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Abstract: The evolutionary development and phylogenetic division between Asian and African
cercopithecoids (Cercopithecidae) have attracted significant attention in genetics, molecular biology,
behavior, and morphology. However, less emphasis has been placed on how they have evolved mor-
phologically after divergence, approximately 10 million years ago (mya) for Colobinae and 5–7 mya
for Cercopithecinae, corresponding to the significant variation and diversity in landscape, climate,
habitat, and ecologies between the two continents. This study examines whether such variation
and diversity have been reflected in dental morphology. Our findings reveal substantial differences
between Hylobatidae and Cercopithecidae, as well as between Colobinae and Cercopithecinae, in-
dicating that size-adjusted dental variation mainly reveals the diversity associated with evolution
and phylogenetic inertia. Interestingly, despite the earlier divergence of Afro-Asian colobines, their
Euclidean Distance is comparable to that of Afro-Asian cercopithecines. This implies that latecomers
(macaques) demonstrate equivalent diversity to colobines due to their extensive dispersion and
broader adaptative radiation on the same continent. Colobinae exhibit more developed premolar
and molar regions. However, when post-canine teeth are considered alone, Colobinae present a
significantly larger molar size than Asian Cercopithecinae but not with the African Cercopihecinae.
This contradicts the hypothesis that folivorous primates (Colobinae) have larger post-canine molars
than frugivorous ones (Cercopithecinae). The considerable molar size in African Cercopithecinae
must be associated with their more protrusive and larger facial structure rather than a specific dietary
preference, being less diverse than their Asian counterparts—a trait that has evolved phylogenetically.
This study also paves the way for further exploration of facial and cranial differences between the
continental groups of Cercopithecinae and Colobinae, delving deeply into diversity variation due to
geographical and climatic adaptations.

Keywords: Cercopithecidae; dental allometry analysis; environmental and climate changes; Africa
and Asia primates; natural selection and environmental adaptation

1. Introduction

The evolution of catarrhine primates (Old World monkeys, gibbons, great apes, and
humans) in Asia experienced significant changes during the Neogene and Quaternary
following the migrations from Africa to Asia via Europe [1–4]. Different groups of Asian
Cercopithecidae (macaques and colobines) started their journey to varying timeframes
from Africa. However, by the end of the Miocene and Early Pliocene, they settled in
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a Convergence–Divergence Center (CDC) located in southeast Qinghai–Tibet Plateaus
and Hengduan Mountains, a region linking East, South, and Southeast Asia [1]. Fossil
hylobatids from India [5] and in the Center [6–8] also indicate that gibbons used the same
paths entering the CDC, through which Asian catarrhines dispersed to various parts of
Southeast and East Asia [1,9–11]. Unlike today, the region they colonized was relatively
flat. However, it underwent significant changes during the Pliocene and Quaternary,
showcasing remarkable diversity in many aspects due to the accelerated uplift of the
Qinghai–Tibet Plateau and Himalayas, caused by the intense collision between the Indian
and European plates [12,13]. This created significantly diverse geographic changes in Asia.
Thus, similar to modern humans (Homo erectus and H. sapiens), Afro-Asian monkeys in Asia
experienced a period of evolutionary radiation that was driven by the significant landscape
diversity and the formation of land bridges among islands due to lowered sea levels of
insular geography following the lowering sea level [1,14,15].

In contrast, similar changes in geography, climate, and habitats were relatively less
noticeable in Africa [16–18], such as expanding savannas and grasslands in East Africa.
Under humid global conditions, savannas spread northwards and eastwards over desert
areas. Between 6.3 and 6.0 mya, a significant shift in vegetation was marked by a notable
decrease in woodlands. Concurrently, West and East Africa experienced very arid condi-
tions, evidenced by the sparse tree cover in the tropical regions. These changes were linked
to global climate variations caused by the formation of the Arctic ice sheet, which induced
intense tropical aridity. Finally, savannas expanded at the expense of rain forests in both
West and East Africa [19].

