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Abstract: As a key component of the ecosystem, soil seed banks (SSBs) play a vital role in the
evolution and renewal of plant communities. Although the pattern and mechanisms of influence of
SSBs along the altitudinal gradient have been reported, most studies have focused on forest, grassland
and alpine meadow ecosystems. The pattern and factors of SSBs across the altitudinal gradient
in sedge peatlands remain largely unknown. Through vegetation surveys and seed germination
experiments, we studied the changes in aboveground vegetation and SSBs in sedge peatlands at
altitudes ranging from 300 m to 1300 m in the Changbai Mountains, China, and discussed the direct
and indirect effects of climatic factors, soil properties and aboveground vegetation on SSBs. The
results showed that the richness and density of the SSBs of sedge peatlands decreased with the
altitude. Similarly, aboveground vegetation richness and density declined with altitude. A Spearman
correlation analysis showed that SSB richness and density were mainly correlated with mean annual
temperature, soil total phosphorus and ammonia nitrogen and the plant composition and richness
of aboveground vegetation. A structural equation model analysis showed that climatic factors and
aboveground vegetation directly affected seed bank richness, while soil properties indirectly affected
it by directly affecting aboveground vegetation. Climatic factors, soil properties and aboveground
vegetation directly affected SSB density, and soil properties indirectly affected it by directly affecting
aboveground vegetation. This finding enhances our understanding of the altitude patterns of the
SSBs in sedge peatlands and the response to future climate and environmental changes.

Keywords: sedge peatlands; altitude; soil seed bank; aboveground vegetation; climatic factors;
soil properties

1. Introduction

Climate change has far-reaching effects on the distribution and regeneration of veg-
etation, and these effects may depend on the ability of the regenerating species to cope
with the changing climate and environment [1]. Soil seed banks (SSBs) constitute an im-
portant part of plant regeneration strategies, facilitating the resilience of aboveground
plant communities that are resistant to external disturbances and harsh environments [2].
However, the flexibility of SSBs to respond to climate and environmental changes may vary
significantly across geographical regions, ecosystem types and vegetation zones [1,3,4].
Further insight into the responses of SSBs across their distributional ranges could assist in
improving the accuracy of climate and environmental change predictions.
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The climate factors, soil environment and vegetation change regularly with the al-
titude in mountains [5,6], which provides an ideal experimental condition for studying
the dynamics of SSBs across climatic and environmental gradients. Former studies which
focused on SSB dynamics across the altitude gradient presented conflicting conclusions.
Several studies have shown that the richness and density of SSBs increase with altitude [7,8],
partly because lower temperatures, fewer predators [9], fewer pathogenic fungi [10] and
lower seed embryo metabolic rates [11] were more favorable for seed preservation at higher
altitudes. In addition, the vegetation types changed with the altitude, which affected the
SSB size via seed input from vegetation [3,12]. However, other studies have shown that the
richness and density of SSBs decrease with altitude [13–15]. The harsh environment at high
altitudes may reduce seed production and vegetation richness [15,16]. The discrepancy
in these findings is due to the differences in vegetation types or ecosystems. Most previ-
ous studies on changes in SSBs along altitudinal gradients have focused on forest [6,12],
grassland [7,13] and alpine meadow ecosystems [3,15]. In peatlands, as one of the most
important terrestrial ecosystems, the distribution of vegetation types is non-zonal, which
may have some influence on SSBs [17–19]. However, the dynamics of SSB in relation to
altitudes in peatlands remain unknown.

