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Abstract: Species of the Rhodnius genus have a complex taxonomy because the events of phenotypic
plasticity and cryptic speciation make it difficult to correctly classify these vectors. During the
taxonomic history of the genus, five synonymization events occurred. Additionally, some authors
suggest that R. milesi possibly represent only phenotypic polymorphisms of R. neglectus. Thus,
we analyzed the specific status of R. milesi in relation to R. neglectus using phylogenetic studies
with the mitochondrial gene cytochrome B and the study of reproductive barriers. The phylogenetic
reconstruction grouped R. milesi together with R. neglectus from different localities, demonstrating that
these taxa represent the same species based on the phylogenetic species concept. Experimental crosses
demonstrate the absence of pre- and postzygotic barriers under laboratory conditions. Additionally,
when the hatch rates of crosses are compared to intraspecific crosses, it can be noted that they are high
and very similar. Finally, the mortality rate of the hybrids does not indicate hybrid inviability, the
absence of chromosome pairing errors does not indicate hybrid sterility, and the proportion between
male and female hybrids demonstrates that Haldane’s rule was not acting. Therefore, we perform the
formal synonymization of R. milesi with R. neglectus.

Keywords: taxonomy; triatomines; phylogenetic systematics; experimental crosses; synonymization

1. Introduction

Triatomines (Hemiptera, Reduviidae, Triatominae) are hematophagous insects of
great importance for public health, as they are considered the main form of transmission
of the protozoan Trypanosoma cruzi (Chagas, 1909) (Kinetoplastida, Trypanosomatidae),
the etiological agent of Chagas disease [1]. Currently, there are 159 species, grouped into
18 genera and five tribes (Alberproseniini Martínez & Carcavallo, 1977, Bolboderini Usinger,
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1944, Cavernicolini Usinger, 1944, Triatomini Jeannel, 1919 and Rhodniini Pinto, 1926), all
being species considered potential vectors of the Chagas disease [2–7].

The main species from an epidemiological point of view are in the Triatomini and
Rhodniini tribes [8]. The Rhodniini tribe is composed by 23 species, 20 belonging to the
Rhodnius Stål, 1859 genus and three to the Psammolestes Bergroth, 1911 genus [2,7]. The
Rhodnius genus is considered a paraphyletic group [8–11], as species in the prolixus group
are evolutionarily closer to Psammolestes spp. than to the other Rhodnius groups [8–11].

Species of the Rhodnius genus have a complex taxonomy, because although species
differentiation was initially based only on morphological distinctions and similarities [12,13],
events of phenotypic plasticity and cryptic speciation make it difficult to correctly classify these
vectors [14]. Intraspecific variations have already been reported in the species R. nasutus Stål,
1859 [15], R. robustus Larrousse, 1927 [16], R. ecuadoriensis Lent & León, 1958 [17], R. brethesi
Matta, 1919 [18] and R. neglectus Lent, 1954 [19]. Furthermore, the main cryptic speciation
event in the genus Rhodnius was signaled for R. robustus [11], although intraspecific genotypic
variations were already observed for the species R. ecuadoriensis [20] and R. pallescens Barber,
1932 [21].

During the taxonomic history of the genus, five synonymization events occurred,
namely, R. brumpti Pinto, 1925 with R. nasutus, R. dunni Pinto, 1932 with R. pallescens,
Conorhinus limosus Walker, 1873 with R. pictipes Stål, 1872 and R. prolixus Stål, 1859 and,
more recently, R. taquarussuensis Rosa et al., 2017 with R. neglectus and R. zeledoni Jurberg,
Rocha & Galvão, 2009 with R. domesticus Neiva & Pinto, 1923 [7,19,22]. In addition to
formal synonymization events, some authors suggest that, possibly, valid species represent
only phenotypic polymorphisms: Abad-Franch et al. [17] and Monteiro et al. [11], for
example, suggested that R. milesi Carcavallo, Rocha, Galvão & Jurberg, 2001 (in: Valente
et al., 2001) is probably R. neglectus. Furthermore, recently Filée et al. [23] carried out a
phylogenomic study in Rhodnius and suggested that R. milesi should be synonymized with
R. nasutus. However, the authors themselves highlighted that a possible explanation for
R. milesi approaching R. nasutus instead of R. neglectus is related to a probable event of
introgression of nuclear genetic material between R. neglectus and R. nasutus.