These significant environmental changes and diversity would have affected the cerco-
pithecid primates’ ecology in Africa and Asia. Dental diversity, linked to dietary selection
and habits, represents a vital tool for exploring how dental structures have evolved phy-
logenetically and shaped biomechanically following the divergence in biology, climate,
and geology between the two continents. Hence, exploring the magnitude of dental diver-
sity related to environmental adaptations between the Cercopithecinae and Colobinae in
Africa and Asia is essential. Previous studies have shown that frugivorous primates have a
smaller post-canine dental size relative to body size than folivorous primates [20–23]. It is
interesting to determine whether the African representatives, Colobinae or Cercopitheci-
nae, exhibit larger molar size than their Asian counterparts or vice versa due to climatic,
environmental, and dietary differences. This may raise the hypothesis that there may be
significant continental differences in selective constraints and environmental adaptations
among Cercopithecinae and Colobinae, particularly with their dental structures. A similar
approach was developed by [24], but focusing only on Colobinae.

Considering the importance of dental morphology for understanding phylogenetic and
adaptive patterns, the present study aims to (a) comprehend the dental variation in African
and Asian Cercopithecidae regarding the divergent evolutionary patterns and environmen-
tal changes specific to each continent; (b) examine whether Colobinae exhibit more signifi-
cant dental variation due to the earlier continental separation, around 10.7 mya [25], com-
pared to Cercopithecinae, which separated approximately 7.0–5.5 mya [26] or 5 mya [11];
and (c) determine whether there is a significant post-canine dental size variation between
Cercopithecinae and Colobinae.

2. Material and Methods
2.1. Material

The studied material consists of the upper and lower teeth of African and Asian
Cercopithecidae, representing different family clades with divergent ecologies (Table 1).
For comparative purposes, we also included the teeth of Asian Hylobatidae as an out-
group. Hylobatidae (i.e., gibbons or lesser apes) are quite different from great apes in
terms of facial structure, showing the smallest facial size with insignificant sexual dimor-
phism [27]. They also exhibit significantly lower canine sexual dimorphism than great
apes [28]. However, studies of gibbons’ canine sexual dimorphism and comparison with
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other catarrhines are still relatively uncommon (see [29–33]). Thus, they represent an
excellent example for determining canine sexual dimorphism compared to that observed
within the Cercopithecidae.

Table 1. The Cercopithecidae and Hylobatidae studied *.

Continent Family Subfamily Genus Species (Sex)

Africa Cercopithecidae Colobinae Cercocebus torquatus (6F,10M)
Colobus guereza (18F, 16M, 4U)

polykomos (2F, 1M, 1U)
Piliocolobus badius (18F, 16M, 2U)
Procolobus verus (21F, 14M, 7U)

Cercopithecinae Cercopithecus mona (2F)
nictitans (3M, 1U)

Mandrillus leucophaeus (11F, 11M)
Papio hamadryas (2F, 10M)

ursinus (7F, 11M)
Macaca sylvanus (10F, 11M)

Asia Colobinae Nasalis larvatus (10F, 12M)
Presbytis chrysomelas (1F)

comata (3F, 4M)
melalophos (4F, 5M)
rubicunda (7F, 5M)

Pygathrix nemaeus (11F, 16M)
Rhinopithecus avunculus (3F, 3M)

bieti (12F, 9M)
brelichi (1F, 4M)
roxellana (34F, 32M, 9U)

Semnopithecus entellus (5F, 5M)
Trachypithecus cristatus (19F, 15M)

francoisi (8F, 10M)
obscurus (10F, 10M)
phayrei (26F, 10M)
vetulus (5F, 5M)

Simias concolor (2F, 1M)

Cercopithecinae Macaca arctoides (3F, 3M)
assamensis (3F, 3M)
fascicularis (3F, 3M)
fuscata (4F, 3M)
mulatta (4F, 3M)
nemestrina (3F, 3M)
nigra (3F, 3M)
radiata (3F, 3M)
silenus (3F, 3M)
sinica (4F, 4M)
thibetana (2F, 4M)

Hylobatidae Hylobates agilis (10F, 10M, 2U)
lar (13F, 20M, 4U)
muelleri (13U)
pileatus (1F, 2M)

Hoolock hoolock (8F, 11M)
* Please see the Acknowledgments for data collection. F: female; M: male; and U: unknown sex.

