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Abstract: A novel Gram-negative, orange-colored, rod-shaped, oxidase and catalase-
positive, non-spore-forming bacterium, designated as zp-37T, was isolated from the rhizo-
sphere soil of Phragmites australis (Cav.) Trin. ex Steud in Kashgar County, Xinjiang, China.
The phylogenetic analysis, based on the 16S rRNA genes, revealed that strain zp-37T belongs
to the genus Halomonas. Growth of strain zp-37T was observed at 10–43 ◦C, pH 6.0–11.0,
and 0–20% NaCl (w/v). The principal fatty acids of strain zp-37T were summed feature
8 (C18:1ω7c and/or C18:1ω6c, 55.67%) and summed feature 3 (C16:1ω7c and/or C16:1ω6c,
20.16%). The polar lipid profile contained diphosphatidylglycerol (DPG), phosphatidylglyc-
erol (PG), phosphatidylethanolamine (PE), unidentified phospholipids (UPL 1–3), uniden-
tified aminophospholipids (UAPL 1–2), and unidentified lipid (UL). Its main respiratory
quinone was ubiquinone Q-9 (100%). The genome of strain zp-37T was 3,489,967 bp in size,
containing two plasmids with lengths of 18,112 bp and 4364 bp, respectively. The genomic
DNA G+C content of strain zp-37T was 59.3%. By the genome annotation, various genes
related to the function of saline-alkaline stress tolerance and plant growth promotion were
predicted. The average nucleotide identity (ANI) and digital DNA–DNA hybridization
(dDDH) values between strain zp-37T and its five closely related strains were 72.64–75.59%
and 19.70–20.40%, respectively, which were lower than the threshold for species delineation
(ANI: 95–96%, dDDH: 70%). Based on the phylogenetic, phenotypic, and chemotaxonomic
analyses and genomic comparisons, strain zp-37T was suggested to represent a novel
species within the genus Halomonas, for which the name Halomonas kashgarensis sp. nov. is
proposed. The strain type was designated zp-37T (=CGMCC 1.62213T = JCM 37305T).

Keywords: Halomonas kashgarensis sp. nov.; rhizosphere soil; whole genome

1. Introduction
Halomonas, classified within the Halomonadaceae family, Oceanospirillales order,

Gammaproteobacteria class, Pseudomonadota phylum, was proposed by Vreeland et al.
in 1980 [1]. Members of the genus Halomonas are usually rod-shaped, Gram-negative,
aerobic, and halophilic bacteria. They are highly halotolerant, and numerous strains are
able to survive in an environment with salts that range from 0.1 to 32.5% [2]. Therefore,
a lot of members of the genus Halomonas have been isolated in a variety of hypersaline
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environments, such as seawater, saline soil, saline lakes, and marine sediments [3–9]. Most
strains of Halomonas also have strong alkali tolerance and can grow under pH conditions ex-
ceeding 10 [10]. In addition, some of them have the capacity to produce exopolysaccharides,
compatible solutes, and degrade aromatic compounds [9,11]. Due to their excellent salt
tolerance and plant growth-promoting effect, Halomonas spp. has outstanding performance
in improving saline-alkaline soil and promoting plant growth under saline-alkaline stress.
In Zhang et al.’s study, Halomonas sp. MC1 significantly increased the growth of cabbage
roots under salt stress [12]. Tiwari et al. showed an increase in carotenoid and chlorophyll
content in wheat after inoculating with Halomonas sp. SL9 [13]. The study by Bekkaye
et al. also showed that under salt stress, inoculation of strain Halomonas sp. BSSM328 could
significantly reduce the content of abscisic acid, jasmonic acid, and proline in wheat, which
could help wheat alleviate salt stress and promote its growth [14].

Up to now, December 2024, the genus Halomonas includes 144 species with valid publi-
cations (https://lpsn.dsmz.de/search?word=Halomonas, accessed on 27 December 2024).
A variety of Halomonas were used as microbial inoculants to promote plant growth [15].
During investigations of rhizosphere soil of Phragmites australis (Cav.) Trin. ex Steud in Xin-
jiang, China, a novel strain belonging to the genus Halomonas with plant growth-promoting
ability was isolated and designated as zp-37T. This study aimed to characterize the zp-37T

strain via physiological, chemotaxonomic, and genome analyses. The discovery of a novel
bacterium of the genus Halomonas expands our understanding of this genus and provides
the potential bacterium resource for the future preparation of microbial agents for the
improvement of saline-alkaline soil.