Previous studies have shown that the unique environmental conditions of peatlands,
such as higher humidity and SOC and lower nutrients, have an important influence on
the establishment and maintenance of SSBs [17–19]. Higher SOC storage has a positive
feedback effect on vegetation type and productivity by increasing the soil water holding
capacity and maintaining soil fertility, which can be beneficial for an SSB [17,18]. Although
low nutrient environments limit the growth of plant species, they can promote the repro-
duction of certain species, such as sedges [17,20,21]. Climate change is also an important
factor affecting SSBs. Rising temperatures can stimulate seed dormancy and increase seed
germination rates, while precipitation can not only stimulate seed germination but also
accelerate seed mortality by increasing the activity of pathogenic fungi [1,3,15]. Above-
ground vegetation is the main source for SSBs. Typically, changes in species composition
and the cover of aboveground vegetation will have a significant impact on SSBs [2–4].
Although these studies have revealed the influence mechanism of SSBs, existing research
is still not systematic and comprehensive. The formation and maintenance of SSBs is a
complex ecological process involving the interaction of many biotic and abiotic factors.
Further research is required to elucidate the ways in which the peatland climate, soil and
vegetation characteristics change with altitude, and the ways in which these factors interact
drive changes in SSBs.

The Changbai Mountain range is one of the largest peatland distribution areas in
China. Sedge peatlands cover over 70% of the peatlands in this region. Tussock-forming
carex species, such as Carex meyeriana, C. schmidtii, C. limosa and C. lasiocarpa, are the
dominant species in these peatlands [22]. The purpose of this study was to understand SSB
changes with altitude and their influencing factors in sedge peatlands. We explored SSBs,
aboveground vegetation, climate and soil properties across an altitude gradient from 300 m
to 1300 m in sedge peatlands. We wanted to explore the following: (1) How do the richness
and density of SSBs change with altitude? (2) How do climatic factors, soil properties and
aboveground vegetation drive SSB changes in peatlands across the altitudinal gradient?

2. Materials and Methods
2.1. Soil Sampling and Aboveground Vegetation Survey

Peatlands are widely distributed in the area of 300–1200 m above sea level in the Chang-
bai Mountains, of which 70% are sedge peatlands dominated by tussock-forming Carex [22].
The region is of a temperate continental humid climate, with a mean annual temperature
(MAT) and mean annual precipitation (MAP) range of 0.9–3.3 ◦C and 560–790 mm.

In April 2023, six study sites were selected across an altitude gradient (327, 540, 615, 900,
1005, 1280 m) along the Changbai Mountain range (Figure 1). Three plots (10 m × 10 m)
were set up on each site, with the adjacent plots being > 20 m apart. Five quadrats
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(25 cm × 25 cm × 10 cm) were randomly collected in each plot, and 90 samples were taken
(6 sites × 3 plots/site × 5 samples/plot). The vegetation survey was conducted in August
2023. Three 1 m × 1 m points near the SSB sampling locations were set up at each of
the three plots in each site. The species name, density, the coverage and height of each
individual species, and the total coverage of the standing vegetation were recorded at each
point. The vegetation in the quadrat was identified according to the description in ‘Wild
Vascular Plants of Wetlands in Northeast China’ [23]. Vegetation species richness refers
to the number of different vegetation species that exist in a specific area. It reflects the
degree of vegetation species diversity in the ecosystem [24]. Vegetation density refers to
the number of individuals of a given vegetation species per unit area (or volume) at a given
time. It reflects the distribution of the vegetation species in the ecosystem and the size of
the population [18]. The richness (VR) and density (VD) of the aboveground vegetation
were calculated for each site. During the seedling germination experiment, the mean value
of species and seedlings germinated from the 30 pots for each site were calculated as SSB
richness (SR) and density (SD), respectively [3,4].
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Figure 1. Location of the study sites along an altitudinal gradient on the Changbai Mountains, China.

2.2. Germination of Soil Seed Bank

Soil samples taken from each plot were mixed evenly and then were evenly spread with
a thickness of 2 cm in 10 pots (25 cm× 25 cm) in the greenhouse. The bottoms of the pots
were filled with sand. The pots were placed in a tank, and freshwater was added to the tank
regularly to keep the soil moist. During the germination experiment, the emergedemerging
seedlings were recorded and cut from each pot every two weeks. Seedlings germinated in
greenhouses were identified according to the description in ‘Wild Vascular Plants in Wetlands
of Northeast China’ [23]. The experiment lasted for 5 months.