The materials used in this study are housed in various institutes, universities, and
museums (see Acknowledgments for details). All specimens included are adults, identified
by the full eruption of M3s.
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2.2. Methods

A digital caliper (Mitutoyo Inc., Tokyo, Japan) with an accuracy of 0.01 mm was used
to take the maximum mesiodistal (length) and buccolingual (width) measurements for each
tooth on the maxilla and mandible. Tooth size (crown area) was multiplied by length with
width. Cranial length from the tip of occipital protuberance to the alveolar between the
right and left I1 was also measured as a proxy for body size, e.g., [20,34].

Allometric analyses (Y = aXb) have been widely used across various fields, such as
biology, ecology, paleontology, and anthropology, to explore how an organism’s structure or
function changes relative to its size. These analyses provide valuable insights into growth
patterns, physiological constraints, evolutionary adaptations, and ecological diversity [35].
When transformed using logarithms, this allometric formula becomes a linear regression,
logY = loga + blogX, where Y (the dependent variable) represents the square root of the
tooth crown area, and X (the independent variable) represents body size, approximated by
its proxy, cranial length.

To delve into dental variation, we used the residual, a size-adjusted value, to indicate
how far an individual deviates from the regression line of the allometric analysis. The
following equation was used:

Residual = antilog (observed value-predicted value).
The observed values are those of the raw measurements, and the predicted values are

those calculated from the allometric formula [24,36–38].
Ordinary least-square (OLS) regression analysis was used for allometric analysis

(log-transformed data). OLS is considered more suitable for calculating residuals for size
adjustment (e.g., [39,40]).

Three types of residuals were calculated:

(1) Comparison between Cercopithecidae and Hylobatidae aims to explore the rela-
tionship between teeth and body size of catarrhines in Africa and Asia. As seen
below, residuals were further analyzed using multivariate discriminant function
analysis (DFA).

(2) Comparison within the Cercopithecidae aims to decipher differences between the
representatives of Colobinae and Cercopithecinae in Africa and Asia. Residuals of
the four groups (African Colobinae, African Cercopithecinae, Asian Colobinae, and
Asian Cercopithecinae) were also analyzed using DFA.

(3) Comparing the post-canine teeth size within the Cercopithecidae aims to deter-
mine the magnitude of dental variation for Colobinae and Cercopithecinae in Africa
and Asia.

DFA is a standard multivariate analysis for classification and dimensionality reduction,
used to identify a linear combination of variables that best separates two or more groups or
classes. Its main objective is to maximize the between-class and within-class variance ratio,
finding a linear combination of variables that maximizes the differences between the means
of the groups while minimizing the variation within each category [41]. We performed
DFA to analyze residuals generated in comparisons (1) and (2).

Furthermore, Analysis of Variance (ANOVA) was employed to evaluate differences
between the studied groups based on DFA scores (coordinates).

All the analyses were carried out by IBM SPSS Statistics v. 20.

3. Results

The results of the first two types of allometric analyses indicate that each tooth size
(area) presents a significant positive relationship (p < 0.001) with body size, represented
by cranial length. The primary purpose of this study is to explore the variation between
the different groups of Cercopithecidae, correlation coefficients, and regression slopes,
indicating that the allometric scale between teeth and body size is not reported here.
Their corresponding residuals were further explored via DFAs. The results (eigenvalues,
percentage of explained variance, coefficients of eigenvectors on the first two axes) of
the three-group DFA (Colobinae, Cercopithecinae, Hylobatidae) and the four-group DFA
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(African Colobinae, African Cercopithecinae, Asian Colobinae, Asian Cercopithecinae) are
presented in Table 2.

