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Abstract: As wireless mobile telecommunication bases organize their structure using a 

honeycomb-mesh algorithm, there are many studies about parallel processing algorithms 

like the honeycomb mesh in Wireless Sensor Networks. This paper aims to study  

the Peterson-Torus graph algorithm in regard to the continuity with honeycomb-mesh 

algorithm in order to apply the algorithm to sensor networks. Once a new interconnection 

network is designed, parallel algorithms are developed with huge research costs to use such 

networks. If the old network is embedded in a newly designed network, a developed 

algorithm in the old network is reusable in a newly designed network. Petersen-Torus has 

been designed recently, and the honeycomb mesh has already been designed as a  

well-known interconnection network. In this paper, we propose a one-to-one embedding 

algorithm for the honeycomb mesh (HMn) in the Petersen-Torus PT(n,n), and prove that 

dilation of the algorithm is 5, congestion is 2, and expansion is 5/3. The proposed  

one-to-one embedding is applied so that processor throughput can be minimized when the 

honeycomb mesh algorithm runs in the Petersen-Torus. 

OPEN ACCESS



Sensors 2011, 11              

 

 

1960

Keywords: embedding; honeycomb mesh; Petersen-Torus; interconnection network 

parallel processing 

 

1. Introduction 

Computers are widely used in our everyday life. Almost all computers have one processor that is 

able to perform instructions sequentially. There soon will be a time when sequential computers reach 

their physical limits in CPU speed and memory space. One alternative is parallel processing using 

several processors. The role of interconnection network, which displays the interconnection structure 

of processors composing the large-scale parallel processing system in a graph, is very important so that 

the system can efficiently accept various application algorithms in engineering and scientific fields and 

fully exercise its performance. Interconnection network consists of a set of processors, local memory, 

and a communication link between processors for data transfer. An interconnection network is divided 

into dynamic interconnection network and static interconnection network. Static interconnection 

networks cannot be connected with other processors again because the communication link between 

two processors is manual, while in a dynamic interconnection network, communication links can be 

linked with other processors by means of SE (Switching Elements). Dynamic interconnection networks 

can be classified into single stage, multi stage, cross bar, and cellular array. The single stage contains 

recirculating shuffle-exchange interconnection network, and the multi stage contains data manipulator, 

flip, indirect binary n-cube, omega, clos, and cantor. Cellular array includes near-neighbor 

connection [1]. According to the composition of nodes and edges composing the network, static 

interconnection networks can be classified into mesh class, hypercube class, and star graph class. Mesh 

classes include torus, honeycomb mesh [2], diagonal mesh [3], hexagonal mesh [4],  

Petersen-Torus [5] etc., hypercube class includes hypercube [6], folded hypercube [7], multiply-

twisted-cube [8], recursive circulant [9], Cayley Graph of Degree Three [10], etc., and star graph class 

includes star graph [11], macro-star [12], transposition graph [13], matrix-star graph [14], etc.  

In a mesh structure, extension of networks is easy since the degree is constant, and the structure, 

which is highly available in the VLSI circuit design, has been broadly used and commercialized until 

now. Since a low dimension mesh can be readily designed and is very useful in terms of algorithm, it is 

frequently used as interconnection network for parallel computers. The higher the dimensions of the 

mesh are, the shorter is diameter and the larger is bisection width and several parallel algorithms can 

be rapidly performed, but it requires a huge cost [15]. Honeycomb mesh is proposed as an 

interconnection network, which is characterized by more economic network cost, better location of 

mobile base station, and application fields such as computer graphic, image processing etc. An 

interconnection network can be modeled as an undirected graph G = (V,E). Each processor Pi is an 

element of a node set V, and two processors Pi and Pj are connected by communication link (Pi, Pj). 

The number of edges incident to the node Pi is defined as degree of the node.  