2.3. Soil Properties Measurement

When SSB samplings were taken in April 2023, 6 soil cores (depth: 10 cm; diameter:
5 cm) were randomly collected in each plot. Soil organic carbon (SOC) was determined
with the dichromate digestion method [25]. Soil water content (SWC) was determined
with a gravimetric method [26]. Soil pH was measured with an acidity meter with a
soil to water ratio of 1:5. Total nitrogen (TN) was measured with the semi-microKelvin
method. Total phosphorus (TP) was determined by the concentrated sulfuric acid oxidation-
molybdenum anti-colorimetric method [27]. Nitrate nitrogen (NO3

−-N) and ammonium
nitrogen NH4

+-N) were measured with a Continuous Flow Analyzer (SKALAR SAN++,
The Netherlands). Available phosphorus (AP) was measured with an Olsen method [28].
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2.4. Statistical Analysis

One-way ANOVA was used to compare the differences in soil environmental factors
between the six sites in SPSS 25.0. The data were log-transformed to satisfy the test of
homogeneity and normality. The linear regression in SPSS 25.0 was employed to find the
relationships of SSB oil seed bank richness and density, standing vegetation richness and
density, and the altitude. The dependent variables and residuals were tested for normality
to meet the preconditions of the regression analysis.

Non-metric multidimensional scaling (NMDS) was conducted to study species compo-
sition similarities between the standing vegetation and SSB. The ‘vegan’ package was used
for the NMDS analysis in R 4.3.2 [29]. A Spearman correlation was conducted to evaluate
the correlation between SSBs and climatic factors, soil environmental factors, and above-
ground vegetation with the package ‘Corrplot’ in R 4.3.2 [30]. The partial least squares path
model (PLS-PM) was conducted to elucidate the direct and indirect contributions of climate,
soil properties and aboveground vegetation to the SSB. Variables with strong correlations
in the Spearman correlation analysis were incorporated into the structural equation model.
The analysis was conducted using a ‘plspm’ package in R 4.3.2 [31].

3. Results
3.1. Climate and Soil Property Change with the Altitude

As the altitude increased from 327 m to 1280 m, the MAT declined from 3.34 ◦C to
0.96 ◦C and the MAP rose from 561.25 mm to 793 mm. TP had a decreasing trend with the
altitude (Table 1). The SWC was the highest at 900 m (90.18%) and lowest in 327 m (82.36%).
The soil was acidic at all sites, with the highest pH (6.01) at 540 m and the lowest pH (4.66)
at 900 m. The SOC was high (≥30%) at all sites. TN (21.01 mg/g) and NO3

−-N (2.26 mg/g)
were higher at 540 m than other sites. The AP was the highest at 900 m (14.89 mg/kg) and
lowest in 1005 m (5.98 mg/kg).

3.2. Vegetation and Soil Seed Bank Change with the Altitude

The vegetation survey recorded 51 species belonging to 29 families and 39 genera.
Among them, Cyperaceae species are dominant, mainly including C. meyeriana, C. schmidtii,
C. lasiocarpa and C. limosa (Table S1). The richness and species density of aboveground
vegetation declined with altitude (Figure 2). As the dominant functional group, the density
of sedge species decreased with the altitude.
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A total of 46 species were identified from the seedlings germinated in the greenhouse,
belonging to 25 families and 36 genera. Among them, the Cyperaceae species and Juncu-
siaceae species are dominant, mainly including C. meyeriana, C. schmidtii, Juncus effusus,
Eleocharis dulcis and so on (Table S2). SSB richness and density declined with the altitude
(Figure 3). The seed density of dominant sedge species decreased with the altitude.



Diversity 2024, 16, 571 5 of 11

Table 1. Site information and general climate and soil characteristics in the sedge-dominated peatlands of the Changbai Mountains, China.