Table 2. Eigenvalues, percentages of explained variance, and coefficients of eigenvectors of the first
two DFA axes for the three-group DFA (Colobinae, Cercopithecinae, Hylobatidae) and the four-group
DFA (African Colobinae, African Cercopithecinae, Asian Colobinae, Asian Cercopithecinae).

Three Groups Four Groups

DF1 DF2 DF1 DF2

Eigenvalue 0.794 0.467 0.941 0.566
Percentage 63.0% 37.0% 53.0% 31.8%
Cum. Per 63.0% 100.0% 53.0% 84.8%

Eigenvector

UI1 0.16 −0.45 0.14 −0.48
UI2 0.15 0.41 0.03 0.28
UC 0.32 0.29 −0.46 0.38
UP3 −0.56 0.43 0.01 0.47
UP4 0.50 −0.21 −0.70 −0.25
UM1 −0.08 0.89 0.84 0.61
UM2 −0.27 −1.12 0.23 −1.14
UM3 0.66 0.13 0.36 0.12
LI1 0.49 0.06 0.19 0.19
LI2 −0.14 0.18 −0.47 0.26
LC −0.61 0.10 0.35 0.10
LP3 0.63 0.21 0.75 0.06
LP4 0.27 −0.68 0.30 −0.68
LM1 −0.51 −0.18 −0.82 −0.23
LM2 −0.39 0.36 0.03 0.47
LM3 0.35 0.50 −0.37 0.72

U: upper teeth areas; L: lower teeth areas.

Regarding the three-group analysis, the first and second DFs explain 63.0% and 37.0%
of the total variance. On the positive side of DF1, the variables with the highest contribution
are UM3 (0.66), LP3 (0.62), and UP4 (0.50), and on the negative side of DF1, UP3 (−0.56)
and LC (−0.61). Figure 1 shows the dispersal pattern of the three groups along DF1 and
DF2. The ANOVA results of the discriminant scores show that Hylobatidae, principally
located on the negative side, are significantly distinct (p < 0.001) from both Colobinae and
Cercopithecinae, both latter groups showing significant overlap along DF1.

Along DF2, the positive side of the axis is characterized by UM1 (0.89) and LM3 (0.50),
whereas the negative side is characterized by UM2 (−1.12) and LP4 (−0.676). Along this
axis, Hylobatidae shows substantial separation from Colobinae (p = 0.002) and Cercopitheci-
nae (p < 0.001). Colobinae and Cercopithecinae are also significantly separated (p < 0.001).
Our results indicate that Hylobatidae are distinct from Cercopithecidae in DF1 and DF2,
whereas the monkey subfamilies are separated only along DF2.

Concerning the four-group analysis, the first and second axes account for 53.0% and
31.8%, respectively. UM1(0.84) and LP3 (0.75) contribute significantly to the positive side of
DF1, whereas LM1 (−0.82) and UP4 (−0.70) are significant contributors to the negative side
of the axis. The dispersal pattern of the four groups of Asian and African Cercopithecidae
along DF1 and DF2 are illustrated in Figure 2. Along DF1, Cercopithecinae (African
and Asian) appear significantly distinct (p < 0.001) from Colobinae (African and Asian).
However, no significant separation between African and Asian Colobinae and African and
Asian Cercopithecinae is observed.
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Figure 2. DFA among Asian Colobinae, African Colobinae, Asian Cercopithecinae, and African
Cercopithecinae. The Euclidean Distance (Eu) between Asian and African Colobinae is 2.04, and
between Asian and African Cercopithecinae, it is 2.06.

Along DF2, LM3 (0.72) and UM1 (0.61) are major contributors on the positive side
of the axis, whereas UM2 (−1.14), LP4 (−0.68), and UI1 (−0.58) show noticeable negative
contributions. Asian Colobinae and Cercopithecinae show significant separation from
their African counterparts (Colobinae: p < 0.001; Cercopithecinae: p < 0.05). The Euclidean
Distances reflecting the magnitude of separation between the African and Asian represen-
tatives of the two subfamilies on the first two DFA axes are comparable: Colobinae = 2.04;
Cercopithecinae = 2.06. Our results indicate that DF1 separates between the two subfamilies,
whereas DF2 separates the Asian and African representatives.

