamt, E.; Nascimento, P.C.; Giasson, E.; Pinto, L.F.S.l. Solos do Rio Grande do Sul; Emater/UFRGS: Porto Alegre, Brazil, 2002; 126p. [Google Scholar]
- Falkenberg, D.B. Aspectos da flora e da vegetação secundária da restinga de Santa Catarina, Sul do Brasil. Insula 1999, 28, 1–30. [Google Scholar]
- Kremen, C.; Colwell, R.K.; Erwin, T.L.; Murphy, D.D.; Noss, R.F.; Sanjayan, M.A. Terrestrial arthropod assemblages: Their use in conservation planning. Conserv. Biol. 1993, 7, 796–808. [Google Scholar] [CrossRef]
- Samways, M.J. Insects in biodiversity conservation: Some perspectives and directives. Biodivers. Conserv. 1993, 2, 258–282. [Google Scholar] [CrossRef]
- Brown, K.S. Diversity, disturbance, and sustainable use of neotropical forests: Insects as indicators for conservation monitoring. J. Insect Conserv. 1997, 1, 25–42. [Google Scholar] [CrossRef]
- Bonebrake, T.C.; Ponisio, L.C.; Boggs, C.L.; Ehrlich, P.R. More than just indicators: A review of tropical butterfly ecology and conservation. Biol. Conserv. 2010, 143, 1831–1841. [Google Scholar] [CrossRef]
- Casas-Pinilla, L.C.; Iserhard, C.A.; Richter, A.; Gawlinski, K.; Cavalheiro, L.B.D.; Romanowski, H.P.; Kaminski, L.A. Different-aged Pinus afforestation does not support typical Atlantic Forest fruit-feeding butterfly assemblages. For. Ecol. Manag. 2022, 518, 120279. [Google Scholar] [CrossRef]
- Thomas, A.N.; Richter, A.; Spaniol, R.L.; Mendonça, M.d.S., Jr.; Iserhard, C.A. Hoist the colours: Silviculture impacts fruit-feeding butterfly assemblage colouration in the Atlantic Forest. Biodivers. Conserv. 2024, 33, 2175–2193. [Google Scholar] [CrossRef]
- Dennis, R.L.H.; Shreeve, T.G.; Van Dyck, H. Towards a functional resource-based concept for habitat: A butterfly biology viewpoint. Oikos 2003, 102, 417–426. [Google Scholar]
- Smallidge, P.J.; Leopold, D.J. Vegetation management for the maintenance and conservation of butterfly habitats in temperature human-dominated landscapes. Land. Urb. Plan. 1997, 38, 259–280. [Google Scholar] [CrossRef]
- Bellaver, J.; Romanowski, H.P.; Richter, A.; Iserhard, C.A. Living on the edge: The use of fruit-feeding butterflies to evaluate edge effect on subtropical assemblages. Austral Ecol. 2022, 48, 217–232. [Google Scholar] [CrossRef]
- Freitas, A.V.L.; Iserhard, C.A.; Santos, J.P.; Carreira, J.Y.O.; Ribeiro, D.B.; Melo, D.H.A.; Rosa, A.H.B.; Marini-Filho, O.J.; Accacio, G.M.; Uehara-Prado, M. Studies with butterfly bait traps: An overview. Rev. Colomb. Entomol. 2014, 40, 203–212. [Google Scholar]
- Brown, K.S. Conservation of neotropical environments: Insects as indicators. In The Conservation of Insects and Their Habitats; Collins, N.M., Thomas, J.A., Eds.; Academic Press: London, UK, 1991. [Google Scholar]
- IBGE. In Manual Técnico da Vegetação Brasileira, 2nd ed.; Sistema Fitogeográfico; Inventário das Formações Florestais e Campestres; Técnicas e Manejo de Coleções Botânicas; Procedimentos para Mapeamentos; IBGE: Rio de Janeiro, Brazil, 2012.
- Scherer, A.; Maraschin-Silva, F.; Baptista, L.R.M. Estrutura do componente arbóreo em remanescentes florestais nas restingas sul brasileiras. Rev. Bras. Biociências 2009, 7, 354–363. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef] [PubMed]
- EMBRAPA. Normais Climatológicos. Estação Agroclimatológica de Pelotas (Capão do Leão). 2010. Available online: http://agromet.cpact.embrapa.br/estacao/normais.html (accessed on 1 January 2017).