Rhodnius milesi is a species reported in the states of Pará and Rondônia [24,25] that
was described based on comparative morphological studies with R. dalessandroi Carcavallo
& Barreto, 1976 [24]. However, phylogenetic systematic studies have grouped R. milesi with
R. neglectus and, therefore, suggested that they are the same species [11]; Although some
morphological differences in the external morphology [26], as well as in the structures of
female genitalia [27] and the exochorial cells of eggs [28], have been observed, Galvão [29]
and Jurberg [30] did not include this species in the dichotomous keys for adult Rhodnius due
to the absence of external diagnostic characters when compared to R. neglectus. Furthermore,
Alvarez et al. [31] recently carried out geometric morphometric studies between Rhodnius
spp. and suggested that R. milesi is a variant of R. neglectus (emphasizing the need for the
formal synonymization of these species).

Given the events of cryptic speciation and phenotypic plasticity, as well as the taxo-
nomic problems associated with Rhodnius [11,14], integrative taxonomy has been used to
characterize new species of the Rhodniini tribe [14,32,33]. Among the different tools that
can be used in integrative taxonomy, phylogenetic systematics studies and analyses of pre-
and postzygotic interspecific reproductive barriers are of great importance for evaluating
the specific status of taxa (based on the phylogenetic [34] and biological concept of species,
respectively [35,36]).

Thus, considering that morphological [12,29,30] and morphometric [31] studies have
already been carried out and pointed out many similarities (suggesting, even, the formal
synonymization of taxa [31]), we analyzed the specific status of R. milesi in relation to
R. neglectus using phylogenetic studies with the mitochondrial gene cytochrome B (cyt B)
and the study of reproductive barriers through experimental crosses.
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2. Materials and Methods
2.1. Molecular Analyses
2.1.1. DNA Extraction

For DNA extraction, two specimens of R. milesi, obtained from colonies at the Triatom-
inae Insectary of the School of Pharmaceutical Sciences of Araraquara, São Paulo, were
used. The extraction protocol used was based on Adams et al. [37], in which two legs of
each specimen were added to a microtube containing Digsol Buffer (50 mM Tris, 20 mM
EDTA, 117 mM NaCl and 1% SDS) and macerated, being subsequently incubated overnight
with proteinase K. The solution was then precipitated using an ammonium acetate solution,
which was homogenized in a vortex for 15 min and centrifuged. The supernatant was then
transferred to a new microtube, precipitated in absolute ethanol and centrifuged. Finally, a
wash in 70% ethanol was performed and centrifuged again. After drying, the DNA was
resuspended in 40 µL of TE buffer (Tris-EDTA) and stored at −20 ◦C. DNA concentration
and quality were assessed using the NanoDrop™ spectrophotometer (Thermo Scientific™,
Waltham, MA, USA).

2.1.2. Cytochrome B Amplification

For the amplification of cyt B, forward (5′-GGACAAATATCATGAGGAGCAACAG-3′)
and reverse (5′-ATTACTCCTCCTAGCTTATTAGGAATTG-3′) primers were used, following
the methodology of Lyman et al. [38]. The PCR products obtained were verified on an
agarose gel (2%) stained with GelRed™ 20x (Biotium Inc.™, San Francisco Bay, CA, USA).
Subsequently, the material was purified using ExoSAP-IT™ (Applied Biosystems™, Foster
City, CA, USA) and submitted for sequencing on the ABI 3730 DNA Analyzer (Applied
Biosystems™). Sequencing reactions were performed using the BigDye Terminator v3.1
Cycle Sequencing Kit (Applied Biosystems™). The sequences obtained were evaluated in
BioEdit 7.2.5 [39], and the consensus sequence for each specimen was obtained from the
forward and reverse sequences, which were evaluated in BLAST (https://blast.ncbi.nlm.
nih.gov/Blast.cgi, accessed on 4 June 2024) to confirm the amplified region.

