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Abstract: The interaction between woody plants and mycorrhizal fungi is an important biological
interaction; however, the driving factors behind the diversity of mycorrhizal trees formed through
the symbiosis of mycorrhizal fungi and woody plants remain unclear. In this study, we collected
and compiled the woody plant data of 34 forest dynamic plots containing 3350 species from habitats
around the world and divided them into AM and EcM trees. We tested the contribution of AM
and EcM trees to tree diversity and its components in forest communities worldwide. Our results
showed that AM trees rather than EcM trees affect the tree diversity of forest communities, and that
the diversity of AM trees has a significant latitudinal gradient pattern. Climate variables, especially
temperature, are strongly correlated with the diversity patterns for AM trees rather than EcM trees.
Topography is the most significant factor affecting the diversity of EcM trees. Our findings highlight
the importance of AM trees for the tree diversity of forest communities worldwide. Our findings
have important implications for understanding the response of complex woody plant communities
with different types of mycorrhizal symbiosis to climate change.

Keywords: AM trees; EcM trees; climate; topography; temperature; latitude gradient

1. Introduction

The symbiotic relationship between plant bodies and mycorrhizal fungi has been
recognized and widely studied [1–4]. Mutualistic interactions between plants and myc-
orrhizal fungi may be an important but often overlooked biological interaction [5]. This
interaction improves the absorption and accumulation of mineral elements in soil by plants
and promotes plant resistance and tolerance to heavy metal stress [6–8]. Although global
biodiversity has been known for centuries [9–11], global biodiversity is still a primary issue
of concern [12]. The reciprocal interactions of organisms and fungi, such as plants and
fungi, affect the diversity of life on Earth. However, the diversity and spatial distribution
pattern of mycorrhizal trees, which are the symbionts of mycorrhizal fungi and trees, on a
global scale are unclear.

In the course of centuries of research into plant diversity, the latitudinal gradient
of plant species richness from the poles to the equator has been widely recognized and
confirmed [13–17]. Plant diversity is highest in the tropics, where the rate of species
formation is much higher than the rate of species extinction [18]. The link between climate
and diversity has been explored in all directions for many years [19–22]. However, the
influence of climate on the spatial distribution of the diversity of mycorrhizal trees is
unclear.
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Many studies have shown that mycorrhizal fungi play an important role across many
terrestrial ecosystems worldwide [23–34]. Among them, arbuscular mycorrhizal fungi
(AMF) and ectomycorrhizal fungi (EcMF) form symbioses with more than 80% of the
vascular plants globally [35,36]. AMF form specialized structures in plant root cells termed
arbuscules, which are the site for the transfer of nutrients between fungus and plant [37].
The hyphae of the EcMF are mainly distributed on the surface of the roots. Some studies
have shown that plant litter in AMF-dominated ecosystems is often higher than that in
EcMF-dominated ecosystems [38]. EcMF have the genetic capability to degrade litter to
some extent [38,39]. Moreover, mycorrhizal diversity, seasonality, and host preference have
received extensive attention at different spatial scales [40,41]. A simulated experiment with
increasing temperature showed that the diversity and community structure of mycorrhizal
fungi could be affected by increasing temperature [38,42,43]. However, some questions
still need to be answered: Does temperature have an effect on the diversity of mycorrhizal
trees? Is temperature the most important factor influencing the diversity of mycorrhizal
trees? Are the spatial patterns and drivers of AM and EcM trees, as symbionts of AMF and
EcMF with woody plants, different?