Site Name Site Location
Altitude MAT MAP SWC pH SOC TN TP AP NH4

+-N NO3−-N
(m a.s.l) (◦C) (mm) (%) (%) (mg/g) (mg/g) (mg/kg) (mg/kg) (mg/kg)

E327 44◦6′1.73′′ N,
127◦33′33′′ E 327 3.34 561.25 82.36 ± 0.46 c 5.94 ± 0.13 a 31.34 ± 0.22 b 20.30 ± 0.79 ab 1.28 ± 0.07 b 7.08 ± 2.19 bc 53.84 ± 0.96 bc 1.43 ± 0.48 b

E540 43◦16′4.31′′ N,
128◦38′29′′ E 540 3.25 564.42 85.43 ± 0.44 b 6.01 ± 0.12 a 38.89 ± 1.31 a 21.01 ± 0.51 a 1.65 ± 0.01 a 7.42 ± 0.08 bc 42.63 ± 5.20 bcd 2.26 ± 0.03 a

E615 42◦20′ N,
126◦22′ E 615 4.00 823.00 82.98 ± 0.99 c 5.77 ± 0.33 ab 31.13 ± 2.86 b 15.50 ± 5.05 b 1.25 ± 0.04 b 10.13 ± 4.85 abc 91.91 ± 14.40 a 0.84 ± 0.09 b

E900 42◦00′03′′ N,
127◦33′57′′ E 900 2.50 693.50 90.18 ± 0.64 a 4.66 ± 0.07 c 38.81 ± 0.57 a 17.02 ± 2.08 ab 0.94 ± 0.05 c 14.89 ± 0.68 a 62.34 ± 13.16 b 1.33 ± 0.27 b

E1005 42◦14′21′′ N,
128◦13′07′′ E 1005 2.21 706.00 89.19 ± 1.79 a 5.88 ± 0.02 a 41.01 ± 0.82 a 14.97 ± 0.42 b 0.79 ± 0.04 d 5.98 ± 0.06 c 38.77 ± 9.17 cd 1.17 ± 0.02 b

E1280 42◦01′55′′ N,
128◦25′58′′ E 1280 0.96 793.00 83.86 ± 0.46 bc 5.45 ± 0.05 b 33.56 ± 1.40 b 19.56 ± 0.16 ab 0.73 ± 0.00 d 11.96 ± 0.88 ab 28.69 ± 8.83 d 1.13 ± 0.36 b

Note: MAT, mean annual temperature; MAP, mean annual precipitation; SWC, soil water content; SOC: soil organic carbon; TN, total nitrogen; TP, total phosphorus; AP, available
phosphorus; NH4

+-N, ammonium nitrogen; NO3
−-N, nitrate nitrogen. Different letters within each column indicate significant differences among study sites based on one-way ANOVA

and Tukey’s test (p < 0.05).
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3.3. Relationship between Climate, Soil Property, Aboveground Vegetation, and Soil Seed Bank

SSBs demonstrate significant correlations with climatic conditions, soil characteristics,
and aboveground vegetation. Specifically, species richness in an SSB is positively correlated
with the MAT, TP, NH4

+-N, VR, and species composition (NMDS1; Figure 4). Conversely,
it shows a negative correlation with the SWC and SOC. Furthermore, the density of the
SSB shows a significant positive correlation with MAT, TP, NH4

+-N, VR, VD, and species
composition (NMDS1).

Diversity 2024, 16, x FOR PEER REVIEW 7 of 12 
 

 

 
Figure 4. The relationship between climate, soil properties, aboveground vegetation and soil seed 
banks in sedge peatlands of the Changbai Mountains. The pairwise correlation of these variables is 
represented by the color gradient, which represents the spearman correlation coefficient. Red indi-
cates negative correlation, blue indicates positive correlation. *** means p < 0.001, ** means p < 0.01, 
* means p < 0.05. SD, seed density of soil seed banks; SR, species richness of soil seed banks; VR, 
species richness of aboveground vegetation; VD, species density of aboveground vegetation; 
NMDS1, NMDS1 score of vegetation species composition; SWC, soil water content; SOC, soil or-
ganic carbon; TN, total nitrogen; TP, total phosphorus; AP, available phosphorus; NH4+-N, ammo-
nium nitrogen; NO3−-N, nitrate nitrogen. 