2.1.3. Phylogenetic and Genetic Distance Analyses

The cyt B sequences obtained were grouped with sequences available in Genbank
(https://www.ncbi.nlm.nih.gov/genbank/, accessed on 4 June 2024) for Rhodnius spp. and
Triatoma spp. (outgroup) (Table 1) and aligned in the Mega 11 program [40], using the
Muscle method [41]. The resulting alignment containing 699 nucleotides was submitted to
the jModeltest 2.10 [42] program to evaluate the best nucleotide substitution model based
on AIC calculation, the best model being HKY [43] with invariant sites (+I) and gamma
distribution (+G). Subsequently, this alignment was submitted to the Mega 11 program [40]
to evaluate genetic distance (Kimura-2-parameters) and perform phylogenetic analysis by
Neighbor-Joining [44]. In addition, a phylogenetic reconstruction using Bayesian inference
was also performed in the Beast 1.8.4 program [45].

For Neighbor-Joining phylogenetic analysis, a total of 10,000 bootstrap replicates
were performed [46]. The Kimura 2-parameter [47] method was used to calculate the
evolutionary distance between sequences. The run was performed with the partial deletion
option (all positions with less than 95% site coverage were eliminated). There were a total
of 404 positions in the final dataset.

For phylogenetic reconstruction by Bayesian inference, an analysis was carried out with
100 million generations, using the HKY +I +G, strict clock and yule process prior [48,49].
Analysis stabilization (ESS > 200) was assessed in Tracer 1.8 [50]. Burn-in was adjusted for 25%
of the samples, and the resulting tree was visualized and edited in Figtree program 1.4 [51].

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.ncbi.nlm.nih.gov/genbank/
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Table 1. Genbank accession number for each marker used in the phylogenetic analyses. * Sequences
obtained in this study.

Specie Acession Number Country State—City

R. milesi PQ094218 * Brazil Pará—Bragança
PQ094219 * Brazil Pará—Bragança

R. neglectus AF045716 Brazil -
MZ399364 Brazil Bahia—Ibotirama
MZ399370 Brazil Bahia—São Desiderio
KT317037 Brazil Bahia—Xique-Xique
KT317036 Brazil Bahia—Xique-Xique
MH704748 Brazil Goiás—Formoso
MH704749 Brazil Goiás—Formoso
MH704751 Brazil Goiás—Formoso
MH704750 Brazil Goiás—Formoso
MZ399362 Brazil Goiás—Mambai
MZ399366 Brazil Maranhão—Vargem Grande
MZ399365 Brazil Maranhão—Loreto
MZ399367 Brazil Minas Gerais—Buritizeiro
MZ399368 Brazil Minas Gerais—Januaria
KT317058 Brazil Paraíba—Olivedos
KT317053 Brazil Piauí—Canto do Buriti
KT317056 Brazil Piauí—Canto do Buriti
KT317052 Brazil Piauí—Canto do Buriti
KT317054 Brazil Piauí—Canto do Buriti
KT317055 Brazil Piauí—Canto do Buriti
KT317063 Brazil Piauí—Colônia do Gurgueia
KT317065 Brazil Piauí—Colônia do Gurgueia
KT317068 Brazil Piauí—Colônia do Gurgueia
KT317064 Brazil Piauí—Colônia do Gurgueia
KT317067 Brazil Piauí—Colônia do Gurgueia
KT317066 Brazil Piauí—Colônia do Gurgueia
KT317045 Brazil Piauí—Jaicos
KT317042 Brazil Piauí—Jaicos
KT317043 Brazil Piauí—Jaicos
KT317044 Brazil Piauí—Jaicos
MZ399363 Brazil Piauí—Monte Alegre do Piaui
KT317057 Brazil Piauí—Oeiras
OQ785647 Brazil Piauí—Sao Raimundo Nonato
JX273156 Brazil Tocantins—Palmeirantes

MZ399369 Brazil Tocantins—Taguatinga

R. montenegrensis MZ396184 Bolivia -
MZ396185 Bolivia -
MZ396186 Bolivia -
MZ396187 Bolivia -
MZ396188 Bolivia -
MZ396189 Bolivia -
MZ396190 Bolivia -
MZ396191 Bolivia -

R. robustus JX273158 Brazil -

R. prolixus AF421339 Honduras -
EF043579 Venezuela -
EF043585 Venezuela -
EF043586 Venezuela -
EF043587 Venezuela -
EF043588 Venezuela -
KP126733 Colombia -
KP126734 Colombia -
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Table 1. Cont.