Figure 3 illustrates the residual differences between Cerocopithecidae groups from
different continents, derived from an allometric analysis of both post-canine teeth and
body size. The slope for both upper and lower molars exceeds 0.80 against body size, with
a correlation coefficient of 0.86, indicating a strong correlation (p < 0.001). The ANOVA
results indicate that African Cercopithecinae have significantly higher values than the other
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groups. Both African and Asian Colobinae show substantially higher values than Asian
Cercopithecinae, which display the lowest variation compared to the different groups.
Finally, the difference between Asian and African Colobinae is not statistically significant.
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Regarding canine sexual dimorphism, we calculated the degree of lower canines
among the three studied groups. Hylobatidae are characterized by the lowest degree
of sexual dimorphism (SD = 0.0596), whereas Cercopithecinae show the highest degree
(SD = 0.6062) (Figure 4). Colobinae show moderate lower canine sexual dimorphism
(SD = 0.3185).
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4. Discussion

Dental morphology, combined with the osteo-muscular morphology of the skull and
mandible, strongly correlates with body size [42] and is tightly linked to food items’ selec-
tion, acquisition, and process. Therefore, it provides insightful and diverse information on
the dietary ecology of organisms and, ultimately, on the climate, geography, and environ-
ment where they dwell. Moreover, teeth are the most available fossil elements frequently
used to explore evolutionary patterns, phylogenetic relationships, and dietary diversity
selection. In this study, we used basic metrics (tooth length and width) to analyze the den-
tal variation in African and Asian Cercopithecidae concerning the divergent evolutionary
patterns and environmental changes specific to each continent to determine whether Colobi-
nae exhibit more significant dental variation compared to Cercopithecinae and to identify
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whether there is a significant post-canine dental size variation between Cercopithecinae
and Colobinae.

4.1. Evolutionary and Phylogenetic Diversity

Regarding dental morphology, the two studied primate catarrhine families appeared
well separated. Our analyses showed that mandibular canines (LCs), premolars (LP3 and
LP4), and maxillary molars (UM2 and UM3) are responsible for the differences between Cer-
copithecidae and Hylobatidae (Figure 1, Table 1). Fossil evidence indicates that hominoids
(Hylobatidae + Hominidae) and Cercopithecoids (Victoriapithecidae + Cercopithecidae)
most likely diverged around 23.0 mya in the Early Miocene [43]. During this differenti-
ation, there was an evolutionary reduction in prognathism and tooth size, with gibbons
exhibiting smaller teeth relative to body size, especially the mandibular canines, and very
low canine sexual dimorphism (Figure 4), most likely related to their monogamous mating
system [44,45]. These differences may reflect maxillary, mandibular, and dental morpholog-
ical selections that can trace the divergent evolutionary histories of the two groups, which
have adopted distinct behavioral and ecological selections in Africa and Asia.

Even though Cercopithecidae appeared relatively homogeneous compared to Hylo-
batidae, our within-family analysis demonstrated two exciting findings. First, there was a
clear distinction between the two subfamilies, Colobinae and Cercopithecinae (Figure 2,
DF1), most likely reflecting evolutionary and phylogenetic disparities between the two
groups. Secondly, we identified geographic separation (Africa vs. Asia) within each sub-
family (Figure 2, DF2), probably related to the climatic, vegetational, and environmental
differences and diversities between the two continents during the Neogene and Quater-
nary. The evolutionary history of Asian and African cercopithecids, after their divergence
during the Neogene, has been significantly influenced by climatic and geographic diver-
sity [46,47], followed by remarkable environmental shifts during their dispersal from Africa
to Asia [1,25,26].