In this study, we examine the influence of mycorrhizal associations and environmental
factors (space, climate, and topography) on the latitudinal gradient in forest tree diversity,
aiming to identify the driving factors behind diversity changes in AM and EcM trees by
analyzing their diversity patterns. Using data from 34 large, stem-mapped forest plots
across the globe (Figure 1), we calculate species richness for AM and EcM trees to investigate
the contribution of different mycorrhizal tree types to the overall forest community diversity
and confirm the significant role of AM tree diversity in forest tree diversity. We hypothesize
that the diversity of AM trees increases with latitude. Specifically, we test three hypotheses:
(1) the latitudinal gradient pattern of diversity of forest communities is closely related to
the mycorrhizal types of host trees; (2) the factors causing the diversity change in different
types of trees are distinct and not the same; and (3) the diversity of mycorrhizal trees is
primarily determined by temperature rather than precipitation. Given the current complex
and variable climate conditions, we hope our findings will provide valuable data for
understanding the response mechanisms of different mycorrhizal trees to climate change
and offer theoretical references for the maintenance and protection of forest ecosystems.
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Figure 1. (a) Global distribution of 34 forest plots. (b) PCA of woody plants in different climatic 
zones (Red dashed lines represent temperate zone, blue dashed subtropical zone and black dashed 
tropical zone). (c) Diversity of AM and EcM trees. 

2. Material and Methods 
2.1. Study Sites 

We used data from 34 forest dynamic plots around the world from the Forest Global 
Earth Observatory network (ForestGEO, http://www.ForestGEO.si.edu/) (13 April 2023) 
and the Chinese Forest Biodiversity Monitoring Network (CForBio, (20 May 2023) [44]. In 
34 plots, all the freestanding woody plants with DBH ≥ 1 cm were counted in accordance 
with a standardized census program [45]. The 34 dynamic forest dynamic plots were di-
vided into three climatic zones: tropical, subtropical, and temperate according to latitude 
(Table S1A). The size of the plots ranges from 20 ha (Xishuangbanna) to 120 ha (Mpala), 
and these plots encompass a broad latitudinal gradient from 1.9246 S° (Rabi) to 61.30 N° 

Figure 1. (a) Global distribution of 34 forest plots. (b) PCA of woody plants in different climatic
zones (Red dashed lines represent temperate zone, blue dashed subtropical zone and black dashed
tropical zone). (c) Diversity of AM and EcM trees.

2. Material and Methods
2.1. Study Sites

We used data from 34 forest dynamic plots around the world from the Forest Global
Earth Observatory network (ForestGEO, http://www.ForestGEO.si.edu/ (accessed on 13
April 2023)) and the Chinese Forest Biodiversity Monitoring Network (https://geobon.
org/downloads/PDF/2016-CForBio-EN.pdf (accessed on 20 May 2023)) [44]. In 34 plots,
all the freestanding woody plants with DBH ≥ 1 cm were counted in accordance with a
standardized census program [45]. The 34 dynamic forest dynamic plots were divided into
three climatic zones: tropical, subtropical, and temperate according to latitude (Table S1A).
The size of the plots ranges from 20 ha (Xishuangbanna) to 120 ha (Mpala), and these plots
encompass a broad latitudinal gradient from 1.9246 S◦ (Rabi) to 61.30 N◦ (Scotty Creek,
Canada). The plots extend across 63.2246 degrees latitude, and they cover all the continents

http://www.ForestGEO.si.edu/
https://geobon.org/downloads/PDF/2016-CForBio-EN.pdf
https://geobon.org/downloads/PDF/2016-CForBio-EN.pdf
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with forests (i.e., Asia, Africa, Europe, South America, North America, and Oceania). The
plots are located in forest types ranging from temperate forests to subtropical and tropical
forests and are composed of tree diversities from 11 to 511 woody species.

2.2. Classification of Mycorrhizal Plants

We collected and sorted mycorrhizal datasets from 34 forest dynamic plots and ex-
tracted woody plants for analysis. Based on anatomy and partner identity, four principal
types of mycorrhizae are recognized: arbuscular mycorrhizae (AM), ectomycorrhizae
(EcM), ericoid mycorrhizae, and orchid mycorrhizae [46]. In this study, we assigned mycor-
rhizal type at the genus level (Table S1B). AM and EcM associations are the most common
mycorrhizal types for trees. Thus, we focused predominantly on AM and EcM trees in
the present study. The classification of mycorrhizal trees was referenced by the global
database FungalRoot published on the GBIF (Global Biodiversity Information Facility)
platform [47] (https://www.gbif.org/dataset/744edc21-8dd2-474e-8a0b-b8c3d56a3c2d
(accessed on 30 May 2023)).

