
Sensors 2011, 11, 1959-1971; doi:10.3390/s110201959

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

One-to-One Embedding between Honeycomb Mesh and
Petersen-Torus Networks

Jung-Hyun Seo 1, Hyun Sim 1, Dae-Heon Park 2, Jang-Woo Park 2 and Yang-Sun Lee 3,*

1 Department of Computer Engineering, National University of Sunchon, Maegok 315, Sunchon,

Jeonnam, Korea; E-Mails: jhseo@scnu.ac.kr (J.-H.S.); simhyun@scnu.ac.kr (H.S.)
2 Department of Information and Communication Engineering, National University of Sunchon,

Maegok 315, Sunchon, Jeonnam, Korea; E-Mails: dhpark@scnu.ac.kr (D.-H.P.);

jwpark@scnu.ac.kr (J.-W.P.)
3 Department of Information and Communication Engineering, Chosun Universtiy, 375 Seosuk-Dong,

Dong-Gu, Gwangju, Korea

* Author to whom correspondence should be addressed; E-Mail: yslee48@gmail.com;

Tel.: +82-61-750-3590; Fax: +82-61-750-3590.

Received: 23 November 2010; in revised form: 22 December 2010 / Accepted: 11 January 2011 /

Published: 1 February 2011

Abstract: As wireless mobile telecommunication bases organize their structure using a

honeycomb-mesh algorithm, there are many studies about parallel processing algorithms

like the honeycomb mesh in Wireless Sensor Networks. This paper aims to study

the Peterson-Torus graph algorithm in regard to the continuity with honeycomb-mesh

algorithm in order to apply the algorithm to sensor networks. Once a new interconnection

network is designed, parallel algorithms are developed with huge research costs to use such

networks. If the old network is embedded in a newly designed network, a developed

algorithm in the old network is reusable in a newly designed network. Petersen-Torus has

been designed recently, and the honeycomb mesh has already been designed as a

well-known interconnection network. In this paper, we propose a one-to-one embedding

algorithm for the honeycomb mesh (HMn) in the Petersen-Torus PT(n,n), and prove that

dilation of the algorithm is 5, congestion is 2, and expansion is 5/3. The proposed

one-to-one embedding is applied so that processor throughput can be minimized when the

honeycomb mesh algorithm runs in the Petersen-Torus.

OPEN ACCESS

Sensors 2011, 11

1960

Keywords: embedding; honeycomb mesh; Petersen-Torus; interconnection network

parallel processing

1. Introduction

Computers are widely used in our everyday life. Almost all computers have one processor that is

able to perform instructions sequentially. There soon will be a time when sequential computers reach

their physical limits in CPU speed and memory space. One alternative is parallel processing using

several processors. The role of interconnection network, which displays the interconnection structure

of processors composing the large-scale parallel processing system in a graph, is very important so that

the system can efficiently accept various application algorithms in engineering and scientific fields and

fully exercise its performance. Interconnection network consists of a set of processors, local memory,

and a communication link between processors for data transfer. An interconnection network is divided

into dynamic interconnection network and static interconnection network. Static interconnection

networks cannot be connected with other processors again because the communication link between

two processors is manual, while in a dynamic interconnection network, communication links can be

linked with other processors by means of SE (Switching Elements). Dynamic interconnection networks

can be classified into single stage, multi stage, cross bar, and cellular array. The single stage contains

recirculating shuffle-exchange interconnection network, and the multi stage contains data manipulator,

flip, indirect binary n-cube, omega, clos, and cantor. Cellular array includes near-neighbor

connection [1]. According to the composition of nodes and edges composing the network, static

interconnection networks can be classified into mesh class, hypercube class, and star graph class. Mesh

classes include torus, honeycomb mesh [2], diagonal mesh [3], hexagonal mesh [4],

Petersen-Torus [5] etc., hypercube class includes hypercube [6], folded hypercube [7], multiply-

twisted-cube [8], recursive circulant [9], Cayley Graph of Degree Three [10], etc., and star graph class

includes star graph [11], macro-star [12], transposition graph [13], matrix-star graph [14], etc.

In a mesh structure, extension of networks is easy since the degree is constant, and the structure,

which is highly available in the VLSI circuit design, has been broadly used and commercialized until

now. Since a low dimension mesh can be readily designed and is very useful in terms of algorithm, it is

frequently used as interconnection network for parallel computers. The higher the dimensions of the

mesh are, the shorter is diameter and the larger is bisection width and several parallel algorithms can

be rapidly performed, but it requires a huge cost [15]. Honeycomb mesh is proposed as an

interconnection network, which is characterized by more economic network cost, better location of

mobile base station, and application fields such as computer graphic, image processing etc. An

interconnection network can be modeled as an undirected graph G = (V,E). Each processor Pi is an

element of a node set V, and two processors Pi and Pj are connected by communication link (Pi, Pj).