2. Materials and Methods
2.1. Isolation and Culture Conditions

The soil samples were collected from the rhizosphere of Phragmites australis (Cav.)
Trin. ex Steud, in Kashgar County, Xinjiang, China (39◦79′ N, 78◦55′ E) on 20 August
2020. The soil samples were packed in sterile plastic bags and immediately transported
to the laboratory in ice-cooled boxes. One gram of the soil sample was added to 9 mL
of double-distilled water (ddH2O) and serially diluted, and 100 µL of the soil dilutions
were plated on a modified Luria–Bertani (mLB) solid medium (comprising 5 g of yeast
extract, 10 g of tryptone, 15 g of agar, and 1000 mL of ddH2O and NaCl supplemented to a
final concentration of 7.5% with pH 9.0). Plates were incubated at 30 ◦C for 7 days, and
colony formation was monitored [16]. Colonies of different morphotypes were selected
and re-streaked on mLB solid medium until they were purified. A total of 109 colonies
were isolated and subsequently identified. One of these isolates, an orange, round, single
colony, was grown on mLB plates, designated as zp-37T, and stored in a 25% (v/v) glycerol
solution at −80 ◦C for further use [17]. Samples of strain zp-37T have been deposited in
the China General Microbiological Culture Collection Center (CGMCC) as 1.62213 and the
Japan Collection of Microorganisms (JCM) as JCM 37305.

2.2. Phylogenetic Analysis

The strain zp-37T was identified by 16S rRNA gene sequencing. The universal PCR primers
27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492R (5′-GGTTACCTTGTTACGACTT-3′) were
used for 16S rRNA gene amplification [18]. The PCR mixture was set up in a total volume of
25 µL, comprising 10.5 µL of ddH2O, 1 µL of 27F primers (10 µmol/L), 1 µL of 1492R primers
(10 µmol/L), and 12.5 µL of 2 × Phanta Max Mix (P515, Novozan, Nanjing, China). Colonies
of strain zp-37T approximately 1 mm in diameter were picked up with a sterilized pipette tip
and directly transferred to the PCR tube as DNA templates [19]. The amplified products were
sent to Sangon Biotech (Shanghai, China) for sequencing. The sequencing results were analyzed
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and identified using a nucleotide BLAST search in the EzbioCloud database (https://www.
ezbiocloud.net/, accessed on 9 December 2024). The phylogenetic analysis was carried out
using the MEGA (v.11) [20] software with the maximum-likelihood [21], neighbor-joining [22],
and maximum-parsimony [23] algorithms. The phylogenetic trees were evaluated by bootstrap
analysis with 1000 replications [24].

2.3. Morphological, Physiological, and Biochemical Characterizations

The zp-37T strain was cultured on mLB solid medium with aerobic condition at 30 ◦C
for the observation of colony morphology. Cell morphology and the presence of spores of
this strain were observed by using an optical microscope (CX-22, Olympus, Tokyo, Japan),
scanning electron microscope (SEM, Q45, FEI, Hillsboro, OR, USA), and transmission
electron microscope (TEM, ht7800, Hitachi, Tokyo, Japan). The Gram-staining reactions
were performed by using a Gram-staining kit (Hopebio, Qingdao, China) following the
guidelines provided by the manufacturer. The range and optimal NaCl concentration for
growth were determined in mLB liquid medium at 30 ◦C (supplemented NaCl with a
final concentration of 0–20%, an interval of 2%, and pH adjusted to 9.0). The range and
optimal pH for zp-37T growth were tested in mLB liquid medium (supplemented with final
7.5% NaCl) at 30 ◦C, and the pH buffers were adjusted from 2 to 12 as described by Qiu
et al. [25]. Additionally, the temperature range that the strain could grow (4, 10, 15, 20, 25,
30, 37, 40, 43, and 45 ◦C) was determined in mLB liquid medium under aerobic conditions.
The OD600 values of the bacterial culture medium were measured by spectrophotometer
(VIS-7220N, Beifen-Ruili, Beijing, China) every 24 h.

Catalase activity was determined by observing the formation of bubbles when adding
3% (v/v) H2O2 to the liquid culture of strain zp-37T. Oxidase activity was measured
through the oxidation of tetramethyl-ρ-phenylenediamine [26]. The microbial biochemical
identification kits (Hopebio, Qingdao, China) and Biolog ECO microplates were used
to assess the carbon source utilization capacity of strain zp-37T, including L-arabinose,
D-glucose, β-Methyl-D-Glucoside, D-Galactonic Acid γ-Lactone, L-Arginine, Pyruvic
Acid Methyl Ester, D-Xylose, D-Galacturonic Acid, L-Asparagine, Tween 40, I-Erythritol,
2-Hydroxy Benzoic Acid, L-Phenylalanine, Tween 80, D-Mannitol, 4-Hydroxy Benzoic Acid,
L-Serine, α-Cyclodextrin, N-Acetyl-D-Glucosamine, γ-Hydroxybutyric Acid, L-Threonine,
Glycogen, D-Glucosaminic Acid, Itaconic Acid, Glycyl-L-Glutamic Acid, D-Cellobiose,
Glucose-1-Phosphate, α-Ketobutyric Acid, Phenylethylamine, α-D-Lactose, D L-α-Glycerol
Phosphate, D-Malic Acid, Putrescine, D-galactose, D-sucrose, and D-fructose [27]. Seven
traits related to plant growth-promoting were determined, including nitrogen fixation, ACC
deaminase production, phosphate and potassium solubilization, siderophore production,
indole acetic acid (IAA) synthesis, and cellulase production. Nitrogen fixation was tested
on the Ashby solid medium [28]. ACC deaminase production was tested using the method
described by El-Tarabily [29]. Phosphate and potassium solubilization of the strain zp-37T