- MacArthur, R.H.; MacArthur, J.W. On Bird Species Diversity. Ecol. Soc. Am. 1961, 42, 594–598. [Google Scholar] [CrossRef]
- Lemmon, P.E. A new instrument for measuring forest overstory density. J. For. 1957, 55, 667–668. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; Mcglinn, D.; Minchin, P.R.; O’hara, R.B.; Simpson, G.L.; Solymos, P.; et al. Package “vegan”: Community Ecology Package. CRAN 2024, v.2.6.6-1, 1–297. [Google Scholar]
- Dufrêne, M.; Legendre, P. Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67, 345–366. [Google Scholar] [CrossRef]
- De Cáceres, M. How to Use the Indicspecies Package (Ver. 1.7.1). Available online: https://cran.r-project.org/web/packages/indicspecies/vignettes/IndicatorSpeciesAnalysis.html (accessed on 15 May 2024).
- Chao, A.; Jost, L. Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology 2012, 93, 2533–2547. [Google Scholar] [CrossRef] [PubMed]
- Chao, A.; Wang, Y.T.; Jost, L. Entropy and the species accumulation curve: A novel estimator of entropy via discovery rates of new species. Methods Ecol. Evol. 2013, 4, 1091–1110. [Google Scholar] [CrossRef]
- Chao, A.; Gotelli, N.J.; Hsieh, T.C.; Sander, E.L.; Ma, K.H.; Colwell, R.K.; Ellison, A.M. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 2014, 84, 45–67. [Google Scholar] [CrossRef]
- Chao, A.; Jost, L. Estimating diversity and entropy profiles via discovery rates of new species. Methods Ecol. Evol. 2015, 6, 873–882. [Google Scholar] [CrossRef]
- Chao, A.; Ma, K.H.; Hsieh, T.C. User’s Guide for iNEXT Online: Software for Interpolation and Extrapolation of Species Diversity. Code, 30043, 2016, 1-14. Available online: http://chao.stat.nthu.edu.tw/wordpress/software_download/ (accessed on 1 June 2024).
- Zuur, A.; Ieno, E.; Walker, N.; Saveliev, A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S.; Christensen, R.H.B.; Singmann, H.; Scheipl, F.; Grothendieck, G.; Green, P.; Fox, J.; et al. lme4: Linear Mixed-Effects Models using “Eigen” and S4. R Package Version 1.1-35.5. 2024. Available online: https://cran.r-project.org/web/packages/lme4/lme4.pdf (accessed on 15 June 2024).
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2024. Available online: https://www.r-project.org (accessed on 1 June 2024).
- Brown, K.S. Borboletas da Serra do Japi: Diversidade, hábitats, recursos alimentares e variação temporal. In História Natural da Serra do Japi: Ecologia e Preservação de Uma Área Florestal no Sudeste do Brasil; Morellato, P., Ed.; Editora da UNICAMP: Campinas, Brazil, 1992; pp. 142–187. [Google Scholar]
- Ribeiro, D.B.; Freitas, A.V.L. Differences in thermal responses in a fragmented landscape: Temperature affects the sampling of diurnal, but not nocturnal fruit-feeding Lepidoptera. J. Res. Lepid. 2010, 42, 1–4. [Google Scholar] [CrossRef]
- Pöyry, J.; Lindgren, S.; Salminen, J.; Kuussaari, M. Restoration of butterfly and moth communities in semi-natural grasslands by cattle grazing. Ecol. Appl. 2004, 14, 1656–1670. [Google Scholar] [CrossRef]
- Joshi, P.C. Community structure and habitat selection of butterflies in Rajaji National Park, a moist deciduous forest in Uttaranchal, India. Trop. Ecol. 2007, 48, 119–123. [Google Scholar]
- Schulze, C.H.; Waltert, M.; Kessler, P.J.A.; Pitopang, R.; Shahabuddin, G.; Veddeler, D.; Mühlenberg, M.; Gradstein, S.R.; Leuschner, C.; Steffan-Dewenter, I.; et al. Biodiversity indicator groups of tropical land-use systems: Comparing plants, birds, and insects. Ecol. Appl. 2004, 14, 1321–1333. [Google Scholar] [CrossRef]
- Hamer, K.C.; Hill, J.K.; Benedick, S.; Mustaffa, N.; Sherratt, T.N.; Maryati, M.; Chey, V.K. Ecology of butterflies in natural and selectively logged forests of northern Borneo: The importance of habitat heterogeneity. J. Appl. Ecol. 2003, 40, 150–162. [Google Scholar] [CrossRef]