The number of edges incident to the node Pi is defined as degree of the node.

Embedding means the logical matching of two interconnection networks. For nodes and edges

composing the interconnection networks, the algorithm developed in G is reusable in the algorithm H

by matching the node of G with that of H and the edge of G with the path of H. Given a guest graph G

Sensors 2011, 11

1961

and a host graph H, embedding of G in H is described by an ordered pair (Φ, Ψ), where Φ maps each

node of G to a node of H and Ψ maps each edge (u, v) of G to a path of H from nodes Φ(u) to Φ(v)

(hereafter referred to as Ψ-path). Dilation of the edge (u, v) is the length of the Ψ-path in H, and

dilation of the embedding (Φ, Ψ) is the largest value among dilations for all edges of G. Congestion of

the edge of H is Ψ-paths traversing an edge of H, and congestion of the embedding (Φ, Ψ) is the

largest value among congestions for all edges of H. Expansion of the embedding (Φ, Ψ) is a ratio of

the number of nodes of G to that of H [16,17]. The measures to evaluate the embedding algorithm are

dilation, congestion, and expansion. The closer the values are to 1, the better the embedding algorithm is.

If expansion is less than 1, it is impossible to efficiently apply the algorithm designed at G to H. If

expansion is more than 1, non-efficiency occurs that is, all nodes of H are not available when the

algorithm designed at G is executed at H. It is recommended that expansion be exactly 1. The

minimum value of dilation is 1, and the higher is dilation, the longer is message transmission time as

much as dilation when the algorithm designed at G is applied to H. The optimal value of congestion

is 1, and the higher is dilation, the more is transmission traffic. Optimal congestion is 1, and the higher

is congestion, the more the transfer traffic is. The higher the dilation is, the longer the transfer time in

store-and-forward routing is, therefore once the mode of wormhole routing is suitable and congestion

is high, the possibility of message dead-lock increases in wormhole routing. Message transfer in

multi-computing system is divided into circuit switching and packet switching. The former makes two

processors exclusively available while transferring message by setting circuits toward the destination.

The latter is classified into store-and-forward routing, virtual cut-through routing, and wormhole

routing. Store-and-forward routing has longer message delay and requires many memory storage

devices, which is designed to save message in the message storage device of the middle node on the

path when the packet is transferred and transfer it again. Wormhole routing is designed to divide a

packet into small units called flit to be given support from the router, when the header flit just in front

of the message decides routing and the other flits successively follow the header flit. In this study,

dilation and congestion were embedded at 5 or less to satisfy both the routing system.

Studies on embedding between interconnection networks include embedding tree, cycle, mesh,

hypercube, and star graph into other interconnection networks [17-20], and embedding among mesh,

hypercube, and star graph [21,22]. In a study on embedding among mesh classes, the embedding

measures are mostly one place integers. In [23], a (n − 1) × n mesh was embedded in a n × (n − 1)

mesh at expansion 1 and dilation 2, and j × k mesh in n × n mesh at expansion 1 and dilation

3(j × k = n × n). In [24], two-dimensional h × w mesh was embedded in h × ‘w’ mesh at dilation

2(hw ≤ h‘w’, w’ < w). In [25], a (5m,2n) Torus is embedded in Petersen-Torus PT(m,n) with dilation 5,

congestion 5, and expansion 1. In [26], k-dimensional Torus G was embedded in H at dilation 1 and

congestion 1(If the number of nodes of G is equivalent to or more than that of H). In [27], (3n,2n)

Torus was embedded in n-dimensional hexagonal honeycomb Torus at dilation 2, congestion 4,

expansion 1. In [28], two-dimensional h × w mesh was embedded one-to-one in s×s mesh at dilation

6(h × w > s × s).

This paper is composed as follows. Section 2 introduces the Petersen-Torus and the honeycomb

mesh network. Section 3 proposes an algorithm of embedding the honeycomb mesh in the

Petersen-Torus network, and finally, conclusions are given.

Sensors 2011, 11

1962

2. Related Work

2.1. Petersen-Torus

The Petersen graph is the graph with the most desirable network cost to the number of nodes, such

that it has the most number of nodes (10) among graphs having degree 3 and diameter 2. Taking

advantage of the Petersen graph, PT was designed in place of the Petersen graph having 10 nodes per

node of torus. A Peter-Torus network has a smaller diameter and a smaller network cost than a

honeycomb torus with same node number [5].