were tested on PVK solid medium and potassium-dissolving solid medium, respectively,
according to the method described by Li et al. [30]. The siderophore production ability
was assayed on Chrome azurol S (CAS) blue solid medium described by Schwyn and
Neilands [31]. IAA synthesis was tested using the Salkowski method described by Reang
et al. [32]. Cellulase production capacity was performed on a carboxy methyl cellulose
(CMC) congo red solid medium described by Rasool et al. [33].

2.4. Chemotaxonomic Characteristics

The zp-37T strain was incubated in mLB liquid medium at 180 r/min 30 ◦C for
48 h to determine its cellular fatty acids, polar lipids, respiratory quinones, and chemical
composition of the cell wall. Fatty acids were saponified, extracted, methylated, and
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analyzed using the Sherlock® Microbial Identification System (MIDI Inc, Newark, NJ, USA)
according to the manufacturer’s instructions. Gas chromatography (GC) was used for
the identification of cellular fatty acids [25]. Chloroform-methanol filtration was used to
extract the cellular polar lipids, and the examination of polar lipids was performed by
two-dimensional thin layer chromatography (TLC) on silica gel (Kieselgel 60 F254; Merck
Inc., Darmstadt, Germany). A high-performance liquid chromatography (HPLC) system
(Shimadzu Inc., Kyoto, Japan) was utilized to analyze respiratory quinones [34].

2.5. Genome Sequencing and Analysis

The E.Z.N.A® Bacteria DNA kit (Omega, Norcross, GA, USA) was utilized to extract
and purify the genome DNA of strain zp-37T according to the instructions. A highly
qualified DNA sample (OD260/280 = 1.8–2.0, >6 µg), which was quantified by using a
TBS-380 fluorometer (Turner BioSystems Inc., Sunnyvale, CA, USA), was used to construct
a fragment library. The complete genome of strain zp-37T was sequenced by combining
the Illumina NovaSeq 6000 system and Pacific Biosciences Sequel IIe technology (PacBio)
(Shanghai Biozeron Biotechnology Co., Ltd., Shanghai, China). The assembly of the whole
genome was conducted using the ABySS software (v2.2.0) (http://www.bcgsc.ca/platform/
bioinfo/software/abyss, accessed on 20 July 2023). The CheckM (v1.2.2) was used to assess
genome completeness and contamination [35].

Gene analysis was carried out using GeneMarkS (v4.17). The genome annotation
was performed using multiple databases, including Non-Redundant Protein Database
(NR; https://www.ncbi.nlm.nih.gov/refseq/about/nonredundantproteins/, accessed on
20 July 2023), SwissProt (http://uniprot.org, accessed on 20 July 2023), Kyoto Ency-
clopedia of Genes and Genomes (KEGG; http://www.genome.jp/kegg/, accessed on
20 July 2023), Clusters of Orthologous Groups of proteins (COG; https://www.ncbi.nlm.
nih.gov/research/cog/, accessed on 20 July 2023), Gene Ontology (GO; http://www.
geneontology.org/, accessed on 20 July 2023), and Carbohydrate-Active Enzymes Database
(CAZy; http://www.cazy.org/, accessed on 20 July 2023). Secondary metabolites biosyn-
thesis gene clusters (BGCs) were predicted by using the antiSMASH (v.7.1.0) platform [36].

Average nucleotide identity (ANI) and digital DNA–DNA hybridization (dDDH)
values were analyzed by ANI Calculator (https://www.ezbiocloud.net, accessed on
14 December 2024) [37] and the Genome-to-Genome Distance Calculator (GGDC) 3.0
(https://ggdc.dsmz.de, accessed on 14 December 2024) [38]. The phylogenomic tree, in-
cluding 24 type strains of the genus Halomonas was constructed through the EasyCGTree
pipeline [39]. The analysis of orthologous homologous gene clusters was using the Or-
thoVenn 3.0 online platform [40].

2.6. Accession Numbers

The sequence of the 16S rRNA gene and the whole genome of strain zp-37T has
been deposited in the GenBank database under the accession numbers OQ996844 and
CP137552, respectively.

3. Results
3.1. Phylogenomic Analysis Based on 16S rRNA Gene Sequence

The 16S rRNA gene sequence of strain zp-37T was 1433 bp in length (GenBank ac-
cession number OQ996844). Its 16S rRNA gene sequence was analyzed to determine the
phylogenetic relationships using the EzBioCloud database [41].