- Schulze, C.H.; Fiedler, K. Habitat preference and flight activity of Morphinae butterflies in a Bornean rainforest, with a note on sound production by adult Zeuxidia (Lepidoptera: Nymphalidae). Malay. Nat. J. 1998, 52, 163–176. [Google Scholar]
- Hill, J.K. Butterfly spatial distribution and habitat requirements in a tropical forest: Impacts of selective logging. J. Appl. Ecol. 1999, 36, 564–572. [Google Scholar] [CrossRef]
- Uehara-Prado, M.; Brown, K.S.; Freitas, A.V.L. Species richness, composition and abundance of fruit-feeding butterflies in the Brazilian Atlantic Forest: Comparison between a fragmented and a continuous landscape. Glob. Ecol. Biogeogr. 2007, 16, 43–54. [Google Scholar] [CrossRef]
- Blau, W.S. The effect of environmental disturbance on a tropical butterfly population. Ecology 1980, 61, 1005–1112. [Google Scholar] [CrossRef]
- Wardle, D.A.; Bardgett, R.D. Human-induced changes in large herbivorous mammal density: The consequences for decomposers. Front. Ecol. Environ. 2004, 2, 145–153. [Google Scholar] [CrossRef]
- Duelli, P.; Obrist, M.K.; Wermelinger, B. Windthrow-induced changes in faunistic biodiversity in alpine spruce forests. For. Snow Landsc. Res. 2002, 77, 117–131. [Google Scholar]
- Pardonnet, S.; Beck, H.; Milberg, P.; Bergman, K.O. Effect of Tree-Fall Gaps on Fruit-Feeding Nymphalid Butterfly Assemblages in a Peruvian Rain Forest. Biotropica 2013, 45, 612–619. [Google Scholar] [CrossRef]
- Richter, A.; Mendonça, M.d.S.; Gawlinski, K.; Iserhard, C.A. Microclimatic fluctuation throughout the day influences subtropical fruit-feeding butterfly assemblages between the canopy and understory. Diversity 2023, 15, 560. [Google Scholar] [CrossRef]
- Hobbs, N.T.; Baker, D.L.; Bear, G.D.; Bowden, D.C. Ungulate grazing in sagebrush grassland: Mechanisms of resource competition. Ecol. Appl. 1996, 6, 200–217. [Google Scholar] [CrossRef]
- Rambo, J.L.; Faeth, S.H. Effect of vertebrate grazing on plant and insect community structure. Conserv. Biol. 1999, 13, 1047–1054. [Google Scholar] [CrossRef]
- Lopes, R.P.; Pereira, J.C.; Kerber, L.; Dillenburg, S.R. The extinction of the Pleistocene megafauna in the Pampa of southern Brazil. Quat. Sci. Rev. 2020, 242, 106428. [Google Scholar] [CrossRef]
- Storch, D.; Šímová, I.; Smyčka, J.; Bohdalková, E.; Toszogyova, A.; Okie, J.G. Biodiversity dynamics in the Anthropocene: How human activities change equilibria of species richness. Ecography 2022, 4, e55778. [Google Scholar] [CrossRef]
- Palombo, M.R. Thinking about the Biodiversity Loss in This Changing World. Geosciences 2021, 11, 370. [Google Scholar] [CrossRef]
- Souza, Y.; Villar, N.; Zipparro, V.; Nazareth, S.; Galetti, M. Large mammalian herbivores modulate plant growth form diversity in a tropical rainforest. J. Ecol. 2022, 110, 845–859. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Gerber, P.; Reid, R.S. Livestock, livelihoods and the environment: Understanding the trade-offs. Curr. Opin. Environ. Sustain. 2009, 1, 111–120. [Google Scholar] [CrossRef]
- Luza, A.L.; Carlucci, M.B.; Hartz, S.M.; Duarte, L.S. Moving from forest vs. grassland perspectives to an integrated view towards the conservation of forest–grassland mosaics. Nat. Conserv. 2014, 2, 166–169. [Google Scholar] [CrossRef]
- Carvalho, R.; Aguiar, A.P.D.; Amaral, S. Diversity of cattle raising systems and its effects over forest regrowth in a core region of cattle production in the Brazilian Amazon. Reg. Environ. Chang. 2020, 20, 44. [Google Scholar] [CrossRef]