Embedding means the logical matching of two interconnection networks. For nodes and edges 

composing the interconnection networks, the algorithm developed in G is reusable in the algorithm H 

by matching the node of G with that of H and the edge of G with the path of H. Given a guest graph G 
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and a host graph H, embedding of G in H is described by an ordered pair (Φ, Ψ), where Φ maps each 

node of G to a node of H and Ψ maps each edge (u, v) of G to a path of H from nodes Φ(u) to Φ(v) 

(hereafter referred to as Ψ-path). Dilation of the edge (u, v) is the length of the Ψ-path in H, and 

dilation of the embedding (Φ, Ψ) is the largest value among dilations for all edges of G. Congestion of 

the edge of H is Ψ-paths traversing an edge of H, and congestion of the embedding (Φ, Ψ) is the 

largest value among congestions for all edges of H. Expansion of the embedding (Φ, Ψ) is a ratio of 

the number of nodes of G to that of H [16,17]. The measures to evaluate the embedding algorithm are 

dilation, congestion, and expansion. The closer the values are to 1, the better the embedding algorithm is.  

If expansion is less than 1, it is impossible to efficiently apply the algorithm designed at G to H. If 

expansion is more than 1, non-efficiency occurs that is, all nodes of H are not available when the 

algorithm designed at G is executed at H. It is recommended that expansion be exactly 1. The 

minimum value of dilation is 1, and the higher is dilation, the longer is message transmission time as 

much as dilation when the algorithm designed at G is applied to H. The optimal value of congestion 

is 1, and the higher is dilation, the more is transmission traffic. Optimal congestion is 1, and the higher 

is congestion, the more the transfer traffic is. The higher the dilation is, the longer the transfer time in  

store-and-forward routing is, therefore once the mode of wormhole routing is suitable and congestion 

is high, the possibility of message dead-lock increases in wormhole routing. Message transfer in  

multi-computing system is divided into circuit switching and packet switching. The former makes two 

processors exclusively available while transferring message by setting circuits toward the destination. 

The latter is classified into store-and-forward routing, virtual cut-through routing, and wormhole 

routing. Store-and-forward routing has longer message delay and requires many memory storage 

devices, which is designed to save message in the message storage device of the middle node on the 

path when the packet is transferred and transfer it again. Wormhole routing is designed to divide a 

packet into small units called flit to be given support from the router, when the header flit just in front 

of the message decides routing and the other flits successively follow the header flit. In this study, 

dilation and congestion were embedded at 5 or less to satisfy both the routing system. 

Studies on embedding between interconnection networks include embedding tree, cycle, mesh, 

hypercube, and star graph into other interconnection networks [17-20], and embedding among mesh, 

hypercube, and star graph [21,22]. In a study on embedding among mesh classes, the embedding 

measures are mostly one place integers. In [23], a (n − 1) × n mesh was embedded in a n × (n − 1) 

mesh at expansion 1 and dilation 2, and j × k mesh in n × n mesh at expansion 1 and dilation 

3(j × k = n × n). In [24], two-dimensional h × w mesh was embedded in h × ‘w’ mesh at dilation 

2(hw ≤ h‘w’, w’ < w). In [25], a (5m,2n) Torus is embedded in Petersen-Torus PT(m,n) with dilation 5, 

congestion 5, and expansion 1. In [26], k-dimensional Torus G was embedded in H at dilation 1 and 

congestion 1(If the number of nodes of G is equivalent to or more than that of H). In [27], (3n,2n) 

Torus was embedded in n-dimensional hexagonal honeycomb Torus at dilation 2, congestion 4, 

expansion 1. In [28], two-dimensional h × w mesh was embedded one-to-one in s×s mesh at dilation 

6(h × w > s × s). 

This paper is composed as follows. Section 2 introduces the Petersen-Torus and the honeycomb 

mesh network. Section 3 proposes an algorithm of embedding the honeycomb mesh in the  

Petersen-Torus network, and finally, conclusions are given.  
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2. Related Work 

2.1. Petersen-Torus 

The Petersen graph is the graph with the most desirable network cost to the number of nodes, such 

that it has the most number of nodes (10) among graphs having degree 3 and diameter 2. Taking 

advantage of the Petersen graph, PT was designed in place of the Petersen graph having 10 nodes per 

node of torus. A Peter-Torus network has a smaller diameter and a smaller network cost than a 

honeycomb torus with same node number [5]. 