Phylogenetic analysis showed that the 16S rRNA gene of strain zp-37T exhibited the
highest similarities with two strain types, Halomonas maris QX-1T and Halomonas zhaodon-
gensis NEAU-ST10-25T. The 16S rRNA gene sequence similarities between strain zp-37T
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and these two closely related type strains were 97.67% and 97.65%, respectively, which
were lower than the species identification threshold (98.65%) for prokaryotic species [42].

To determine the phylogenetic position of strain zp-37T, phylogenetic trees based
on the 16S rRNA sequence of strain zp-37T and its closely related type strains were con-
structed. In the phylogenetic tree constructed using the maximum-likelihood (ML) algo-
rithm (Figure 1), strain zp-37T was closely associated with the genus Halomonas and formed
a separate branch. Phylogenetic trees based on the neighbor-joining (NJ) and maximum-
parsimony (MP) methods also corroborated this relationship (Figures S1 and S2). Thus,
the lower sequence similarity and distinctive branching pattern in the phylogenetic tree
indicated that the strain zp-37T was a potential novel species in the genus Halomonas.
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support values were calculated from 1000 replicates (only values ≥ 70% were shown). The bold font
represents the novel species identified in this study. GenBank accession numbers were provided in
parentheses for reference. Carnimonas nigrificans CTCBS1T was used as the outgroup.

3.2. Morphological, Physiological, and Biochemical Characteristics

The morphological characteristics of strain zp-37T were observed on mLB plates. Its
colonies were orange, round, smooth, and shiny in appearance, with an average diameter
of 1.44 mm. Strain zp-37T was identified as Gram-negative and non-spore-forming. The
morphology of cells was analyzed under a scanning electron microscope and transmission
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electron microscope, revealing it was a rod-shaped structure with dimensions of 0.3–0.5 µm
in width and 2.5–3.0 µm in length (Figure 2).
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Figure 2. Morphological characteristics of strain zp-37T. (A,B): Analysis under the FEI Q45 scanning
electron microscope. (C,D): Analysis under the Hitachi ht7800 transmission electron microscope.

Physiologically, the vigorous growth of strain zp-37T was observed in mLB liquid
medium at 10–43 ◦C (optimum: 37 ◦C) under aerobic conditions. Its pH range for growth
was 6.0–11.0 (optimum: 7.0–8.0). The strain zp-37T could grow in mLB liquid medium with
0 to 20% (w/v) NaCl, and the optimal NaCl concentration was 12%. Some differences were
observed in morphological, physiological, and biochemical characteristics when they were
compared between strain zp-37T and its closely related strains (Table 1).

Table 1. Characteristics that distinguish strain zp-37T from the related species of the genus Halomonas.

Characteristics 1 2 3 4 5 6

Cell size (µm) 0.3–0.5 × 2.5–3.0 ND ND 1.0 × 2.0–3.0 c 0.6–0.9 × 1.3–2.7 d 1.5 × 2.0–3.0 c

Temperature for growth (◦C)
Range 10–43 4–50 a 4–60 b −1–35 c 4–40 d 2–40 c

Optimum 37 37 a 35 b 20–35 c 35 d 30 c

NaCl concentration for growth (%, w/v)
Range 0–20 3–25 a 0–15 b 0.5–24 c 0.2–15 d 0.5–22 c

Optimum 12 7 a 3 b 2–3 c 4 d 4–7 c

pH for growth
Range 6.0–11.0 5.0–11.0 a 6.0–12.0 b 5.0–10.0 c 5.0–10.0 d 5.0–12.0 c

Optimum 7.0–8.0 7.0 a 9.0 b ND 7.0 d ND
Hydrolysis of:

Tween 40 + ND ND ND ND ND
Tween 80 + ND − b − c − d − c

Acid production from:
L-arabinose + + a − b − c − d − c

D-galactose − ND − b + c − d − c

D-xylose + − a + b + c + d − c

D-glucose + − a + b + c − d + c

D-sucrose − − a + b − c − d − c

D-fructose − ND + b − c − d − c

DNA G+C
content (mol%) 59.3 54.4 a 53.8 b 56.0 c 57.4 d 56.3 c

Strains 1: zp-37T; 2: H. maris QX-1T; 3: H. zhaodongensis NEAU-ST10-25T; 4: H. sulfidaeris ATCC BAA-803T;
5: H. songnenensis NEAU-ST10-39T; 6: H. hydrothermalis Slthf2T; a Data from Qiu et al., (2021) [43]; b Data from
Jiang (2013) [44]; c Data from Kaye et al., (2004) [45]; d Data from Jiang et al., (2014) [46]; Other data from this
study; Positive reaction (+), negative reaction (−), no data available (ND).