The Petersen-Torus PT(m,n) (m,n ≥ 2) sets the Petersen graph [Figure 1(b)] as a basic module,

arranges m(x axis) × n(y axis) modules on grid points, and connects them under an edge definition. In

this paper, PT(m,n) is described by mapping in a two-dimensional graph as shown in Figure 1(a). A

unit Petersen graph is set as module, and module is located on the intersecting point of x and y. The

address of module is indicated as (x,y) and the node address as (x,y,p). x is the coordinates of x axis of

module and y is the coordinates of y axis of module, p is the node address in Petersen graph. The

Petersen-Torus network is defined as PT(m,n) = (Vpt, Ept). The node definition of PT(m,n) is:

Vpt = {(x,y,p), 0 ≤ x < m, 0 ≤ y < n, 0 ≤ p ≤ 9}

Figure 1. Petersen-Torus PT(5,5): (a) PT(5,5), (b) Petersen Graph.

(a) (b)

0

7

9 6

8

5

4

3 2

1

(0,0) (4,0)

(4,4)(0,4)

x

y

The edges of PT(m,n) are divided into internal edges and external edges. The edges connecting the

nodes belonging to the same basic module are called internal edges, in which the edges of the Petersen

graph are used as they are. The edges connecting the nodes belonging to other basic modules are called

external edges. Edges are defined in the following. The symbol ‘%’ is the remainder operator in the

following equations. (1) The longitudinal edge is ((x,y,6), (x,(y + 1)%n,9)). (2) The latitudinal edge is

((x,y,1), ((x + 1) %m,y,4)). (3) The diagonal edge is ((x,y,2), ((x + 1)%m,(y + 1)%n,3)). (4) The

Sensors 2011, 11

1963

reverse diagonal edge is ((x,y,7), ((x – 1 + m)%m,(y + 1)%n,8)). (5) The diameter edges is

((x,y,0), ((x + ݉ہ 2⁄ ݊ہ + m,(y%(ۂ 2⁄ .((n,5%(ۂ

Figure 1(a) expresses modules in grid points in Petersen-Torus PT(5,5). For all modules except

verge, edges except diameter edge are drawn, and only the diameter edges of the module (0,0) are

drawn in thick dashed lines (short lines are repeated regularly). Wraparound edges are omitted in the

modules of the edges but several wraparound edges are drawn in thick solid lines in the modules on the

four vertexes. Seen from a Petersen graph [Figure 1(b)] of the module of Petersen-Torus PT(m,n),

Nodes 1, 4 are latitudinal edges, nodes 6, 9 longitudinal edges, nodes 2, 3 diagonal edges, nodes 7, 8

reverse diagonal edges, and nodes 0, 5 are incident diameter edges. PT(m,n) is a regular graph where

the number of nodes is 10mn, the number of edges 20mn, connectivity 4, and degree 4.

Routing between two nodes in the same module is called internal routing, while routing between

two nodes in the different modules is called external routing. The basic strategy of routing is to, when

routing to modules each distant by 1 on x axis and y axis, use diagonal edge instead of latitudinal edge

and longitudinal edge. Internal routing is in [5].

Let U(x1, y1, p1) is source node, V(x2, y2, p2) is destination node, and T(x', y', p') is intermediate node.

dx = (x2 − x1 + m) / m and dy = (y2 − y1+n) / n. dm = min(dx,dy) and dr = dx − dy. dx is x axis distance

in a direction that x coordinates increase. dy is y axis distance in a direction that y coordinates increase.

The basic strategy of routing is to, when routing to modules each distant by 1 on x axis and y axis, use

diagonal edge instead of latitudinal edge and longitudinal edge. Routing algorithm is summarized as

below:

[Step 1] Internal routing in source module

Routing from source node to intermediate node incident to diagonal or reverse diagonal or

latitudinal or longitudinal edge

[Step 2] External routing with diagonal edge or reverse diagonal edge

Routing with diagonal or reverse diagonal edge in dm

[Step 3] External routing with latitudinal edge or longitudinal edge

Routing in dm-dx with latitudinal edge or Routing in dm-dy with latitudinal edge

[Step 4] Internal routing in destination module

Routing to destination node from intermediate node connected to diagonal or reverse

diagonal or latitudinal or longitudinal edge

2.2. Honeycomb Mesh

HMn is made by the following method. HM1 is in form of a hexagon. HM2 is made by attaching

each hexagon to the outside of the six edges of HM1. HM3 is made by attaching each hexagon to the

outside of the edge of HM2. In the same way, HMn is made by attaching each hexagon to the outside

of the edge of HMn-1. Figure 2 shows HM3. A honeycomb mesh [2] can be made in three ways by

using a hexagon and according to these ways, is divided into three classes: Honeycomb Hexagonal

Mesh (HHM), Honeycomb Rhombic Mesh (HRoM), and Honeycomb Rectangular Mesh (HReM).