The Petersen-Torus PT(m,n) (m,n ≥ 2) sets the Petersen graph [Figure 1(b)] as a basic module, 

arranges m(x axis) × n(y axis) modules on grid points, and connects them under an edge definition. In 

this paper, PT(m,n) is described by mapping in a two-dimensional graph as shown in Figure 1(a). A 

unit Petersen graph is set as module, and module is located on the intersecting point of x and y. The 

address of module is indicated as (x,y) and the node address as (x,y,p). x is the coordinates of x axis of 

module and y is the coordinates of y axis of module, p is the node address in Petersen graph. The 

Petersen-Torus network is defined as PT(m,n) = (Vpt, Ept). The node definition of PT(m,n) is: 

Vpt = {(x,y,p), 0 ≤ x < m, 0 ≤ y < n, 0 ≤ p ≤ 9} 

Figure 1. Petersen-Torus PT(5,5): (a) PT(5,5), (b) Petersen Graph. 

(a)             (b) 
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The edges of PT(m,n) are divided into internal edges and external edges. The edges connecting the 

nodes belonging to the same basic module are called internal edges, in which the edges of the Petersen 

graph are used as they are. The edges connecting the nodes belonging to other basic modules are called 

external edges. Edges are defined in the following. The symbol ‘%’ is the remainder operator in the 

following equations. (1) The longitudinal edge is ((x,y,6), (x,(y + 1)%n,9)). (2) The latitudinal edge is 

((x,y,1), ((x + 1) %m,y,4)). (3) The diagonal edge is ((x,y,2), ((x + 1)%m,(y + 1)%n,3)). (4) The 
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reverse diagonal edge is ((x,y,7), ((x – 1 + m)%m,(y + 1)%n,8)). (5) The diameter edges is  

((x,y,0), ((x + ݉ہ 2⁄ ݊ہ + m,(y%(ۂ 2⁄  .((n,5%(ۂ

Figure 1(a) expresses modules in grid points in Petersen-Torus PT(5,5). For all modules except 

verge, edges except diameter edge are drawn, and only the diameter edges of the module (0,0) are 

drawn in thick dashed lines (short lines are repeated regularly). Wraparound edges are omitted in the 

modules of the edges but several wraparound edges are drawn in thick solid lines in the modules on the 

four vertexes. Seen from a Petersen graph [Figure 1(b)] of the module of Petersen-Torus PT(m,n), 

Nodes 1, 4 are latitudinal edges, nodes 6, 9 longitudinal edges, nodes 2, 3 diagonal edges, nodes 7, 8 

reverse diagonal edges, and nodes 0, 5 are incident diameter edges. PT(m,n) is a regular graph where 

the number of nodes is 10mn, the number of edges 20mn, connectivity 4, and degree 4. 

Routing between two nodes in the same module is called internal routing, while routing between 

two nodes in the different modules is called external routing. The basic strategy of routing is to, when 

routing to modules each distant by 1 on x axis and y axis, use diagonal edge instead of latitudinal edge 

and longitudinal edge. Internal routing is in [5].  

Let U(x1, y1, p1) is source node, V(x2, y2, p2) is destination node, and T(x', y', p') is intermediate node. 

dx = (x2 − x1 + m) / m and dy = (y2 − y1+n) / n. dm = min(dx,dy) and dr = dx − dy. dx is x axis distance 

in a direction that x coordinates increase. dy is y axis distance in a direction that y coordinates increase. 

The basic strategy of routing is to, when routing to modules each distant by 1 on x axis and y axis, use 

diagonal edge instead of latitudinal edge and longitudinal edge. Routing algorithm is summarized as 

below:  

[Step 1] Internal routing in source module 

Routing from source node to intermediate node incident to diagonal or reverse diagonal or 

latitudinal or longitudinal edge  

[Step 2] External routing with diagonal edge or reverse diagonal edge 

Routing with diagonal or reverse diagonal edge in dm 

[Step 3] External routing with latitudinal edge or longitudinal edge 

Routing in dm-dx with latitudinal edge or Routing in dm-dy with latitudinal edge 

[Step 4] Internal routing in destination module  

Routing to destination node from intermediate node connected to diagonal or reverse 

diagonal or latitudinal or longitudinal edge 

2.2. Honeycomb Mesh 

HMn is made by the following method. HM1 is in form of a hexagon. HM2 is made by attaching 

each hexagon to the outside of the six edges of HM1. HM3 is made by attaching each hexagon to the 

outside of the edge of HM2. In the same way, HMn is made by attaching each hexagon to the outside 

of the edge of HMn-1. Figure 2 shows HM3. A honeycomb mesh [2] can be made in three ways by 

using a hexagon and according to these ways, is divided into three classes: Honeycomb Hexagonal 

Mesh (HHM), Honeycomb Rhombic Mesh (HRoM), and Honeycomb Rectangular Mesh (HReM). 