The cells of strain zp-37T were catalase and oxidase-positive. In addition, to analyze
its carbon source utilization, thirty-six various carbon sources were examined, proving that
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zp-37T could utilize thirty-three of those as the sole carbon source: L-arabinose, D-glucose,
β-Methyl-D-Glucoside, D-Galactonic Acid γ-Lactone, L-Arginine, Pyruvic Acid Methyl
Ester, D-Xylose, D-Galacturonic Acid, L-Asparagine, Tween 40, I-Erythritol, 2-Hydroxy
Benzoic Acid, L-Phenylalanine, Tween 80, D-Mannitol, 4-Hydroxy Benzoic Acid, L-Serine,
α-Cyclodextrin, N-Acetyl-D-Glucosamine, γ-Hydroxybutyric Acid, L-Threonine, Glycogen,
D-Glucosaminic Acid, Itaconic Acid, Glycyl-L-Glutamic Acid, D-Cellobiose, Glucose-1-
Phosphate, α-Ketobutyric Acid, Phenylethylamine, α-D-Lactose, D L-α-Glycerol Phosphate,
D-Malic Acid, and Putrescine. It could not utilize D-galactose, D-sucrose, and D-fructose
as carbon sources (Table S1).

IAA production levels were checked continuously for 14 days, and a maximum level
of 57.15 µg/mL was detected on the 11th day. The strain zp-37T had good growth on the
Ashby solid medium, proving it can produce nitrogenase and its ability to fix nitrogen.
In addition, strain zp-37T had a halo zone around its colonies on PVK, CAS, and CMC
congo red solid medium, indicating its ability for phosphate solubilization, siderophore
production, and cellulolytic activity (Figure 3).

Diversity 2025, 17, x FOR PEER REVIEW 7 of 16 
 

 

Range 0–20 3–25 a 0–15 b 0.5–24 c 0.2–15 d 0.5–22 c 
Optimum 12 7 a 3 b 2–3 c 4 d 4–7 c 

pH for growth 
Range 6.0–11.0 5.0–11.0 a 6.0–12.0 b 5.0–10.0 c 5.0–10.0 d 5.0–12.0 c 

Optimum 7.0–8.0 7.0 a 9.0 b ND 7.0 d ND 
Hydrolysis of: 

Tween 40 + ND ND ND ND ND 
Tween 80 + ND − b − c − d − c 

Acid production from: 
L-arabinose + + a − b − c − d − c 
D-galactose − ND − b + c − d − c 

D-xylose + − a + b + c + d − c 
D-glucose + − a + b + c − d + c 
D-sucrose − − a + b − c − d − c 
D-fructose − ND + b − c − d − c 

DNA G+C con-
tent(mol%) 

59.3 54.4 a 53.8 b 56.0 c 57.4 d 56.3 c 

Strains 1: zp-37T; 2: H. maris QX-1T; 3: H. zhaodongensis NEAU-ST10-25T; 4:H. sulfidaeris ATCC BAA-
803T; 5: H. songnenensis NEAU-ST10-39T; 6: H. hydrothermalis Slthf2T; a Data from Qiu et al. (2021) 
[43]; b Data from Jiang (2013) [44] ; c Data from Kaye et al. (2004) [45]; d Data from Jiang et al. (2014) 
[46]; Other data from this study; Positive reaction (+), negative reaction (−), no data available (ND). 

The cells of strain zp-37T were catalase and oxidase-positive. In addition, to analyze 
its carbon source utilization, thirty-six various carbon sources were examined, proving 
that zp-37T could utilize thirty-three of those as the sole carbon source: L-arabinose, D-
glucose, β-Methyl-D-Glucoside, D-Galactonic Acid γ-Lactone, L-Arginine, Pyruvic Acid 
Methyl Ester, D-Xylose, D-Galacturonic Acid, L-Asparagine, Tween 40, I-Erythritol, 2-Hy-
droxy Benzoic Acid, L-Phenylalanine, Tween 80, D-Mannitol, 4-Hydroxy Benzoic Acid, 
L-Serine, α-Cyclodextrin, N-Acetyl-D-Glucosamine, γ-Hydroxybutyric Acid, L-Threo-
nine, Glycogen, D-Glucosaminic Acid, Itaconic Acid, Glycyl-L-Glutamic Acid, D-Cellobi-
ose, Glucose-1-Phosphate, α-Ketobutyric Acid, Phenylethylamine, α-D-Lactose, D L-α-
Glycerol Phosphate, D-Malic Acid, and Putrescine. It could not utilize D-galactose, D-su-
crose, and D-fructose as carbon sources (Table S1). 

IAA production levels were checked continuously for 14 days, and a maximum level 
of 57.15 µg/mL was detected on the 11th day. The strain zp-37T had good growth on the 
Ashby solid medium, proving it can produce nitrogenase and its ability to fix nitrogen. In 
addition, strain zp-37T had a halo zone around its colonies on PVK, CAS, and CMC congo 
red solid medium, indicating its ability for phosphate solubilization, siderophore produc-
tion, and cellulolytic activity (Figure 3). 

 

Figure 3. Plant growth-promoting trait of strain zp-37T (A). Nitrogen fixation (B). Phosphate solu-
bilization (C). Siderophore production (D). Cellulolytic activity. 

3.3. Chemotaxonomic Characterization 

Figure 3. Plant growth-promoting trait of strain zp-37T (A). Nitrogen fixation (B). Phosphate solubi-
lization (C). Siderophore production (D). Cellulolytic activity.