Each has degree 3, and once wraparound edge is added, it changes into honeycomb Torus. HHM is

simply called honeycomb mesh (HM). The honeycomb mesh is a bipartite graph. All nodes can be

Sensors 2011, 11

1964

subdivided into two groups, which will be called black and white nodes, such that any edge joins a

black and a white node. Vertex and edge symmetric honeycomb torus is obtained by adding

wraparound edges to the honeycomb mesh.

The honeycomb mesh HMn consists of 6n2 nodes and 9n2 − 3n edges and is indicated in

HMn = (Vhm,Ehm). A node set Vhm and an edge set Ehm are defined as follows:

Vhm = {(u,v,w)|(−n + 1 ≤ u,v,w ≤ n, 1 ≤ u + v + w ≤ 2)}

Ehm = {((u,v,w),(u',v',w'))||u − u'| + |v − v'| + |w − w'| = 1}

Figure 2. Honeycomb Mesh HM3.

z

y

x

Z=0Z=1
Z=-1

Z=-2

Z=2

Z=3

(1,2,-1)

A

The node address of HMn is indicated in (u,v,w). Address assignment method of HM is as follows:

As seen from Figure 2, the crossing of the x, y, and z axes is deemed as start of each axis. Node

address is indicated in (u,v,w), u value of the node which is first met in the x axis from the start point

is 1, and u = u + 1 at the address value of the previous node per node which is met in movement. In a

reverse direction, u value of the node which is first met in movement is 0, and u = u − 1 at the address

value of the previous node per node which is met in movement. In the y(v) axis and the z(w) axis, the

address is assigned in the same manner as the x axis. Node A is indicated as an example in Figure 2.

For all nodes placed in a zigzag form which meet with the z axis at a right angle, the address value of

w is same. When u + v + w = 1, nodes adjacent to the node (u,v,w) are (u + 1,v,w), (u,v + 1,w), and

(u,v,w + 1), and when u + v + w=2, nodes adjacent to the node (u,v,w) are (u − 1,v,w), (u,v − 1,w),

and (u,v,w − 1).

Let (u, v, w) be the source node, (u', v', w') is the destination node. du = u' − u, dv = v' − v and

dw=w' − w. the shortest path between the two nodes consists of |du| edges parallel to x-axis, |dv| edges

parallel to y–axis and |dw| edges parallel to z-axis. The routing algorithm checks at each current node

which of the edge directions x, y, or z(in this order) would reduce the distance to the destination, and

will send the message on that edge. At least one of the edge directions would lead to a node closer to

the destination [2].

Sensors 2011, 11

1965

3. Embedding HM (Honeycomb Mesh) in PT (Petersen-Torus)

The basic strategy to embed HM in PT is mapping the set of HM (hereafter referred to as a BMH)

to the basic module of PT (hereafter referred to as a BMP). In Figure 2, nodes on the zigzag line

being at a right angle to the z-axis are spread to be on the same vertical line, which is as shown in

Figure 3(a). For simplicity of the embedding algorithm, HM as shown in Figure 2 is indicated again in

Figure 3(a), and the embedding algorithm shown in Figure 3(a) is embedded in PT. Figure 3(a) shows

how BMH is divided in HM. In Figure 3(a), the square shown in dotted line, which is composed of

8 nodes, is BMH, and the dotted line is not an edge but just an indication for division.

Figure 3. Embedding Honeycomb Mesh HM4 in Petersen-Torus. (a) HM4 (b) PT (4,4).

 (a) (b)

Lemma 1. A BMH is embedded in a BMP with dilation of 2, congestion of 2 and expansion of 5/4.

Proof. Figure 4 shows a BMH and a BMP. Nodes of the BMH are one-to-one mapped to nodes of

the BMP having the same address. The number of nodes of the BMH is 8 and that of the BMP is 10.

Therefore expansion is 5/4.

Assuming that node address of the BMH is a, length of the paths of the BMP in which the (a, a + 1)

edges of the BMH are mapped is 1. Dilation and congestion of the (a, a + 1) edges are each 1. Except

the (a, a + 1) edges, dilation and congestion of the two edges (1,6) and (3,8) are as described in the

following. The edge (1,6) of the BMH is mapped in the path ((1,2), (2,6)) of the BMP with dilation

of 2. The edge (3,8) of a BMH is mapped in the path ((3,9), (9,8)) of the BMP with dilation of 2.