Specie Acession Number Country State—City

R. nasutus MG735124 - Pernambuco—Serra Talhada
MG735123 - Pernambuco—Serra Talhada
MG735122 - Pernambuco—Serra Talhada
MG735121 - Pernambuco—Serra Talhada
MG735109 - Paraíba—Sousa
MG735108 - Paraíba—Sousa
MG735107 - Paraíba—Sousa
MG735106 - Paraíba—Sousa
MG735080 - Piauí—Piracuruca
MG735079 - Piauí—Piracuruca
MG735078 - Piauí—Piracuruca
MG735077 - Piauí—Piracuruca
MG735071 - Piauí—Parnaiba
MG735070 - Piauí—Parnaiba
MG735069 - Piauí—Parnaiba
MG735068 - Piauí—Parnaiba
MG735054 - Ceará—Jaguaruana
MG735053 - Ceará—Jaguaruana

MG735022 - Rio Grande do Norte—Carnauba
dos Dantas

MG735021 - Rio Grande do Norte—Carnauba
dos Dantas

MG734997 - Piauí—Campo Maior
MG734996 - Piauí—Campo Maior

Outgroup
T. infestans KC249262 Uruguai -

T. infestans KC249258 - -
T. rubrofasciata HQ333233 - -

2.2. Experimental Crosses

Reciprocal experimental crosses were conducted between R. milesi and R. neglectus to
evaluate the potential pre- and/or postzygotic reproductive isolation barriers [34,35,52].
The experimental crosses were conducted in the Triatominae Insectary of the School of
Pharmaceutical Sciences (FCFAR/UNESP, Brazil), according to the experiments of Men-
donça et al. [53] and Ravazi et al. [54]: the insects were sexed as 5th instar-nymphs, and
males and females were kept separately until they reached the adult stage to guarantee
the virginity of the insects used in the crosses. For the experimental crosses, five couples
from each set were placed separately in five plastic jars (diameter 5 cm × height 10 cm)
and were kept at room temperature (average of 24 ◦C) and a relative humidity of 63% [55].
Furthermore, intraspecific crosses were also performed for group control. The eggs were
collected weekly throughout the female’s oviposition periods, and the egg fertility rate was
calculated. Additionally, after the hybrids hatched, the development of 1st instar-nymphs
until adults was also monitored weekly to assess the mortality rate. As the nymphs did not
die before reaching the adult stage, ten new couples of first-generation hybrids (F1) (five for
each direction) were separated for intercrossing, with the same parameters described above
being used in the evaluation. Furthermore, intercrosses between second-generation hybrids
(F2) were also carried out in both directions. Finally, the hybrids that reached adulthood
were sexed to assess whether Haldane’s rule [56] was acting. This rule predicts that if
hybrids hatch, the heterogametic sex is the first affected by the evolutionary events that
make this organism unfeasible or lead to sterility [56,57]. We justify that for all quantitative
data collected, the relative frequency was calculated.
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2.3. Cytogenetic Analysis

Five adult male hybrids from each generation were dissected and their testes removed
and stored in a methanol: acetic acid solution (3:1). Slides were prepared by the cell-
crushing technique (as described by Alevi et al. [58]), and cytogenetic analyses were
performed to characterize spermatogenesis, with emphasis on the degree of pairing between
the homologous chromosomes, using the lacto-acetic orcein technique [58,59]. The slides
were examined under a light microscope (Jenamed; Carl Zeiss, Jena, Germany) that was
coupled with a digital camera with a 1000-fold magnification; AxioVision LE version 4.8
imaging software (Carl Zeiss) was used for analysis.