3.3. Chemotaxonomic Characterization

The primary fatty acids of strain zp-37T were summed feature 8 (C18:1ω7c and/or
C18:1ω6c, 55.67%) and summed feature 3 (C16:1ω7c and/or C16:1ω6c, 20.16%), which were
consistent with the characteristics of the genus Halomonas described by Franzmann [47]. The
polar lipids of strain zp-37T included diphosphatidylglycerol (DPG), phosphatidylglycerol
(PG), phosphatidylethanolamine (PE), unidentified phospholipids (UPL 1–3), unidentified
aminophospholipids (UAPL 1–2), and unidentified lipid (UL). The type of respiratory
quinone of strain zp-37T was ubiquinone Q-9 (100%), which was consistent with other
members of the genus Halomonas [48]. The cell wall of strain zp-37T was found to lack
detectable DPA components. The primary sugars presented in the cell wall were identified
as ribose, glucose, and galactose. Strain zp-37T and its closest related stains exhibited
similar chemical characteristics (Table 2).

Table 2. The chemotaxonomic characteristics of strain zp-37T and its closest related stains.

Characteristics 1 2 3 4

Fatty acid (>10% in content)
C18:1ω7c and/or C18:1ω6c
(55.67%), C16:1ω7c and/or

C16:1ω6c (20.16%)

C16:0 (25.5%), C17:0 cyclo
(14.0%), C19:0 cyclo ω8c

(18.7%), C18:1ω7c and/or
C18:1ω6c (18.1%) a

C18:1ω7c (62.3%),
C16:0 (17.6%) b

C18:1ω7c (47.2%), C16:1ω7c
and/or C16:1ω6c (18.9%)

and C16:0 (16.3%) c

Major polar lipids DPG, PG, PE, UPL 1–3,
UAPL 1–2, UL

DPG, PG, PE, UPL, UAPL,
UL a ND DPG, PE, PG, UPL, UL c

Quinone Q-9 Q-9 a Q-9 b Q-9 c

Strains 1: zp-37T; 2: H. maris QX-1T; 3: H. zhaodongensis NEAU-ST10-25T; 4: H. songnenensis NEAU-ST10-39T;
a Data from Qiu et al., (2021) [43]; b Data from Jiang (2013) [44]; c Data Jiang et al., (2014) [46]; Other data from this
study; No data available (ND).
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3.4. Genomic Analyses

The genome of strain zp-37T (GenBank accession number CP137552) was 3,489,967 bp
in size, containing two plasmids with lengths of 18,112 bp and 4364 bp, respectively. The
genomic DNA G+C content of strains zp-37T was 59.3%. Its genome consisted of three
contigs, and the sequencing depth coverage was approximately 88.0X. Assessment of
genome assembly showed high completeness (99.21%) and low contamination (3.08%). We
confirmed that the 16S rRNA gene sequence obtained from PCR matched that derived from
the genome, ensuring the authenticity of its genomic data. The features of the genome
were displayed in the genome map (Figure 4). In addition, phylogenetic trees based on the
genome sequence of strain zp-37T and its 24 closely related type strains were constructed
by using the EasyCGTree pipeline. Carnimonas nigrificans ATCC BAA-78T was used as the
outgroup. Like the previous phylogenetic tree based on the 16S rRNA sequence, in the
phylogenomic tree, strain zp-37T was closely associated with the genus Halomonas and
formed a separated branch, which supported the proposal that strain zp-37T represented a
novel species of the genus Halomonas (Figure 5).
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The genome of strain zp-37T contains 3249 protein-coding sequences, 60 tRNAs, and
18 rRNAs (6 16S rRNAs, 6 23S rRNAs, and 6 5S rRNAs). The COG database annotated
about 2798 protein-coding sequences, which accounted for 86.12% of all protein-coding
sequences. These protein-coding sequences were classified into 21 types in the COG
database (Figure S3A). Among the 21 functional annotation classifications of strain zp-37T,
1222 (43.67%) protein-coding sequences were related to metabolism: amino acid trans-
port and metabolism (9.04%), energy production and conversion (7.61%), inorganic ion
transport and metabolism (7.33%), coenzyme transport and metabolism (4.54%), lipid trans-
port and metabolism (4.54%), carbohydrate transport and metabolism (4.50%), secondary
metabolites biosynthesis, transport and catabolism (3.07%), and nucleotide transport and
metabolism (3.04%). A total of 2108 protein-coding sequences of strain zp-37T were func-
tionally annotated in the KEGG database (Figure S3B). These coding sequences were
divided into 23 pathways of metabolism, including metabolism (12), genetic informa-
tion processing (4), environmental information processing (2), cellular processes (3), and
organismal systems (2).