Therefore the BMH is embedded in the BMP with dilation of 2. Congestion is 2 at the edges (1,2) and

(8,9) of the BMP. Therefore the BMH is embedded in the BMP with congestion of 2.

Sensors 2011, 11

1966

Figure 4. BMH and BMP (a) BMH (b) BMP.

 (a) (b)

4

8

6

9

7

5 0

1

2

3

8

6

7

5 0

1

2

3

Theorem 1. HMn is embedded in PT(n,n) with dilation of 5, congestion of 2, and expansion of 5/3

(n is an even number).

Proof. The number of nodes for HMn is 6n2 and that for PT(n,n) is 10n2. Therefore expansion is

5/3. In a honeycomb mesh, nodes having the same w(=z) stand vertically, as seen from Figure 3(a). The

address of the HM node is indicated by (u,v,w). The number of nodes at each row is 4n − 1 in

Figure 3(a). The black node is the HM node, while the white node is the virtual node.

Bu = −n + 1 − ݓہ 2⁄ ݓہ − bv = n ,ۂ 2⁄ k = n − w. The address of all nodes positioned at the bottom is ,ۂ

(bu,bv,w) (−n + 1 ≤ w ≤ n). In Figure 3(a), when w is 1, the address of the node positioned at the bottom

is (−3,4,1), and when w is 0, the address of the node positioned at the bottom is (−3,4,0). When k is an

odd number, the node address which goes through v = v − 1 at the address of the bottom node in an

upward direction becomes the next node address, and node address which goes through u = u + 1 at the

node address becomes the next node address. Address of the next node is obtained by repeating this

procedure. When k is an even number, node address which goes through u = u + 1 at the address of the

bottom node in an upward direction becomes the next node address, and node address which goes

through v = v − 1 at the node address becomes the next address. Address of the next node is obtained

by repeating this procedure, as well.

Node (u,v,w) of HM is mapped into node (x,y,p) of PT as follows: x = ݇ہ 2⁄ When k is an odd .ۂ

number, y = ݑہ െ ݑܾ 2⁄ ݒܾہ = and when k is an even number, y ,ۂ െ ݒ 2⁄ In Figure 3, the address .ۂ

indicated in (number, number) is that of PT basic module into which HM basic module is to be

mapped. How PT basic module maps 8 nodes in HM basic module is as described below. In the

following equations, ‘%’ is modular operator.

When k is an odd number:

Under (u − bu) % 2 = 0, if (bv − v) % 2 = 0, p = 0, and if (bv − v)%/ 2 = 1, p = 1.

Under (u − bu) /%2 = 1, if (bv − v) /%2 = 1, p = 2, and if (bv − v)%/ 2 = 0, p = 3.

Sensors 2011, 11

1967

When k is an even number,

Under (bv − v) /%2 = 0, if (u − bu)%/ 2 = 0, p = 5, and if (u − bu)%/ 2 = 1, p = 6.

Under (bv − v) /%2 = 1, if (u − bu) % 2 = 1, p = 7, and if (u − bu) % 2 = 0, p = 8.

This method is mapping of the embedding method shown in Figure 3 by using the HM address. As

mapping of HM basic module into PT basic module has already been demonstrated in Lemma 1,

mapping of edge between HM basic modules is described. The edge between HM basic modules is

divided into four: First is HM edge [(u,v,w), (u,v,w − 1)] if three conditions are met (k is an odd

number, (u − bu)/2 = 0, and (bv − v)/2 = 0). Second is HM edge [(u,v,w), (u,v,w − 1)] if three

conditions are met (k is an odd number, (u − bu)/2 = 1, and (bv − v)/2 = 1). Third is HM edge [(u,v,w),

(u + 1,v,w)] if three conditions are met [k is an odd number, (u − bu)/2 = 1, and (bv − v)/2 = 0]. Fourth

is HM edge [(u,v,w), and (u,v − 1,w)] if three conditions are met [k is an even number, (u − bu)/2 = 0,

(bv − v)/2 = 1]. The former two edges are between the HM basic module mapped into the PT basic

module and the HM basic module mapped into the PT basic module (2,0) as shown in Figure 3(a),

while the latter two edges are between the basic module mapped into the PT basic module (1,0) and the

HM basic module mapped into the PT basic module (1,1).

Case 1. If three conditions are met [k is an odd number, (u − bu)/2 = 0, (bv − v)/2 = 0].