2.3. Environmental Data

ForestGEO sites cover a wide diversity of physical and biotic environments. We
collected data for 12 environmental variables. The spatial factors included latitude (◦) and
longitude (◦); topographic factors included maximum altitude (HA, m), minimum altitude
(LE, m), mean altitude (ME, m), and mean slope (MS, ◦); and climatic factors included
warmest month temperature (MTWM, ◦C), coldest month temperature (MTCM, ◦C), annual
mean temperature (MAT, ◦C), driest month precipitation (PDM, mm), wettest month
precipitation (PWM, mm), and annual mean precipitation (MAP, mm). The topographic
and climatic factors were selected from ForestGEO, among which the climatic factors were
also referred to in the literature [48,49].

2.4. Statistical Analyses

Based on the AM and EcM tree data of 34 forest plots, the similarities and differences
in communities in different climatic zones were analyzed by principal component analysis
(PCA). The Kruskal–Wallis test was used to examine the differences in diversity between
AM and EcM trees. We used the “ggplot2” package in the R software platform (R version
3.6.1) to visualize the results of the PCA and Kruskal–Wallis.

The species composition of the woody plants under different climatic zones was
analyzed by ordination using NMDS with Bray–Curtis dissimilarity, and the environmental
factors (space, climate, and topography) were fitted into the NMDS ranking of species
abundance by the ENVFIT function. Permutational multivariate ANOVA was applied to
explore the significant differences on the basis of 999 permutations. NMDS was conducted
using the metaMDS command in the R vegan package (R version 3.6.1) [50].

Linear models were fitted for each region with the richness of AM and EcM trees as
the response and the environmental factors (space, climate, and topography) as predictors
to analyze diversity changes with environmental factors. The linear regression models
were performed with the R software and visualized using “ggplot2” [51].

The direct and indirect effects of the environmental factors (space, climate, and topog-
raphy) on the diversity of AM and EcM trees were further investigated. SEM was used to
evaluate the causal relationship between the diversity of two types of mycorrhizal (AM
and EcM) trees and the different environmental factors. We used the “lavaan” package in
the R software platform to parameterize the SEM.

3. Results
3.1. Diversity of AM and EcM Trees

The PCA showed that the environmental interpretations of PC1 and PC2 were 36.87%
and 25.85%, respectively, and the total interpretation amount was 62.72% (Figure 1b). The

https://www.gbif.org/dataset/744edc21-8dd2-474e-8a0b-b8c3d56a3c2d
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Kruskal–Wallis test showed that the diversity of AM trees was significantly higher than
that of EcM trees (Figure 1c).

3.2. Pattern of AM and EcM Diversity

For AM trees, the diversity pattern displayed pronounced latitudinal gradients. In
particular, the richness of AM trees increased with the decrease in absolute latitude at
a rate of 5.255 species per degree. The diversity of AM trees increased with longitude
(p < 0.05), MAT (p < 0.01), MAP (p < 0.05), PWM (p < 0.05), MTWM (p < 0.01), and MTCM
(p < 0.01). By contrast, it decreased with latitude (p < 0.01) and PDM. Temperature is an
important affecting factor in determining the diversity of AM trees. The amount of variance
(R2) explained was highest with MAT and MTCM (≥50%), followed by MTWM. For EcM
trees, the spatial (longitude and latitude) and climatic factors (MAT, MAP, MTCM, MTWM,
PWM, and PDM) had no significant effect on diversity. The diversity of EcM trees did not
have pronounced latitudinal gradients (Figure 2).
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3.3. Effects of Environmental Variables on the Diversity of AM and EcM Trees