Each has degree 3, and once wraparound edge is added, it changes into honeycomb Torus. HHM is 

simply called honeycomb mesh (HM). The honeycomb mesh is a bipartite graph. All nodes can be 
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subdivided into two groups, which will be called black and white nodes, such that any edge joins a 

black and a white node. Vertex and edge symmetric honeycomb torus is obtained by adding 

wraparound edges to the honeycomb mesh. 

The honeycomb mesh HMn consists of 6n2 nodes and 9n2 − 3n edges and is indicated in 

HMn = (Vhm,Ehm). A node set Vhm and an edge set Ehm are defined as follows: 

Vhm = {(u,v,w)|(−n + 1 ≤ u,v,w ≤ n, 1 ≤ u + v + w ≤ 2)} 

Ehm = {((u,v,w),(u',v',w'))||u − u'| + |v − v'| + |w − w'| = 1} 

Figure 2. Honeycomb Mesh HM3. 
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The node address of HMn is indicated in (u,v,w). Address assignment method of HM is as follows: 

As seen from Figure 2, the crossing of the x, y, and z axes is deemed as start of each axis. Node 

address is indicated in (u,v,w), u value of the node which is first met in the x axis from the start point 

is 1, and u = u + 1 at the address value of the previous node per node which is met in movement. In a 

reverse direction, u value of the node which is first met in movement is 0, and u = u − 1 at the address 

value of the previous node per node which is met in movement. In the y(v) axis and the z(w) axis, the 

address is assigned in the same manner as the x axis. Node A is indicated as an example in Figure 2. 

For all nodes placed in a zigzag form which meet with the z axis at a right angle, the address value of 

w is same. When u + v + w = 1, nodes adjacent to the node (u,v,w) are (u + 1,v,w), (u,v + 1,w), and 

(u,v,w + 1), and when u + v + w=2, nodes adjacent to the node (u,v,w) are (u − 1,v,w), (u,v − 1,w), 

and (u,v,w − 1).  

Let (u, v, w) be the source node, (u', v', w') is the destination node. du = u' − u, dv = v' − v and 

dw=w' − w. the shortest path between the two nodes consists of |du| edges parallel to x-axis, |dv| edges 

parallel to y–axis and |dw| edges parallel to z-axis. The routing algorithm checks at each current node 

which of the edge directions x, y, or z(in this order) would reduce the distance to the destination, and 

will send the message on that edge. At least one of the edge directions would lead to a node closer to 

the destination [2]. 
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3. Embedding HM (Honeycomb Mesh) in PT (Petersen-Torus)  

The basic strategy to embed HM in PT is mapping the set of HM (hereafter referred to as a BMH) 

to the basic module of PT (hereafter referred to as a BMP). In Figure 2, nodes on the zigzag line 

being at a right angle to the z-axis are spread to be on the same vertical line, which is as shown in 

Figure 3(a). For simplicity of the embedding algorithm, HM as shown in Figure 2 is indicated again in 

Figure 3(a), and the embedding algorithm shown in Figure 3(a) is embedded in PT. Figure 3(a) shows 

how BMH is divided in HM. In Figure 3(a), the square shown in dotted line, which is composed of 

8 nodes, is BMH, and the dotted line is not an edge but just an indication for division.  

Figure 3. Embedding Honeycomb Mesh HM4 in Petersen-Torus. (a) HM4 (b) PT (4,4). 

                              (a)       (b) 

 

Lemma 1. A BMH is embedded in a BMP with dilation of 2, congestion of 2 and expansion of 5/4.  

Proof. Figure 4 shows a BMH and a BMP. Nodes of the BMH are one-to-one mapped to nodes of 

the BMP having the same address. The number of nodes of the BMH is 8 and that of the BMP is 10. 

Therefore expansion is 5/4. 