As addressed above, the ancestors of Asian cercopithecids left Africa and moved
eastwards via Europe following the collision of the Afro-Arabian plate with Eurasia during
the early Miocene (23.8–18 mya). These events allowed different groups of cercopithecids
to disperse towards Asia in various periods. Colobinae most likely migrated first in the
Middle Miocene, around 10.9 mya (9.6–12.3) [43], whereas Macaca probably migrated much
later in the Late Miocene (7.0~6.7 mya) [26]. Ultimately, they reached a Convergence–
Divergence Center (CDC) linking South, East, and Southeast Asia at the southeast corner
of the Qinghai–Tibet Plateau and Hengduan Mountains during the Miocene–Pliocene [1].
Colobinae spread and diverged in South, East, and Southeast Asia [48]. On the other hand,
the cercopithecine genus Macaca (except M. sylvanus in North Africa) was widely spread in
East and South Asia through alternative dispersal paths [1,49].

Subsequently, environmental and climatic changes in Africa and Asia during the
Pliocene and Quaternary further shaped the divergent evolution of these groups. Over
the last 3 mya, East Africa has experienced a long-term drying trend related to the for-
mation of the East African Rift Valley [50]. Throughout the Pliocene and later during the
Pleistocene, tectonic changes and glaciation in the northern hemisphere increased climate
variability, reduced the rainfall, and caused shifts from woodlands to grasslands and even
more open areas [51,52], leading to the formation of modern African environments [53].
Consequently, about 90% of Africa has a tropical climate with higher temperatures than the
other continents, characterized by high seasonal and diurnal temperature variation and
wet seasons [54].

In Asia, changes were more drastic. The collision between the Indian and the Eurasian
plates generated the accelerated uplift of the Qinghai–Tibet Plateau (with an average
altitude of 4500 m), linking it to the Himalayas and the Hengduan Mountains [55–57], pro-
foundly influencing Asian climate and environmental and biodiversity evolution [58–61].
These changes were especially evident in areas such as South, East, and Southeast Asia,
where the ancestors of extant Asian Cercopithecids dispersed and radiated [11,26,62].
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In South Asia, the environment of the Indian subcontinent experienced a shift from
forests and shrubs to grasslands during the Miocene and Pliocene [63–65] with intense
monsoonal rains, especially during the Early and Middle Pleistocene [66]. Its position is
pivotal for animal migrations and the only path for Asian macaques and humans toward
East and Southeast Asia [11,26,67].

During the Quaternary, in East Asia, the environmental and geographic diversity was
higher than in other continents, providing suitable ecological and environmental conditions
for the dispersal of Cercopithecids [4]. The eastern coastal plains were humid, with moist
tropical and subtropical forests covering southern regions and deserts with meadows and
alpine and subalpine woodland habitats [61,68]. That created a tremendous convergence–
divergence faunal and floral center [1,69]. Finally, Southeast Asia was dominated by a mix
of savanna, open woodlands, and evergreen forests throughout the Pleistocene. These
conditions were ideal for early hominin and nonhuman primate survival [70]. Moreover,
during the Last Glacial Period (LGP; 125–10 kya) and particularly in the Last Glacial
Maximum (LGM; 23–19 kya), a north–south savanna land bridge connecting the Malaysian
Peninsula to the major Indonesian islands established shelter for “rain forest” refugia [71,72].
These were most likely nurtured by the double monsoon system, southwest between
May and August, transforming moisture from the Indian Ocean, and northeast between
September and April, conveying water from the South China Sea [15].

Considering the geological, climatic, and environmental differences between the two
continents, it is unsurprising that both Cercopithecinae and Colobinae exhibit the observed
intrinsic dental diversity between African and Asian representatives. These differences
are also evident in their similarly high Euclidean Distances (Figure 2), even though the
divergence time of the Colobinae is much older than that of the Cercopithecinae [11,26,43].
This may be related to the broader past and present Asian distribution of the cercop-
ithecine genus Macaca (Figure 5), currently found in 20 Asian countries, covering more
than 5 × 106 km2 in primary, secondary, deciduous, coniferous, riverine, and mangrove
forests [73] and displaying a significant phylogenetic diversity [49].
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4.2. Dental Structure and Dietary Selection