3. Results and Discussion

The phylogenetic reconstruction grouped R. milesi (Figure 1A–D) together with R. ne-
glectus (Figure 1E–G) from different localities (Figures 2, 3 and S1), demonstrating that these
taxa represent the same species based on the phylogenetic species concept [34]. Monteiro
et al. [11] also analyzed the relationship of these species with the cyt B gene and the nuclear
marker Internal Transcribed Spacer 2 (ITS2) and observed high genetic similarity between
R. milesi from southeastern Amazonia and R. neglectus. Furthermore, Filée et al. [23], using
mitochondrial and nuclear markers, also analyzed the phylogenetic position of this species
with Rhodnius spp. and suggested that R. milesi be synonymized with R. nasutus. Although
the nuclear marker analyzed by Monteiro et al. [11] demonstrated evolutionary proximity
between R. nasutus, R. neglectus and R. milesi, the phylogeny with the Cyt B gene separated
R. nasutus from R. neglectus + R. milesi into distant clades [11] (Figures 2, 3 and S1), which
led to Filée et al. [23] suggesting possible introgression between R. neglectus and R. nasutus.

The genetic similarities and divergences reported above by Monteiro et al. [11] are
congruent with the chromosomal analyses carried out by Pita et al. [20], once R. neglec-
tus and R. milesi present 45S rDNA marking clusters on the X and Y sex chromosomes
and R. nasutus presents marking only on the X sex chromosome. The fluorescence in
situ hybridization (FISH) results highlight that the position of the 45S rDNA probes are
species-specific markers [20,60,61]. These data, together with the phylogenetic analyses,
demonstrate that R. milesi and R. neglectus represent the same taxon.

Experimental crosses between R. milesi and R. neglectus resulted in F1 hybrids in both
directions (Figure 1I–P), demonstrating the absence of prezygotic reproductive barriers
(Table 2). Furthermore, postzygotic barriers were also not observed; as the hybrids reached
adulthood (Figure 1I–P) (Table 2) (absence of hybrid inviability), they were intercrossed,
and F2 hybrid offspring were obtained (Table 2) (absence of hybrid sterility). Subsequently,
F2 hybrids were intercrossed, and third-generation hybrids (F3) were obtained (Table 2)
(possible absence of hybrid collapse). The characterization of reproductive barriers in
laboratory conditions makes it possible to confirm the specific status of the parental species
based on the biological species concept [35,36]. On the other hand, when reproductive
barriers are not observed, this parameter alone cannot be used to synonymize species, as
laboratory crossings can break several natural barriers that may exist between different
species in nature.

Nascimento et al. [19] performed an integrative taxonomy study to assess the specific
status of R. taquarussuensis. The authors relied on data from phylogenetic systematics and
experimental crosses to synonymize this species with R. neglectus, because mitochondrial
markers demonstrated that both were grouped into a single clade, did not present interspe-
cific reproductive barriers and had very high hatching rates of 92% for the cross between
R. taquarussuensis ♀ x R. neglectus ♂and 88% between R. neglectus ♀ x R. taquarussuensis ♂.
Likewise, when the hatch rates of crosses between R. milesi and R. neglectus are compared to
intraspecific crosses, it can be noted that, in both directions, they are high and very similar
(ranging between 81% and 89%) (Table 2).
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x R. milesi male in ventral view; (M): female hybrid resulting from the crossing between R. milesi 
female x R. neglectus male in dorsal view; (N): female hybrid resulting from the crossing between R. 
milesi female x R. neglectus male in ventral view; (O): male hybrid resulting from the crossing 
between R. milesi female x R. neglectus male in dorsal view; (P): male hybrid resulting from the cross-
ing between R. milesi female x R. neglectus male in ventral view. Bar: 2 mm. 