According to the annotation results, 37 genes related to plant growth-promoting func-
tions were found in the genome, including 7 nitrogen fixation genes (such as Fe-S cluster
assembly protein sufB, sufD, and Fe-S cluster assembly transcriptional regulator iscR),
10 phosphate solubilization genes (such as phosphate ABC transporter complex pst A, pstB,
and Pho regulon phoU), 9 IAA synthesis genes (such as tryptophan synthase genes trpA,
aldB, and aspartate aminotransferase aspC) [49], 8 siderophore production genes (such
as iron-siderophore transport system permease protein fepD, fepG, and ironIII transport
system substrate-binding protein afuA), 1 tRNA recycling genes involved in cytokinin syn-
thesis (tRNA dimethylallyltransferase miaA) [50], 1 rhizosphere colonization gene (tyrosine
recombinase XerC), and 1 chemotaxis ability gene (chemotaxis protein cheW) (Table S2) [51].
Moreover, various saline-alkaline stress tolerance-related genes were predicted by the
genome annotation (Table S3), such as 3 K+ transporter genes (potassium transporter ktrD,
trk system potassium transporter trkA, and ktrC), 6 Na+/H+ antiporter genes (such as
Na+/H+ antiporter subunit mrpD, mrpE, and mrpG), 4 proline synthesis genes (such as
glutamate 5-kinase proB, glutamate-5-semialdehyde dehydrogenase proC, and prolyl-tRNA
synthetase proS) and 3 antioxidant enzymes genes (catalase-peroxidase katG, vitamin B12
transporter btuB, and glutathione peroxidase bsaA) [50].

The comparative analysis of the genomes of strain zp-37T and its five closely related
strains, H. maris QX-1T, H. zhaodongensis NEAU-ST10-25T, H. sulfidaeris ATCC BAA-803T,
H. songnenensis NEAU-ST10-39T, and H. hydrothermalis Slthf2T, used OrthoVenn 3.0. The
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result revealed that their genes had a significant gene overlap (Figure 6). The strain zp-
37T had a total of 2662 genes, while the other five closely related strains had 3471, 2920,
3328, 2929, and 3137 genes, respectively. Strain zp-37T shared 1914 common clusters of
orthologous genes with other five strains and possessed 14 unique genes. And these unique
genes of strain zp-37T were gpt (xanthine-guanine phosphoribosyltransferase), prpE (bis(5′-
nucleosyl)-tetraphosphatase PrpE), aer (aerotaxis receptor), etc. (Table S4). Additionally,
antiSMASH was used to predict clusters of secondary metabolite genes of strain zp-37T.
Just like the type strains H. maris QX-1T, H. zhaodongensis NEAU-ST10-25T, H. sulfidaeris
ATCC BAA-803T, H. songnenensis NEAU-ST10-39T, and H. hydrothermalis Slthf2T, zp-37T

contained a gene cluster associated with ectoine, indicating a conserved metabolic pathway
present in these strains.
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protein-coding genes within each genome.

The ANI values between strain zp-37T and other five closely related strains, H.
maris QX-1T, H. zhaodongensis NEAU-ST10-25T, H. sulfidaeris ATCC BAA-803T, H. songne-
nensis NEAU-ST10-39T, and H. hydrothermalis Slthf2T, were calculated using OrthoANI
(https://www.ezbiocloud.net/tools/ani, accessed on 19 January 2025), which ranged from
72.64% to 75.59%. These ANI values were below the threshold for the prokaryotic species
(95–96%). The dDDH calculation results demonstrated that the values of strain zp-37T

and the other five closely related strains ranged from 19.70% to 20.40%, which were lower
than the boundary of 70% cutoff for species differentiation (Table 3). These results suggest
strain zp-37T was considered a novel species of the genus Halomonas and formally named
Halomonas kashgarensis sp. nov., subsequently.

Table 3. ANI and dDDH analysis of strain zp-37T and its closely related strains.

Starin 1 2 3 4 5

ANI (%) 74.04 72.64 74.09 75.59 73.30
dDDH (%) 19.80 19.70 20.40 20.20 20.40

Strains 1: H. maris QX-1T; 2: H. zhaodongensis NEAU-ST10-25T; 3: H. sulfidaeris ATCC BAA-803T; 4: H. songnenensis
NEAU-ST10-39T; 5: H. hydrothermalis Slthf2T.

https://www.ezbiocloud.net/tools/ani
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4. Taxonomic Conclusions
The morphological, biochemical, chemotaxonomic, physiological, and genomic analy-

ses of the strain zp-37T revealed that it is classified within the genus Halomonas. However,
there are notable differences when compared to the closely related type strains. Strain
zp-37T also showed low ANI and dDDH values with other closely related type strains.
These results confirmed that strain zp-37T is a novel species of the genus Halomonas, for
which the name Halomonas kashgarensis sp. nov. is proposed.