Our multivariate analyses showed that the separation between Colobinae and Cer-
copithecinae (Figure 2) was mainly due to the contribution of several dental variables,
such as UM1 (0.84), LP3 (0.75), LM1 (−0.82), and UP4 (−0.70) along DF1, as well as LM3
(0.72), UM1 (0.61), UM2 (−1.14), and LP4 (−0.68) along DF2. These variables represent
the size of the post-canine teeth, premolars, and molars, suggesting that Colobinae have
larger premolars and molars than Cercopithecinae. This difference may be related to the
overall folivorous diet of Colobinae. Compared to frugivorous and insectivorous primates,
folivorous monkeys have larger premolars. This increase may result from premolar molar-
ization [101] or accommodate considerable loading while taking leaves and biting stiff leaf
fibers during mastication [102]. This post-canine morphology is closely related to this di-
etary specialization. As leaves have low nutritional quality, folivorous primates must ingest
large quantities to meet their metabolic demands [e.g., [103]], implying the frequent use of
premolars and molars to leverage food loading, leading to repetitive crushing, chewing,
and grinding [104]. On the other hand, Cercopithecinae are mainly frugivorous [105–107]
or omnivorous with a flexible dietary strategy [108]. They tend to display great ecological
flexibility and adjust their diet, group size, habitat use, and home range size according to
environmental shifts [109].

Additionally, our residual analysis of molars (Figure 3) showed that Colobinae have
larger molars, as suggested by previous studies [20–23], when compared to Asian Cercop-
ithecinae, but not when compared to African Cercopithecinae. The latter possess massive
molars, most likely linked to their more pronounced and prognathic facial structure, partic-
ularly in Mandrillus and Papio. This observation aligns with previous studies [23], indicating
a derived phylogenetic trait. Thus, the hypothesis regarding post-canine tooth differentia-
tion seems applicable between Colobinae and Asian Cercopithecinae but not their African
counterparts, primarily known for consuming fruits and seeds [110,111]. Plio-Pleistocene
papionin fossil evidence, particularly for Papio and Theropithecus, suggests that their diet
closely resembled that of contemporary species, mainly comprising the herbaceous layer
and mostly monocotyledons [112]. Thus, the well-developed post-canine molars in African
Cercopithecinae may be advantageous for accommodating hard-object foods and may be
linked to evolutionary and phylogenetic factors.

Finally, another interesting finding of this study is the lack of significant dental varia-
tion between African and Asian Colobinae (Figure 2; DF1), exhibiting very similar post-
canine molar size (Figure 4). This contrasts with results from studies based on absolute
dental size [24]. These findings imply that, despite the significant diversity in dietary
habits among African and Asian Colobinae related to different environmental adapta-
tions [113–115], they display very similar molar patterns relative to body size, supporting
their classification as folivorous primates [103,116–118].

5. Conclusions

Based on an extensive morphometric database and references, the present study
explored the variations in size-adjusted dental diversity between Hylobatidae and Cercop-
ithecidae and between African and Asian Colobinae and Cercopithecinae. The findings
primarily highlight differences associated with evolutionary history, phylogeny, geographic
separation, and environmental adaptation. Notably, although Colobinae split earlier than
Cercopithecinae, they exhibit less diversity variation. This is likely due to their more
restrained geographic distribution and less varied environments. The previously suggested
hypothesis that folivorous primates show more prominent post-canine teeth appears valid
only when comparing Colobinae to Asian Cercopithecinae. In contrast, African Cercop-
ithecinae, such as Mandrillus and Papio, exhibit significantly larger post-canine teeth than
the other Cercopithecidae, probably linked to their more pronounced and prognathic facial
structure. Cercopithecinae are also characterized by a high degree of canine sexual dimor-
phism, implying different physiological, ecological, and behavioral adaptations between
sexes within the same social systems [119,120]. Thus, further studies on dental variation
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and its relationship with body size across sexes are needed to better understand their
evolutionary and adaptive interplay [121–123]. Additionally, further studies on the differ-
ences in facial and cranial structure between Cercopithecinae and Colobinae, as well as the
continental groups within each subfamily, are vital for clarifying the patterns of post-canine
differentiation observed in this study.
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