3.4. Effects of Climate, Soil Property, Aboveground Vegetation on Soil Seed Bank 
The SEM adequately fit our data (GoF = 0.65; Figure 5). SEM analysis showed that 

climatic factors and aboveground vegetation directly affected SSB richness, while soil 
properties indirectly affected SSB richness by directly affecting the aboveground vegeta-
tion. Climate factors, aboveground vegetation, and soil properties directly influenced seed 
density. Additionally, soil properties indirectly affected SSB density by influencing above-
ground vegetation. 

Figure 4. The relationship between climate, soil properties, aboveground vegetation and soil seed
banks in sedge peatlands of the Changbai Mountains. The pairwise correlation of these variables
is represented by the color gradient, which represents the spearman correlation coefficient. Red
indicates negative correlation, blue indicates positive correlation. *** means p < 0.001, ** means
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−-N, nitrate nitrogen.
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3.4. Effects of Climate, Soil Property, Aboveground Vegetation on Soil Seed Bank

The SEM adequately fit our data (GoF = 0.65; Figure 5). SEM analysis showed that
climatic factors and aboveground vegetation directly affected SSB richness, while soil
properties indirectly affected SSB richness by directly affecting the aboveground vege-
tation. Climate factors, aboveground vegetation, and soil properties directly influenced
seed density. Additionally, soil properties indirectly affected SSB density by influencing
aboveground vegetation.
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+-N, NO3
−-N) and aboveground vegetation (VR,

NMDS1) on the species richness and seed density of soil seed banks. The red line and the blue line
indicate positive and negative effects, respectively, and the dotted line indicates no significant effect.
The linewidth is proportional to the effect intensity. *** means p < 0.001, * means p < 0.05. VR, species
richness of aboveground vegetation; NMDS1, NMDS1 score of vegetation species composition; SWC,
soil water content; SOC, soil organic carbon; TP, total phosphorus; NH4

+-N, ammonium nitrogen.

4. Discussion
4.1. Variations in Soil Seed Bank Richness in Sedge Peatlands across the Altitude Gradient

Former studies have found that climate factors along the altitude gradient signifi-
cantly affect SSB composition and richness [3,11]. SSB richness increased with altitudes
because the suitable temperature condition at lower altitudes helped break dormancy
and promoted seed germination of various species, thus decreased seed storage in
soils [11]. The colder environment at higher altitudes generally has fewer predators [9]
and pathogenic fungi [10], as well as lower metabolic rates of seed embryos [11], making
it more conducive to the persistence of seeds in soils. However, our results showed that
SSB richness correlated positively with MAT (Figure 4). The reason might be that the
change in MAT along the altitude significantly affects seed production in peatlands. The
higher MAT at lower altitudes can promote seed production by advancing the phenology
of flowering and fruiting [32]. The richness of the seed rain at lower altitudes in Carex
peatlands was higher than higher altitudes [17]. In addition, the increase in precipita-
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tion may directly reduce SSB richness by promoting seed germination and increasing
pathogenic fungi in grasslands [15]. However, the MAP was not related with SSBs in our
study (Figure 4); the reason may be that peatlands are usually wetting and seeds in soils
are, relatively, not sensitive to precipitation.

Soil properties play an important role in vegetation establishment and SSB recruit-
ment [4,33]. The changes in climate factors with altitude influence the rate of enzymatic
hydrolysis reaction and organic matter decomposition [34–36], as well as nutrient transport
and transformation [37], which create large variations in soil environments along the alti-
tude. The vegetation richness correlated with soil pH, NH4

+-N and TP in our study. Soil
pH regulated species composition and richness in mountain grasslands and forests, as well
as the arctic tundra [38,39]. The peatland soils in our study were acidic, and the vegetation
richness increased with soil pH (Table 1, Figure 4). Although certain sedge species could
survive in sites with a lower soil pH, diverse species from different functional groups were
found in neutral and weakly acidic soils. N and P are considered to be the main factors
limiting the growth of plants in terrestrial ecosystems [40,41]. Plant growth and litter
decomposition are usually faced with N and/or P limitation in peatlands [21,33,42]. The
higher levels of NH4