Assuming that node address of the BMH is a, length of the paths of the BMP in which the (a, a + 1) 

edges of the BMH are mapped is 1. Dilation and congestion of the (a, a + 1) edges are each 1. Except 

the (a, a + 1) edges, dilation and congestion of the two edges (1,6) and (3,8) are as described in the 

following. The edge (1,6) of the BMH is mapped in the path ((1,2), (2,6)) of the BMP with dilation 

of 2. The edge (3,8) of a BMH is mapped in the path ((3,9), (9,8)) of the BMP with dilation of 2. 

Therefore the BMH is embedded in the BMP with dilation of 2. Congestion is 2 at the edges (1,2) and 

(8,9) of the BMP. Therefore the BMH is embedded in the BMP with congestion of 2. 
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Figure 4. BMH and BMP (a) BMH (b) BMP. 

                                       (a)       (b) 
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Theorem 1. HMn is embedded in PT(n,n) with dilation of 5, congestion of 2, and expansion of 5/3 

(n is an even number). 

Proof. The number of nodes for HMn is 6n2 and that for PT(n,n) is 10n2. Therefore expansion is 

5/3. In a honeycomb mesh, nodes having the same w(=z) stand vertically, as seen from Figure 3(a). The 

address of the HM node is indicated by (u,v,w). The number of nodes at each row is 4n − 1 in 

Figure 3(a). The black node is the HM node, while the white node is the virtual node.  

Bu = −n + 1 − ݓہ 2⁄ ݓہ − bv = n ,ۂ 2⁄  k = n − w. The address of all nodes positioned at the bottom is ,ۂ

(bu,bv,w) (−n + 1 ≤ w ≤ n). In Figure 3(a), when w is 1, the address of the node positioned at the bottom 

is (−3,4,1), and when w is 0, the address of the node positioned at the bottom is (−3,4,0). When k is an 

odd number, the node address which goes through v = v − 1 at the address of the bottom node in an 

upward direction becomes the next node address, and node address which goes through u = u + 1 at the 

node address becomes the next node address. Address of the next node is obtained by repeating this 

procedure. When k is an even number, node address which goes through u = u + 1 at the address of the 

bottom node in an upward direction becomes the next node address, and node address which goes 

through v = v − 1 at the node address becomes the next address. Address of the next node is obtained 

by repeating this procedure, as well.  

Node (u,v,w) of HM is mapped into node (x,y,p) of PT as follows: x = ݇ہ 2⁄  When k is an odd .ۂ

number, y = ݑہ െ ݑܾ 2⁄ ݒܾہ = and when k is an even number, y ,ۂ െ ݒ 2⁄  In Figure 3, the address .ۂ

indicated in (number, number) is that of PT basic module into which HM basic module is to be 

mapped. How PT basic module maps 8 nodes in HM basic module is as described below. In the 

following equations, ‘%’ is modular operator. 

When k is an odd number:  

Under (u − bu) % 2 = 0, if (bv − v) % 2 = 0, p = 0, and if (bv − v)%/ 2 = 1, p = 1. 

Under (u − bu) /%2 = 1, if (bv − v) /%2 = 1, p = 2, and if (bv − v)%/ 2 = 0, p = 3. 
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When k is an even number,  

Under (bv − v) /%2 = 0, if (u − bu)%/ 2 = 0, p = 5, and if (u − bu)%/ 2 = 1, p = 6. 

Under (bv − v) /%2 = 1, if (u − bu) % 2 = 1, p = 7, and if (u − bu) % 2 = 0, p = 8.  

This method is mapping of the embedding method shown in Figure 3 by using the HM address. As 

mapping of HM basic module into PT basic module has already been demonstrated in Lemma 1, 

mapping of edge between HM basic modules is described. The edge between HM basic modules is 

divided into four: First is HM edge [(u,v,w), (u,v,w − 1)] if three conditions are met (k is an odd 

number, (u − bu)/2 = 0, and (bv − v)/2 = 0). Second is HM edge [(u,v,w), (u,v,w − 1)] if three 

conditions are met (k is an odd number, (u − bu)/2 = 1, and (bv − v)/2 = 1). Third is HM edge [(u,v,w), 

(u + 1,v,w)] if three conditions are met [k is an odd number, (u − bu)/2 = 1, and (bv − v)/2 = 0]. Fourth 

is HM edge [(u,v,w), and (u,v − 1,w)] if three conditions are met [k is an even number, (u − bu)/2 = 0, 

(bv − v)/2 = 1]. The former two edges are between the HM basic module mapped into the PT basic 

module and the HM basic module mapped into the PT basic module (2,0) as shown in Figure 3(a), 

while the latter two edges are between the basic module mapped into the PT basic module (1,0) and the 

HM basic module mapped into the PT basic module (1,1). 