Figure 1. (A): Female R. milesi in dorsal view; (B): female R. milesi in ventral view; (C): male R. milesi
in dorsal view; (D): male R. milesi in ventral view; (E): female R. neglectus in dorsal view; (F): female
R. neglectus in ventral view; (G): male R. neglectus in dorsal view; (H): male R. neglectus in ventral
view; (I): female hybrid resulting from the crossing between R. neglectus female x R. milesi male in
dorsal view; (J): female hybrid resulting from the crossing between R. neglectus female x R. milesi
male in ventral view; (K): male hybrid resulting from the crossing between R. neglectus female x R.
milesi male in dorsal view; (L): male hybrid resulting from the crossing between R. neglectus female x
R. milesi male in ventral view; (M): female hybrid resulting from the crossing between R. milesi female
x R. neglectus male in dorsal view; (N): female hybrid resulting from the crossing between R. milesi
female x R. neglectus male in ventral view; (O): male hybrid resulting from the crossing between R.
milesi female x R. neglectus male in dorsal view; (P): male hybrid resulting from the crossing between
R. milesi female x R. neglectus male in ventral view. Bar: 2 mm.
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Figure 3. Simplified tree showing the phylogenetic relationship between taxa, based on Bayesian
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Table 2. Intra- and interspecific crosses between R. milesi and R. neglectus. * F1 hybrids resulting from
the cross between R. milesi ♀ x R. neglectus ♂, ** F1 hybrids resulting from crossing R. neglectus ♀ x R.
milesi ♂, *** F2 hybrids resulting from the crossing between F1 of R. milesi ♀ x R. neglectus ♂, **** F2
hybrids resulting from the crossing between F1 of R. neglectus ♀ x R. milesi ♂.

Crosses Eggs Hatching Rate Eggs Hatching Rate

Experimental crosses
(to obtain F1)

R. milesi ♀ x R. neglectus ♂ 357 82%
R. neglectus ♀ x R. milesi ♂ 366 89%

Intercrosses (F1 x F1)
(to obtain F2)

Hybrid F1 x Hybrid F1 * 284 79%
Hybrid F1 x Hybrid F1 ** 233 81%

Intercrosses (F2 x F2)
(to obtain F3)

Hybrid F2 x Hybrid F2 *** 546 50%
Hybrid F2 x Hybrid F2 **** 703 83%

Control group
R. milesi ♀ x R. milesi ♂ 386 81%

R. neglectus ♀ x R. neglectus ♂ 901 89%

In addition to hatching rates, we evaluated the mortality rates of F1 hybrids, namely,
around 39% for crosses between R. milesi ♀ x R. neglectus ♂and 33% for crosses between
R. neglectus ♀ x R. milesi ♂. The analysis of mortality rate in F1 hybrids can be an important
taxonomic tool, as it allows evaluating, under laboratory conditions, the reproductive
barrier of hybrid inviability. Alevi et al. [62] reported the presence of this barrier in hybrids
resulting from crosses between T. sordida (Stål, 1859) and T. rosai Alevi et al. (2020) and used
these results to confirm the specific status of T. rosai (until then, considered as T. sordida).
Furthermore, Mendonça et al. [62] performed crosses between T. lenti Sherlock & Serafim,
1967 and T. bahiensis Sherlock & Serafim, 1967 and also observed the presence of this
postzygotic barrier, which resulted in the revalidation of the specific status of T. bahiensis
(until then, considered synonymous with T. lenti). Although F1 hybrids were obtained
in both directions from the crosses performed above, the authors [63,64] observed high
mortality rates (ranging between 70 and 80% as well as 84% to 98%, respectively). Therefore,
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the mortality rates observed for crosses between R. milesi and R. neglectus do not allow us
to confirm the presence of this reproductive barrier between these species.