We found that the climate factors MAT and MTCM were only significantly correlated
with AM trees, while PDM was only significantly correlated with EcM trees. MAP and
PWM significantly affected AM and EcM trees. The topographic factors (mean slope and
mass fraction) were significantly correlated only with trees. The spatial factors (longitude)
significantly affected AM and EcM trees (Figure 3).
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Figure 3. NMDS of the species composition of woody plants with different mycorrhizae. The black
circles represent tropical zones, blue circles represent tropical zones, and purple circles represent
tropical zones. The brown arrows represent insignificance, and blue arrows represent significance.
HA (maximum altitude, m), LE (minimum altitude, m), ME (mean altitude, m), MS (mean slope, ◦),
MTWM (the warmest month temperature, ◦C), MTCM (the coldest month temperature, ◦C), MAT
(the annual mean temperature, ◦C), PDM (the driest month precipitation, mm), PWM (the wettest
month precipitation, mm), and MAP (the annual mean precipitation, mm). The same below.

The effects of the environmental factors on the abundance of AM trees (R2 = 0.62) were
much higher than those on the abundance of EcM trees (R2 = 0.21). Climate is the most
important affecting factor for the diversity of AM trees. The influence of the climatic factors
(R2 = 0.71, p ≤ 0.05) on the richness of AM trees was much greater than that of the spatial
(R2 = 0.19, p > 0.1) and topographic (R2 = −0.03, p > 0.1) factors. The topographic factors
are the most important affecting factors for the species richness of EcM trees. The influence
of the topographic factors (R2 = −0.33, p ≤ 0.05) on the richness of EcM trees was greater
than that of the spatial (R2 = 0.3, p > 0.1) and environmental (R2 = −0.23, p > 0.1) factors.
The influence of the climate factors on the richness of AM trees was greater than that on
the richness of EcM trees. The effects of the topographic and spatial factors on the species
richness of EcM trees were higher than those of AM trees. The climate factors had opposite
effects on the species richness of AM and EcM trees (Figure 4).
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4. Discussion
4.1. The Diversity of AM Trees Rather than EcM Trees Affects the TREE Diversity of the
Forest Community

The diversity of AM trees had a significant latitudinal gradient pattern, while the
diversity of EcM trees had no significant change along the latitudinal gradient. In general,
the tropics contain more diverse and abundant species because lower latitudes have higher
material energy and productivity to sustain more species [18,52–54]. Higher rates of specia-
tion, DNA evolution, and ecological interactions (e.g., competition, herbivory, predation,
and parasitism) at lower latitudes produce more species [14,18,55,56]. In this study, the
diversity of AM trees followed the same rule. We found that the diversity of AM trees has
a significant latitudinal gradient, and the diversity decreases with the increase in latitude.
By contrast, for EcM trees, diversity generally lacks significant latitudinal patterns. This
result is probably due to the fact that the wide distributions of EcM trees do not generate
strong differences in diversity among localities.

Despite the widespread interest in climate change for forest diversity patterns [57,58],
more attention needs to be paid to the impact of climate on the diversity of mycorrhizal
symbionts. Climate has long been an important affecting factor for diversity, and climate
change directly or indirectly affects species richness and community stability [59]. Cli-
mate can also affect the species composition of communities by affecting the control of
succession by plant–soil feedback (PSF) [60]. Climate, such as extreme temperature, is
an important abiotic factor that affects PSFs and may undermine the stabilizing forces of
negative PSFs [61]. In this study, we found that the diversity of AM trees was regulated
by climate factors and had a certain regularity. The diversity of AM trees increased with
the rise in temperature (MAP, MTCM, and MTWM). In the SEM, we found significant
differences in diversity between AM and EcM trees as influenced by environmental factors.
Climate is the most important affecting factor for the diversity of AM trees and has the
least influence on the diversity of EcM trees. However, topographic factors are the most
important affecting factors for the diversity of EcM trees and have the least influence on
the diversity of AM trees. The diversity of AM trees increases with the rise in temperature
and decreases with the increment in latitude. Therefore, AM trees are the predominant
contributors to forest communities in tree diversity.
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4.2. Temperature, Not Precipitation, Is the Most Important Affecting Factor for the Diversity of
AM Trees