Case 1. If three conditions are met [k is an odd number, (u − bu)/2 = 0, (bv − v)/2 = 0].  

The case meeting the above three conditions is the edge [(u,v,w), (u,v,w − 1)] between the HM basic 

module and the adjacent right basic module as shown in Figure 3 (a). If k is an odd number, assuming 

that HM node (u,v,w) is mapped into PT basic module (x,y), HM node (u,v,w − 1) is mapped into PT 

basic module (x + 1,y). If k is an odd number, (u − bu)/2 = 0, and (bv − v)/2 = 0, node (u,v,w) is 

mapped into PT node (x,y,0), and node (u,v,w − 1) is mapped into PT node (x + 1,y,5). The path of PT 

mapped into the HM edge [(u,v,w), (u,v,w − 1)] are (x,y,0), (x,y,1), (x + 1,y,4), (x + 1,y,0), and  

(x + 1,y,5), and length of the path is 4.  

Case 2. If three conditions are met (k is an odd number, (u − bu)/2 = 1, and (bv − v)/2 = 1). 

The case meeting the above three conditions is the edge between the HM basic module and the 

adjacent right basic module as shown in Figure 3(a). If k is an odd number, assuming that HM node 

(u,v,w) is mapped into PT basic module (x,y), HM node (u,v,w − 1) is mapped into PT basic module  

(x + 1,y). If k is an odd number,, (u − bu)/2 = 1, and (bv − v)/2 = 1, node (u,v,w) is mapped into PT 

node (x,y,2), and node (u,v,w − 1) is mapped into PT node (x + 1,y,7). The path of PT mapped into the 

HM edge [(u,v,w), (u,v,w − 1)] are (x,y,2), (x,y,1), (x + 1,y,4), and (x + 1,y,7), and length of the path 

is 3.  

Case 3. If three conditions are met [k is an odd number, (u − bu)/2 = 1, and (bv − v)/2 = 0]. 

The case meeting the above three conditions is the edge [(u,v,w), (u + 1,v,w)] between the HM basic 

module and the adjacent right basic module as shown in Figure 3(a). If k is an odd number, assuming 

that HM node (u,v,w) is mapped into PT basic module (x,y), HM node (u + 1,v,w) is mapped into PT 

basic module (x,y + 1). If k is an odd number, (u − bu)/2 = 1, and (bv − v)/2 = 0, node (u,v,w) is 

mapped into PT node (x,y,3), and node (u + 1,v,w) is mapped into PT node (x,y + 1,0). The path of PT 
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mapped onto the HM edge [(u,v,w), (u + 1,v,w)] are (x,y,3), (x,y,2), (x,y,6), (x,y + 1,9), (x,y + 1,5), 

and  (x,y + 1,0), and length of the path is 5.  

Case 4. If three conditions are met [k is an even number, (u − bu)/2 = 0, and (bv − v)/2 = 1]. 

The case meeting the above three conditions is the edge [(u,v,w), (u,v − 1,w)] between the HM basic 

module and the adjacent right basic module as shown in Figure 3 (a). If k is an even number, assuming 

that HM node (u,v,w) is mapped into PT basic module (x,y), HM node (u,v − 1,w) is mapped into PT 

basic module (x,y + 1). If k is an even number, (u − bu)/2 = 0, and (bv − v)/2 = 1, node (u,v,w) is 

mapped into PT node (x,y,8), and node (u,v − 1,w) is mapped into PT node (x,y + 1,5). The path of PT 

mapped into the HM edge ((u,v,w), (u,v − 1,w)) are (x,y,8), (x,y,7), (x,y,6), (x,y + 1,9), and (x,y + 1,5), 

and length of the path is 4.  