Cytogenetic analyses of the gonads allowed us to observe that the hybrids presented
normal meiosis, with 100% pairing between the homologous chromosomes [karyotype
equal to parental: 2n = 22 (20 autosomes + sex chromosomes X and Y)] (Figure 4). Fur-
thermore, when dissecting the gonads, we observed that the testicles of these insects were
not atrophied (absence of gonadal dysgenesis). Gonadal dysgenesis is a postzygotic re-
productive barrier recently characterized in Triatominae [64]. Gonads atrophied by this
evolutionary phenomenon do not carry out gametogenesis [64]. Both this event and pairing
errors between homologous chromosomes—already reported for hybrids resulting from
crosses between P. tertius Lent & Jurberg, 1965 and P. coreodes Bergroth, 1911 [54], T. lenti
and T. bahiensis [65], Mepraia gajardoi Frias, Henry & Gonzalez, 1998 and M. spinolai (Porter,
1934) [66], T. infestans (Klug, 1834) and T. rubrovaria (Blanchard, 1843) [67], Panstrongylus
chinai (Del Ponte, 1929) and P. howardi (Neiva, 1911) [68]–lead to sterility of the hybrid [64].
In this way, we can confirm that the hybrids of R. milesi and R. neglectus are fertile and
present gametogenesis without chromosomal changes.
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Finally, the analysis of the proportion between male and female hybrids demonstrated
that Haldane’s rule was not acting, as 98 adult males and 80 females resulted from the
cross between R. milesi ♀ x R. neglectus ♂, and 115 adult males and 102 females resulted
from the cross between R. neglectus ♀ x R. milesi ♂. Although Perlowagora-Szumlewics and
Correia [69] observed that a distortion of the sex ratio in favor of the female was occurring in
crosses between T. pseudomaculata Corrêa & Espínola, 1964 and T. sordida, T. pseudomaculata
and T. infestans, T. pseudomaculata and T. brasiliensis Neiva, 1911, and between R. neglectus
and R. prolixus, and, with this, they suggested that the rule was acting in triatominae crosses,
all other results in the literature suggest that the rule does not apply in Triatominae [66,68]
(as observed in our experiments for Rhodnius spp., interspecific crosses between Mepraia
spp. [66] and between Panstrongylus spp. [68] also produce adult hybrids of both sexes,
suggesting that Haldane’s rule may not be applicable to these insect vectors).

4. Conclusions

Therefore, based on the results presented that connect R. milesi (Figure 5A–C) and
R. neglectus (Figure 5D–F) as a single taxon, we performed the formal synonymization of
these species:

Taxonomy
Kingdom Animalia Linnaeus, 1758
Phylum Arthropoda von Siebold, 1848
Class Insecta Linnaeus, 1758
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Order Hemiptera Linnaeus, 1758
Suborder Heteroptera Latreille, 1810
Family Reduviidae Latreille, 1807
Subfamily Triatominae Jeannel, 1919
Tribe Rhodniini Pinto, 1926
Genus Rhodnius Stål, 1859
Rhodnius neglectus Lent, 1954 (Figure 5D–F)
Rhodnius taquarussuensis da Rosa et al., 2017 (syn. R. neglectus [19])
Rhodnius milesi Carcavallo, Rocha, Galvão & Jurberg, 2001 (in: Valente et al. 2001), syn. nov.
(Figure 5A–C)
urn:lsid:zoobank.org:pub:DC76CE99-5F14-4D6C-886A-4AD0DD20073E
http://zoobank.org/DC76CE99-5F14-4D6C-886A-4AD0DD20073E
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Figure 5. Rhodnius milesi [male holotype, deposited in Triatomines Collection of the Oswaldo Cruz
Institute (CTIOC)] (A–C) and Rhodnius neglectus (male holotype, deposited in CTIOC) (D–F). A and
D: Dorsal view; (B,E): Lateral view; (C,F): Labels. Bar: 5 mm.

Based on this synonymization, the Triatominae subfamily now has 158 valid species
(Table 3).

Table 3. Tribes, genera and number of valid species that belong to the subfamily Triatominae.

Tribes Genera Species (n)

Alberproseniini Alberprosenia 2
Bolboderini Belminus 9

Bolbodera 1
Microtriatoma 2
Parabelminus 2

Cavernicolini Cavernicola 2
Rhodniini Psammolestes 3

Rhodnius 19
Triatomini Dipetalogaster 1

Eratyrus 2
Hermanlentia 1
Linshcosteus 6
Mepraia 3
Nesotriatoma 3
Panstrongylus 18
Paratriatoma 2
Triatoma 81
Paleotriatoma 1

Total 158

http://zoobank.org/DC76CE99-5F14-4D6C-886A-4AD0DD20073E
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/d16080472/s1, Figure S1: Neighbor-Joining phylogenetic analysis based on
cyt B gene. The number in the nodes indicates the posterior probabilities for each clade. The R. neglectus
clade is highlighted in green. Note that the R. milesi specimens are together with R. neglectus in the
R. neglectus clade.
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