Temperature and precipitation have been key factors in the study of the effects of
climate on the diversity of forest communities [62–64]. Species richness is strongly temper-
ature dependent, as Wang [54] elucidated in his study of trees in eastern Asia and North
America. Some studies have shown that AM trees are dominant in warm, humid, and
seasonal tropical areas with high decomposition rates, while EcM trees are dominant in dry,
cold, and seasonal temperate areas [5,65,66]. In this study, we found that three temperature
variables (MAT, MTWM, and MTCM) significantly affected the diversity of AM trees. The
diversity of AM trees increased significantly with the increase in temperature. Studies
have shown that AMF symbionts exhibit a more active growth response to warm environ-
ments [67]. Therefore, higher temperature is beneficial to the better development of AMF
symbionts, and temperature may affect the diversity of AMF symbionts by affecting the
symbiosis of AMF. In addition, the AMF community composition is significantly affected by
increased precipitation via soil moisture rather than by warming [68]. PSFs affect diversity
by regulating the intensity of interspecific competition, the local distribution of species, and
even niche division [5,69–71]. Changes in precipitation patterns can change the intensity
of PSFs and affect the stability of biological communities [72]. However, we found that
the influence of precipitation on the diversity of AM trees was limited, which may be due
to the low utilization rate of AMF to precipitation, and the soil water content may have
a more direct effect on AMF. It may also be that AMF play a role in promoting drought
resistance in the host [73], which attenuates the effect of water on it.

Some studies have shown that topography is an important affecting factor for the
diversity of EcM communities and fruiting bodies, as well as the distribution of EcM [74,75].
In this study, topography replaced climate as the most significant affecting factor for the
diversity of EcM trees. Complex topography constitutes a complex ecological environ-
ment. Complex topography creates small-scale variations in microclimate [75]. Topography
influences the distribution of EcMF groups by mediating changes in environmental condi-
tions [75]. Topography may affect the diversity of EcM trees by mediating microclimate
change. Compared with the change in climate conditions, the change in environmen-
tal conditions mediated by topography had a more significant effect on the diversity of
EcM trees.

5. Conclusions

Unlike previous studies, our research encompasses sample sites from three different
climatic regions (tropical, subtropical, and temperate). Based on this, we tested the effects of
three different environmental factors (spatial, climatic, and topographical) on the diversity
of different types of mycorrhizal trees (AM trees and EcM trees). We found that the diversity
of AM trees rather than EcM trees affects the tree diversity of forest communities worldwide.
The diversity of AM trees significantly decreased with increasing latitude. The diversity of
AM trees has a significant latitudinal gradient pattern. Climate factors are generally much
more important than spatial and topographic factors in diversity and its components of
AM trees. In particular, temperature is the most important environmental affecting factor
for the diversity of AM trees. Compared with AM trees, topography is the most important
affecting factor for the diversity of EcM trees. AM tree diversity and EcM tree diversity
are driven by different environmental variables, suggesting that environmental variables
likely drive species diversity by affecting the mycorrhizal associations of trees. Our study
affirms the contribution of AM trees to forest communities and demonstrates that the
driving factors for diversity changes in AM trees and EcM trees are different. The primary
factor driving EcM tree diversity is not climate but topography. Future research is also
needed to discover the mycorrhizal associations of more trees and the specific selection of
mycorrhizal species to tree hosts under the circumstances of global warming. As the global
climate changes rapidly, we should pay more attention to the effects of climate (especially
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temperature) on mycorrhizal associations and the diversity of mycorrhizal trees (and even
global trees).

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/d16090587/s1, Figure S1: Effects of topography on the richness of different
types of mycorrhizal trees. The blue line represents AM trees, and the red line represents EcM trees;
Table S1: Sample land data. File S1: Plant List; File S2: Ecoregion.
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