+-N and TP increased the species richness of aboveground vegetation
in our study (Figure 4), especially the dominant sedge species, which is consistent with
other studies [20,43–45]. In our study, the variations in vegetation composition and rich-
ness caused by climate and soil environmental change significantly affected SSB richness
(Figure 5 and Figure S1). The lower MAT and soil nutrients at higher altitudes decreased
aboveground vegetation richness so that seed input and SSB richness were expected to de-
crease (Figures 4 and 5). This finding highlights the direct and indirect roles of climate and
environmental change and aboveground vegetation dynamics in regulating SSB richness
in peatlands.

4.2. Variations in Soil Seed Bank Density in Sedge Peatlands along the Altitude Gradient

SSB size is determined by seed input, the external environment, to maintain seed
longevity, and the persistence of seeds themselves [46]. The input process of SSBs includes
flower production, seed setting, seed dispersal and seed incorporation into the soil [47],
which could be regulated by climate. Colder and wetter climatic conditions may reduce
flowering and seed setting [48]. Temperature shifts affect the hormone level and gene
expression in plants, which regulate the time of flowering and fruiting [49]. Temperature
also influences the plant–pollinator interactions, which strongly affects seed production [50].
Increased precipitation may increase the presence of pathogens in soils, thereby reducing
seed longevity [10]. Our study found that SSB density decreased with the altitude, which is
directly affected by the MAT (Figures 2b and 3). The main reason is that a higher MAT at
lower altitudes may increase seed production, especially the dominant sedge species [51],
although the increase in temperature may also reduce the size of SSBs by promoting seed
germination [15].

Soil environment is closely related to SSB recruitment and aboveground vegetation
regeneration. In our study, TP and NH4

+-N directly affected SSB density (Figures 3 and 4).
N and P are commonly limited nutrients in peatland ecosystems [51]. Former studies found
that nutrient addition significantly reduced the number of seedlings germinated from
soils, and the response is species specific [52–54]. For example, nitrogen enrichment could
promote seed production and seedling germination of certain species and increase plant
growing in a freshwater wetland [55], while another study found that nitrogen addition
inhibited seed germination of Nymphaea but had no effect on other wetland species in the
Okefenokee Swamp [52]. In our study, the site with higher N and P nutrients had higher
seed density in soils (Figure 3), which maybe because high soil nutrients promote seed
production and seedling growth in sedge peatlands. In addition, soil properties, including
soil pH and SWC, regulated vegetation composition and richness, which directly affected
SSB density in our study (Figures 3 and 4). Many studies have shown that the species
composition in peatlands is closely related to pH [56,57]. Peatland soils in the Changbai
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Mountains are acidic, and sedge species could survive in soils with low pH levels. However,
other species, including grass, forb and rush species, tend to grow in weakly acidic or
neutral soil environments, which further influence seed production and germination. Thus,
the change in aboveground vegetation composition and richness across the environmental
gradient significantly affects SSB size in peatlands.

5. Conclusions

This study first investigated the pattern of SSB changes in relation to altitude in sedge
peatlands. SSB richness and density decreased significantly as the altitudes increased.
Climatic conditions and aboveground vegetation directly affected SSB richness and density
along the altitude gradient. Climate and soil properties indirectly affected the SSBs by
influencing vegetation composition and richness.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d16090571/s1, Figure S1: Nonmetric multidimensional scaling
(NMDS) ordination of the species composition of the sedge peatland based on relative density data
for the soil seed bank and aboveground plant community (stress value = 0.141) along an altitudinal
gradient on the Changbai Mountain. Blue circles and triangles represent the soil seed banks and
aboveground plant communities of the sedge peatland, respectively. Coloration from dark blue to
light blue represents an increase in altitude. Table S1: Species and their densities in vegetation plots
at six altitudes in the Changbai Mountain area (mean ± standard error). Table S2: List of species of
germinated seedlings and their seed density in each pot in the greenhouse germination experiment
(mean ± standard error).
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