The case meeting the above three conditions is the edge [(u,v,w), (u,v,w − 1)] between the HM basic

module and the adjacent right basic module as shown in Figure 3 (a). If k is an odd number, assuming

that HM node (u,v,w) is mapped into PT basic module (x,y), HM node (u,v,w − 1) is mapped into PT

basic module (x + 1,y). If k is an odd number, (u − bu)/2 = 0, and (bv − v)/2 = 0, node (u,v,w) is

mapped into PT node (x,y,0), and node (u,v,w − 1) is mapped into PT node (x + 1,y,5). The path of PT

mapped into the HM edge [(u,v,w), (u,v,w − 1)] are (x,y,0), (x,y,1), (x + 1,y,4), (x + 1,y,0), and

(x + 1,y,5), and length of the path is 4.

Case 2. If three conditions are met (k is an odd number, (u − bu)/2 = 1, and (bv − v)/2 = 1).

The case meeting the above three conditions is the edge between the HM basic module and the

adjacent right basic module as shown in Figure 3(a). If k is an odd number, assuming that HM node

(u,v,w) is mapped into PT basic module (x,y), HM node (u,v,w − 1) is mapped into PT basic module

(x + 1,y). If k is an odd number,, (u − bu)/2 = 1, and (bv − v)/2 = 1, node (u,v,w) is mapped into PT

node (x,y,2), and node (u,v,w − 1) is mapped into PT node (x + 1,y,7). The path of PT mapped into the

HM edge [(u,v,w), (u,v,w − 1)] are (x,y,2), (x,y,1), (x + 1,y,4), and (x + 1,y,7), and length of the path

is 3.

Case 3. If three conditions are met [k is an odd number, (u − bu)/2 = 1, and (bv − v)/2 = 0].

The case meeting the above three conditions is the edge [(u,v,w), (u + 1,v,w)] between the HM basic

module and the adjacent right basic module as shown in Figure 3(a). If k is an odd number, assuming

that HM node (u,v,w) is mapped into PT basic module (x,y), HM node (u + 1,v,w) is mapped into PT

basic module (x,y + 1). If k is an odd number, (u − bu)/2 = 1, and (bv − v)/2 = 0, node (u,v,w) is

mapped into PT node (x,y,3), and node (u + 1,v,w) is mapped into PT node (x,y + 1,0). The path of PT

Sensors 2011, 11

1968

mapped onto the HM edge [(u,v,w), (u + 1,v,w)] are (x,y,3), (x,y,2), (x,y,6), (x,y + 1,9), (x,y + 1,5),

and (x,y + 1,0), and length of the path is 5.

Case 4. If three conditions are met [k is an even number, (u − bu)/2 = 0, and (bv − v)/2 = 1].

The case meeting the above three conditions is the edge [(u,v,w), (u,v − 1,w)] between the HM basic

module and the adjacent right basic module as shown in Figure 3 (a). If k is an even number, assuming

that HM node (u,v,w) is mapped into PT basic module (x,y), HM node (u,v − 1,w) is mapped into PT

basic module (x,y + 1). If k is an even number, (u − bu)/2 = 0, and (bv − v)/2 = 1, node (u,v,w) is

mapped into PT node (x,y,8), and node (u,v − 1,w) is mapped into PT node (x,y + 1,5). The path of PT

mapped into the HM edge ((u,v,w), (u,v − 1,w)) are (x,y,8), (x,y,7), (x,y,6), (x,y + 1,9), and (x,y + 1,5),

and length of the path is 4.

As seen from Case 1 and Case 2, HM edge ((u,v,w), (u,v,w − 1)) is embeddable into PT at

dilation 4, and under Case 3, HM edge ((u,v,w), (u + 1,v,w)) is embeddable into PT at dilation 5, and

under Case 4, HM edge ((u,v,w), (u,v − 1,w)) is embeddable into PT at dilation 4. As described in

Lemma 1, HM basic module is embeddable into PT basic module at dilation 2 thus HM is embeddable

into PT at dilation 5.

Under Lemma 1, HM basic module is embeddable into PT basic module at congestion 2, and the

path of PT for the two edges corresponding to Case 1 and Case 2 include the edge ((x,y,1), (x + 1,y,4)),

and the path of PT for the two edges corresponding to Case 3 and Case 4 include the edge ((x,y,6),

(x,y + 1,9)), thus HM is embeddable into PT at congestion 2.

Corollary 1 Honeycomb mesh HMn embedded in PT(n,n) at 3 or less of average dilation.

Proof. In all HM basic modules, dilation into PT is same, therefore one basic module average is the

whole average. As demonstrated in Lemma 1, 6 edges in HM basic module are embedded into PT at

dilation 1 and two edges into PT at dilation 2. As demonstrated in Theorem 1, one edge between HM

basic modules is embedded into PT at dilation 3, one edge into PT at dilation 5, and two edges at

dilation 4. Thus embedding at 3 or less of average dilation is possible.