As seen from Case 1 and Case 2, HM edge ((u,v,w), (u,v,w − 1)) is embeddable into PT at 

dilation 4, and under Case 3, HM edge ((u,v,w), (u + 1,v,w)) is embeddable into PT at dilation 5, and 

under Case 4, HM edge ((u,v,w), (u,v − 1,w)) is embeddable into PT at dilation 4. As described in 

Lemma 1, HM basic module is embeddable into PT basic module at dilation 2 thus HM is embeddable 

into PT at dilation 5. 

Under Lemma 1, HM basic module is embeddable into PT basic module at congestion 2, and the 

path of PT for the two edges corresponding to Case 1 and Case 2 include the edge ((x,y,1), (x + 1,y,4)), 

and the path of PT for the two edges corresponding to Case 3 and Case 4 include the edge ((x,y,6),  

(x,y + 1,9)), thus HM is embeddable into PT at congestion 2.  

Corollary 1 Honeycomb mesh HMn embedded in PT(n,n) at 3 or less of average dilation. 

Proof. In all HM basic modules, dilation into PT is same, therefore one basic module average is the 

whole average. As demonstrated in Lemma 1, 6 edges in HM basic module are embedded into PT at 

dilation 1 and two edges into PT at dilation 2. As demonstrated in Theorem 1, one edge between HM 

basic modules is embedded into PT at dilation 3, one edge into PT at dilation 5, and two edges at 

dilation 4. Thus embedding at 3 or less of average dilation is possible. 

For example, as shown in Figure 3, HM node (−3,4,1) is mapped into PT node (1,0,0), and HM 

node (−3,4,0) into PT node (1,1,5). The path of PT mapped into the HM edge ((−3,4,1), (−3,4,0)) are 

(1,0,0), (1,0,1), (1,1,4), (1,1,0), and (1,1,5), and length of the path is 4. The HM node (−2,3,1) is 

mapped into the PT node (1,0,2), and the HM node (−2,3,0) into the PT node (1,1,7). The path of PT 

mapped into the HM edge [(−2,3,1), (−2,3,0)] are (1,0,2), (1,0,1), (1,1,4), and (1,1,7), and length of the 

path is 3. All the path of PT into which the two HM edges are mapped pass through the edge [(1,0,1), 

(1,1,4)].  

4. Comparative Analysis with Other Interconnection Networks 

Network cost is indicated by a multiple of diameter and degree. Diameter indicates a maximum 

distance of the shortest route linking two nodes, which can be an effective reference to measure 

message passing as a lower limit of latency required to disseminate information in the whole 

interconnection network, and degree is the number of pins composing the processor when a parallel 
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computer is designed with a given interconnection network as a factor to determine the complexity of 

routing control logic, which is a reference to measure the cost of hardware used to implement an 

interconnection network. Therefore network cost is the most critical factor to measure an 

interconnection network. To demonstrate that Petersen-Torus suggested in this paper based on the 

results of previous studies is suitable for implementation of a large-scale system for parallel 

processing, it is proven to be superior to the previously proposed mesh classes of honeycomb mesh, 

tours, hexagonal tours and honeycomb tours in terms of network cost as mentioned in Table 1. For 

analysis of network cost for an interconnection network, cases of the same number of nodes are 

compared in Figure 5. 

Table 1. Other Interconnection Network costs vs. Petersen-Torus. 

 Degreei Diameter Network Cost 

Honeycomb mesh 3 N63.1  N90.4  

Torus 4 N  N4  

Hexagonal torus 6 N58.0  N46.3  

Honeycomb tours 3 N81.0  N45.2  

PT 4 432.0 N  1628.1 N  

Figure 5. Mesh Class Network Comparative Table. 

 

5. Conclusion  

Embedding between two networks is a meaningful job to make a designed parallel algorithm 

reusable. The proposed embedding algorithm can be available in both a wormhole routing system and 

a store-and-forward routing system by embedding the generally known honeycomb mesh network in 

Petersen-Torus with dilation and congestion of 5 or less. Also, the processor throughput could be 

minimized through one-to-one embedding. Further studies on embedding from Petersen-Torus in other 

interconnection networks are required to be made so that the algorithms developed in Petersen-Torus 
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can be reusable in another interconnection network. As a result shown above, Peterson-Torus network 

can be applied to Wireless Sensor Network and it is expected to provide better performance compared 

to honeycomb mesh algorithm. Our future research will conduct Sensor Network routing with the 

Peterson-Torus algorithm and will show simulation results for the test of the performance. 
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