5. Description of Halomonas kashgarensis sp. nov.
Halomonas kashgarensis (ka.shgar.en’sis. N.L. fem. adj. Kashgarensis, pertaining to

Kashgar, from Xinjiang, China, where the bacterium was originally isolated).
The cells are Gram-negative, aerobic, rod-shaped, about 0.3–0.5 µm in width and

2.5–3.0 µm in length. Colonies on mLB are orange, round, and smooth, with an aver-
age diameter of 1.44 mm. Growth was observed at 10–43 ◦C (optimum: 37 ◦C), pH
6.0–11.0 (optimum: 7.0–8.0), and 0–20% NaCl (w/v; optimum: 12%) on mLB liquid medium.
Catalase and oxidase were positive. Thirty-three various carbon sources (L-arabinose,
D-glucose, β-Methyl-D-Glucoside, D-Galactonic Acid γ-Lactone, L-Arginine, Pyruvic Acid
Methyl Ester, D-Xylose, D-Galacturonic Acid, L-Asparagine, Tween 40, I-Erythritol, 2-
Hydroxy Benzoic Acid, L-Phenylalanine, Tween 80, D-Mannitol, 4-Hydroxy Benzoic Acid,
L-Serine, α-Cyclodextrin, N-Acetyl-D-Glucosamine, γ-Hydroxybutyric Acid, L-Threonine,
Glycogen, D-Glucosaminic Acid, Itaconic Acid, Glycyl-L-Glutamic Acid, D-Cellobiose,
Glucose-1-Phosphate, α-Ketobutyric Acid, Phenylethylamine, α-D-Lactose, D L-α-Glycerol
Phosphate, D-Malic Acid, and Putrescine) were utilized as the sole carbon source. Principal
fatty acids are summed as feature 8 (C18:1ω7c and/or C18:1ω6c) and summed as feature
3 (C16:1ω7c and/or C16:1ω6c). The polar lipids profile contained diphosphatidylglycerol
(DPG), phosphatidylglycerol (PG), phosphatidylethanolamine (PE), unidentified phospho-
lipids (UPL 1–3), unidentified aminophospholipids (UAPL 1–2), and unidentified lipid
(UL). The respiratory quinone is ubiquinone Q-9 (100%). The genome of strain zp-37T is
3,489,967 bp in length, with a G+C content of 59.3%.

The strain type zp-37T (=CGMCC 1.62213T = JCM 37305T) was isolated from the rhizo-
sphere soil of Phragmites australis (Cav.) Trin. ex Steud in Kashgar County, Xinjiang, China.
The 16S rRNA genes sequence and genome sequence of strain zp-37T have been deposited
in the NCBI database under the accession numbers OQ996844 and CP137552, respectively.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/d17020098/s1, Figure S1: The NJ phylogenetic tree based on
the 16S rRNA gene sequences showing the phylogenetic relationship of strain zp-37T and other
closely related members of the genus Halomonas. Bootstrap support values were calculated from
1000 replicates (only values ≥ 70% were shown). The bold font represents the novel species identified
in this study. GenBank accession numbers were provided in parentheses for reference. Carnimonas
nigrificans CTCBS1T was used as the outgroup; Figure S2: The MP phylogenetic tree based on
the 16S rRNA gene sequences showing the phylogenetic relationship of strain zp-37T and other
closely related members of the genus Halomonas. Bootstrap support values were calculated from
1000 replicates (only values ≥ 70% were shown). The bold font represents the novel species identified
in this study. GenBank accession numbers were provided in parentheses for reference. Carnimonas
nigrificans CTCBS1T was used as the outgroup; Table S1: Carbon sources utilization characteristics of
strain zp-37T; Figure S3: Functional analysis of gene and protein sequence annotations from strain
zp-37T A: GOC function classification of genes in strain zp-37T B: KEGG function classification of
genes in strain zp-37T; Table S2: Potential genes related to plant growth-promoting in zp-37T Genome;
Table S3: Potential genes related to saline-alkaline stress tolerance in zp-37T Genome; Table S4: The
non-overlapped unique genes in strain zp-37T.
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Abbreviations
The following abbreviations are used in this manuscript:

mLB Modified Luria-Bertani
ANI Average nucleotide identity
dDDH Digital DNA-DNA hybridization
PG Phosphatidylglycerol
DPG Diphosphatidylglycerol
PE Phosphatidylethanolamine
UPL 1–3 Unidentified phospholipids
UAPL 1–2 Unidentified aminophospholipids
UL Unidentified lipids
ddH2O Double-distilled water
CGMCC China General Microbiological Culture Collection Center
JCM Japan Collection of Microorganisms
SEM Scanning electron microscope
TEM Transmission electronic microscope
IAA Indole acetic acid
CAS Chrome azurol S
CMC Carboxy methyl cellulose
TLC Thin layer chromatography
HPLC High-performance liquid chromatography
NCBI National Center for Biotechnology Information
PacBio Pacific biosciences sequel IIe
KEGG Kyoto encyclopedia of genes and genomes
COG Clusters of orthologous groups of proteins
GO Gene ontology
CAZy Carbohydrate-active enzymes database
BGCs Biosynthesis gene clusters
GGDC Genome-to-genome distance calculator
CDSs Coding sequences
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