For example, as shown in Figure 3, HM node (−3,4,1) is mapped into PT node (1,0,0), and HM

node (−3,4,0) into PT node (1,1,5). The path of PT mapped into the HM edge ((−3,4,1), (−3,4,0)) are

(1,0,0), (1,0,1), (1,1,4), (1,1,0), and (1,1,5), and length of the path is 4. The HM node (−2,3,1) is

mapped into the PT node (1,0,2), and the HM node (−2,3,0) into the PT node (1,1,7). The path of PT

mapped into the HM edge [(−2,3,1), (−2,3,0)] are (1,0,2), (1,0,1), (1,1,4), and (1,1,7), and length of the

path is 3. All the path of PT into which the two HM edges are mapped pass through the edge [(1,0,1),

(1,1,4)].

4. Comparative Analysis with Other Interconnection Networks

Network cost is indicated by a multiple of diameter and degree. Diameter indicates a maximum

distance of the shortest route linking two nodes, which can be an effective reference to measure

message passing as a lower limit of latency required to disseminate information in the whole

interconnection network, and degree is the number of pins composing the processor when a parallel

Sensors 2011, 11

1969

computer is designed with a given interconnection network as a factor to determine the complexity of

routing control logic, which is a reference to measure the cost of hardware used to implement an

interconnection network. Therefore network cost is the most critical factor to measure an

interconnection network. To demonstrate that Petersen-Torus suggested in this paper based on the

results of previous studies is suitable for implementation of a large-scale system for parallel

processing, it is proven to be superior to the previously proposed mesh classes of honeycomb mesh,

tours, hexagonal tours and honeycomb tours in terms of network cost as mentioned in Table 1. For

analysis of network cost for an interconnection network, cases of the same number of nodes are

compared in Figure 5.

Table 1. Other Interconnection Network costs vs. Petersen-Torus.

 Degreei Diameter Network Cost

Honeycomb mesh 3 N63.1 N90.4

Torus 4 N N4

Hexagonal torus 6 N58.0 N46.3

Honeycomb tours 3 N81.0 N45.2

PT 4 432.0 N 1628.1 N

Figure 5. Mesh Class Network Comparative Table.

5. Conclusion

Embedding between two networks is a meaningful job to make a designed parallel algorithm

reusable. The proposed embedding algorithm can be available in both a wormhole routing system and

a store-and-forward routing system by embedding the generally known honeycomb mesh network in

Petersen-Torus with dilation and congestion of 5 or less. Also, the processor throughput could be

minimized through one-to-one embedding. Further studies on embedding from Petersen-Torus in other

interconnection networks are required to be made so that the algorithms developed in Petersen-Torus

Sensors 2011, 11

1970

can be reusable in another interconnection network. As a result shown above, Peterson-Torus network

can be applied to Wireless Sensor Network and it is expected to provide better performance compared

to honeycomb mesh algorithm. Our future research will conduct Sensor Network routing with the

Peterson-Torus algorithm and will show simulation results for the test of the performance.

Acknowledgements

This research was supported by the MKE (The Ministry of Knowledge Economy), Korea, under the

ITRC (Information Technology Research Center) support program supervised by the NIPA (National

IT Industry Promotion Agency) (NIPA-2010-(C1090-1021-0009)).

References

1. Ohring, S.; Das, S.K. Folded Petersen cube networks: New competitors for the hypercubes. IEEE

Trans. Parall. Distrib. Sys. 1996, 7, 151-168.

2. Stojmenovic, I. Honeycomb network: Topological properties and commnication algorithms. IEEE

Trans. Parall. Distrib. Sys. 1997, 8, 1036-1042.

3. Tang, K.W.; Padubidri, S.A. Diagonal and Toroidal Mesh Networks. IEEE Trans. Comput. 1994,

43, 815-826.

4. Chen, M.S.; Shin, K.G. Addressing, routing, and broadcasting in Hexagonal Mesh

multiprocessors. IEEE Trans. Comput. 1990, 39, 10-18.

5. Seo, J.H.; Lee, H.O.; Jang, M.S. Petersen-Torus Networks for Multicomputer Systems. In

Fourth International Conference on Networked Computing and Advanced Information

Management, Gyeongju, Korea, September 2–4, 2008; pp. 567-571.

6. Vaidya, A.S.; Rao, P.S.N.; Shankar, S.R. A Class of Hypercube-like Networks. In Proceedings of

the 5th IEEE Symposium on Parallel and Distributed Processing, Dallas, TX, USA, December 1–4,

1993; pp. 800-803.

7. EI-Amawy, A.; Latifi, S. Properties and performances of folded hypercubes. IEEE Trans. Parall.

Distrib. Sys. 1991, 2, 31-42.