- Fearnside, P.M. Deforestation in Brazilian Amazonia: History, Rates, and Consequences. Conserv. Biol. 2005, 19, 680–688. [Google Scholar] [CrossRef]
- Rodrigues, J.L.; Pellizari, V.H.; Mueller, R.; Baek, K.; Jesus, E.D.; Paula, F.S.; Mirza, B.; Hamaoui, G.S.; Tsai, S.M.; Feigl, B.; et al. Conversion of the Amazon rainforest to agriculture results in biotic homogenization of soil bacterial communities. Proc. Nat. Acad. Sci. USA 2013, 110, 988–993. [Google Scholar] [CrossRef]
Disturbance | Feces (%) | Understory Height (cm) | Canopy Coverage (%) | Temperature (°C) | Humidity (%) |
---|---|---|---|---|---|
Low | 1 ± 0.4 | 167.5 ± 11.1 | 81.4 ± 2.2 | 26.6 ± 1.9 | 72.1 ± 5.8 |
Medium | 32 ± 2.9 | 115.5 ± 19.8 | 76.8 ± 1.1 | 25.5 ± 2.2 | 68.5 ± 3.7 |
High | 67 ± 2.9 | 42.5 ± 29.3 | 76.3 ± 1.3 | 27.3 ± 1.8 | 65.7 ± 4.6 |
Environmental and Structural Variables | MDS1 | MDS2 | R2 | p-Value |
---|---|---|---|---|
Mean temperature | −0.3013 | 0.9535 | 0.0886 | 0.1339 |
Mean humidity | −0.5113 | 0.8594 | 0.278 | 0.002 |
Canopy cover | −0.9213 | −0.3889 | 0.3233 | 0.002 |
Understory height | −0.9987 | −0.0508 | 0.361 | 0.001 |
Species (Subfamily, Tribe) | IndVal | A | B | p-Value |
---|---|---|---|---|
High level | ||||
Eunica eburnea (Bib, Euni) | 0.759 | 0.759 | 0.887 | 0.001 |
Medium + high levels | ||||
Cissia phronius (Sat, Saty) | 0.971 | 0.971 | 0.942 | 0.001 |
Zaretis strigosus (Cha, Anae) | 0.940 | 0.940 | 0.965 | 0.001 |
Opsiphanes invirae (Sat, Bras) | 0.847 | 0.847 | 0.896 | 0.013 |
Paryphthimoides poltys (Sat, Saty) | 0.828 | 0.828 | 0.960 | 0.005 |
Capronnieria galesus (Sat, Saty) | 0.810 | 0.810 | 0.920 | 0.006 |
Variable | Predictor | Estimate | Std. Error | Statistic | df | p-Value |
---|---|---|---|---|---|---|
Richness | Mean temperature | 0.018 | 0.016 | 1.108 | 12.857 | 0.288 |
Mean humidity | 0.006 | 0.006 | 0.894 | 26.528 | 0.380 | |
Canopy cover | −0.005 | 0.012 | −0.390 | 37.215 | 0.699 | |
Understory height | 0.000 | 0.001 | −0.430 | 38.342 | 0.670 | |
Dominance | Mean temperature | 0.161 | 0.191 | 0.844 | 22.779 | 0.407 |
Mean humidity | 0.081 | 0.071 | 1.152 | 35.382 | 0.257 | |
Canopy cover | −0.103 | 0.125 | −0.827 | 36.833 | 0.414 | |
Understory height | −0.008 | 0.006 | −1.242 | 37.349 | 0.222 | |
Abundance | Mean temperature | −0.029 | 0.053 | −0.555 | 0.579 | |
Mean humidity | 0.046 | 0.026 | 1.732 | 0.083 | ||
Canopy cover | −0.117 | 0.040 | −2.929 | 0.003 | ||
Understory height | −0.007 | 0.002 | −3.621 | 0.0003 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iserhard, C.A.; Schwantz, T.; Gallo, M.C.; Gottschalk, M.S.; Bordin, K.M. Indirect Effects of Cattle Trampling on the Structure of Fruit-Feeding Butterfly Assemblages Inhabiting Restinga Forests in Southern Brazil. Diversity 2024, 16, 467. https://doi.org/10.3390/d16080467
Iserhard CA, Schwantz T, Gallo MC, Gottschalk MS, Bordin KM. Indirect Effects of Cattle Trampling on the Structure of Fruit-Feeding Butterfly Assemblages Inhabiting Restinga Forests in Southern Brazil. Diversity. 2024; 16(8):467. https://doi.org/10.3390/d16080467
Chicago/Turabian StyleIserhard, Cristiano Agra, Taiane Schwantz, Mariana Centeno Gallo, Marco Silva Gottschalk, and Kauane Maiara Bordin. 2024. "Indirect Effects of Cattle Trampling on the Structure of Fruit-Feeding Butterfly Assemblages Inhabiting Restinga Forests in Southern Brazil" Diversity 16, no. 8: 467. https://doi.org/10.3390/d16080467
APA StyleIserhard, C. A., Schwantz, T., Gallo, M. C., Gottschalk, M. S., & Bordin, K. M. (2024). Indirect Effects of Cattle Trampling on the Structure of Fruit-Feeding Butterfly Assemblages Inhabiting Restinga Forests in Southern Brazil. Diversity, 16(8), 467. https://doi.org/10.3390/d16080467