8. Efe, K. A variation on the hypercube with lower diameter. IEEE Trans. Comput. 1991, 40,

1312-1316.

9. Park, J.-H. Circulant Graphs and Their Application to Communication Networks. Ph.D. Thesis,

Deparment of Computer Science, KAIST, Taejon, Korea, 1992.

10. Zhou, S.M.; Xiao, W.J. A new family of interconnections of fixed degree three. J. Comput. Sci.

Technol. 2004, 19, 218-223.

11. Mendia, V.E.; Sarkar, D. Optimal broadcasting on the star graph. IEEE Trans. Parall. Distrib.

Sys. 1992, 3, 389-396.

12. Yeh, C.-H.; Varvarigos, E. Macro-Star Networks: Efficient Low-Degree Alternatives to Star

Graphs for Large-Scale Parallel Architectures. In Proceedings of Frontier’96, 6th Symposium on

the Frontiers of Massively Parallel Computing, Annapolis, MD, USA, October 27–31, 1996.

13. Latifi, S.; Srimani, P.K. Transposition networks as a class of Fault-Tolerant Robust Networks.

IEEE Trans. Comput. 1996, 45, 230-238.

Sensors 2011, 11

1971

14. Lee, H.O.; Kim, J.S.; Park, K.W.; Seo, J.H. Matrix star graphs: A new interconnection network

based on matrix operations. In Advances in Computer Systems Architecture: 10th Asia-Pacific

Conference, ACSAC 2005, Singapore, October 24–26, 2005. Proceedings, Srikanthan, T., Xue, J.,

Chang, C.-H., Eds.; Lecture Note in Computer Science3740; Springer: Berlin/Heidelberg,

Germany, 2005; pp. 478-487.

15. Bokka, V.; Gurla, H.; Olariu, S.; Schwing, J.L. Podality-based time-optimal computations on

enhance meshes. IEEE Trans. Parall. Distrib. Sys. 1997, 8, 1019-1035.

16. Bettayeb, S.; Cong, B.; Girou, M.; Sudborough, I.H. Embedding star networks into

hypercubes. IEEE Trans. Comput. 1996, 45, 186-194.

17. Hamdi, M.; Song, S.W. Embedding hierarchical hypercube networks into the hypercube.

IEEE Trans. Parall. Distrib. Sys. 1997, 8, 987-902.

18. Shen, X.; Liang, W.; Hu, Q. On embedding between 2D Meshes of the same size. IEEE Trans.

Comput. 1997, 46, 880-889.

19. Sheu, J.J.; Tan, J.; Chu, K.T. Cycle Embedding in Pancake Interconnection Networks. In

Proceedings of 23rd Workshop on Combinatorial Mathematics and Computation Theory, Taiwan,

2006; pp. 85-92.

20. Abielrub, E. Embedding interconnection networks in crossed cubes. In Electronic

Engineering and Computing Technology; Ao, S.-I., Gelman, L., Eds.; Lecture Notes in

Electrical Engineering; Springer: Dordrecht, The Netherlands, 2010; Volume 60, pp. 141-151.

21. Bettayeb, S.; Cong, B.; Girou, M.; Sudborough, I.H. Embedding star networks into hypercubes.

IEEE Trans. Comput. 1996, 45, 186-194.

22. Saikia, D.K.; Badrinath, R.; Sen, R.K. Embedding torus on the star graph. IEEE Trans. Parall.

Distrib. Sys. 1998, 9, 650-663.

23. Kim, S.Y.; Hur, J. An Approach for Torus Embedding. In Proceedings of International

Conference on Parallel Processing, Aizu-Wakamatsu, Japan, September 21–24, 1999;

pp. 301-306.

24. Yang, X.; Tang, Y.Y.; Cao, J. Embedding torus in hexagonal honeycomb torus. IET Comput. Dig.

Tech. 2008, 2, 86-93.

25. Seo, J.H.; Lee, H.O.; Jang, M.S.; Han, H.S. Node Mapping Algorithm between Torus and

Petersen-Torus Networks. In Fourth International Conference on Networked Computing and

Advanced Information Management, Gyeongju, Korea, September 2–4, 2008; pp. 540-544.

26. Ellis, J.A. Embedding grids into grids: Techniques for large compression ratios. Networks 1996,

27, 1-17.

27. Huang, S.H.S.; Liu, H.; Verma, R.M. On embedding rectangular meshes into rectangular meshes

of smaller aspect ratio. Inf. Process. Lett. 1997, 63, 123-129.

28. Ellis, J.A. Embedding rectangular grids into square grids. IEEE Trans. Comput. 1991, 40, 46-52.

© 2011 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

