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Abstract: We consider a problem of high-resolution array radar/SAR imaging formalized 
in terms of a nonlinear ill-posed inverse problem of nonparametric estimation of the power 
spatial spectrum pattern (SSP) of the random wavefield scattered from a remotely sensed 
scene observed through a kernel signal formation operator and contaminated with random 
Gaussian noise. First, the Sobolev-type solution space is constructed to specify the class of 
consistent kernel SSP estimators with the reproducing kernel structures adapted to the 
metrics in such the solution space. Next, the “model-free” variational analysis (VA)-based 
image enhancement approach and the “model-based” descriptive experiment design 
(DEED) regularization paradigm are unified into a new dynamic experiment design 
(DYED) regularization framework. Application of the proposed DYED framework to the 
adaptive array radar/SAR imaging problem leads to a class of two-level (DEED-VA) 
regularized SSP reconstruction techniques that aggregate the kernel adaptive anisotropic 
windowing with the projections onto convex sets to enforce the consistency and robustness 
of the overall iterative SSP estimators. We also show how the proposed DYED 
regularization method may be considered as a generalization of the MVDR, APES and 
other high-resolution nonparametric adaptive radar sensing techniques. A family of the 
DYED-related algorithms is constructed and their effectiveness is finally illustrated via 
numerical simulations. 

Keywords: adaptive sensing; experiment design; radar imaging; sensor system; spatial 
spectrum pattern (SSP); synthetic aperture radar (SAR); regularization; variational analysis 
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Acronyms 

AF   Ambiguity function 
ASF   Adaptive spatial filtering 
DEED   Descriptive experiment design 
DYED  Dynamic experiment design 
EO  Equation of observation 
ML  Maximum likelihood 
MSF  Matched spatial filtering 
PDE  Partial differential equation 
POCS  Projections onto convex sets 
PSF  Point spread function  
RASF  Robust ASF 
RS  Remote sensing 
SAR  Synthetic aperture radar 
SFO  Signal formation operator 
SSP  Spatial spectrum pattern 
STAP  Space-time adaptive processing 
VA  Variational analysis 
WO  Window operator 

1. Introduction 

Space-time adaptive processing (STAP) for high-resolution radar imaging with sensor arrays and 
synthetic aperture radar (SAR) systems has been an active research area in the environmental remote 
sensing (RS) field for several decades, and many sophisticated techniques are now available (see 
among others [1-4] and the references therein). The problem of radar/SAR imaging can be formalized 
in terms of nonlinear inverse problems of nonparametric estimation of the power spatial spectrum 
pattern (SSP) of the random wavefield scattered from the remotely sensed scene observed through a 
kernel signal formation operator (SFO) with the kernel structure specified by the employed radar/SAR 
signal modulation and contaminated with random Gaussian observation noise [1,2,5]. Thus, formally, 
the RS imaging problem falls into a category of stochastic ill-posed nonlinear inverse problems. The 
simplest radar/SAR-oriented robust approach to such the problem implies application of a method 
known as “matched spatial filtering” (MSF) to process the recorded data signals [1-3]. Stated  
formally [2,3] the MSF method implies application of the adjoint SFO to the recorded data, squared 
detection of the filter outputs and their averaging over the actually recorded samples (snapshots) [1] of 
the independent data observations. One of the challenging aspects of the array radar/SAR imaging 
relates to development of high-resolution efficient consistent STAP techniques applicable to the 
scenarios with low number of recorded array snapshots (one snapshot data vector as a limiting case) or 
only one recorded realization of the trajectory data signal in a SAR system. In both cases, the data 
sample covariance matrix is rank deficient (rank-1 in the single look SAR case), and none of the 
conventional nonparametric beamformers [6-9], nor the maximum likelihood (ML) related  
high-resolution STAP techniques [1,4,7-11] are able to produce consistent SSP estimates. Moreover, 
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speckle noise and possible array/SAR calibration errors constitute additional multiplicative sources of 
data degradations that inevitably aggravate the problem inconsistency resulting in the heavily distorted 
speckle-corrupted scene images. In addition, because the real-world RS scenes are implicitly 
associated with distributed inhomogeneous fields (i.e., not composed of a small number of point-type 
targets), none of the recently developed sparsity-based techniques such as independent component 
analysis [12], principal component analysis [13] or kernel independent component analysis [14] are 
able to cope with such type of ill-conditioned RS imaging problems. To alleviate the inconsistency 
(and to perform adaptive image despeckling [5,15]), another group of the variational analysis (VA) 
related methods that fall into the category of the so-called “blind” or “model-free” image enhancement 
approaches have recently been adapted to RS image enhancement, e.g., [16-20] but without their 
aggregation with the resolution enhancing “model-based” nonparametric regularized imaging 
techniques [21-24]. 

Another possible way to alleviate the ill-posedness of the nonlinear radar/SAR imaging problems is 
to incorporate a priori model considerations regarding the desired geometrical scene image properties 
into the STAP procedures via performing randomization of the SSP model and application of  
the Bayesian minimum risk (MR) or maximum a posteriori probability (MAP) nonparametric  
adaptive spatial spectral estimation strategies [3,21]. Unfortunately, such approaches lead to the 
nondeterministic polynomial-type (NP) hard computational procedures [21], and hence result in 
technically unrealizable SSP estimators. An alternative way that we propose and describe in this study 
is to incorporate (as the second dynamic regularization level) the anisotropic kernel window operator 
(WO) into the overall descriptively regularized ML-based iterative adaptive SSP estimator and 
perform projections onto convex sets (POCS) that ensure the consistency and at the same time enforce 
the convergence of the resulting doubly regularized adaptive iterative imaging procedures. First, we 
adapt the most prominent recently proposed nonparametric ML inspired amplitude and phase 
estimation (APES) method (ML-APES method) [24] to the imaging problem at hand following the 
descriptive experiment design (DEED) regularization paradigm [25,26]. Second, to transform the 
DEED-optimized adaptive nonlinear imaging technique into the iterative convergent procedure the 
POCS regularization is employed. To guarantee the consistency, the anisotropic kernel WO is 
incorporated into the composed POCS operator adjusted to the metrical properties of the desired 
images in the Sobolev-type solution (image) space. Thus, the “model-free” variational analysis  
(VA)-based image enhancement approach [16-20] and the “model-based” descriptive experiment 
design (DEED) regularization paradigm [25,26] are unified into a new dynamic experiment design 
(DYED) regularization framework. Application of the proposed DYED framework to the high-resolution 
array radar/SAR imaging problems leads to a class of two-level (DEED-VA) regularized SSP 
reconstruction techniques that aggregate the anisotropic kernel adaptive dynamic processing with 
projections onto convex sets to enforce the consistency and convergence of the overall iterative SSP 
estimators. We also show how the proposed DYED regularization approach may be considered as a 
generalization of the APES [24], and some other novel high-resolution “model-based” nonparametric 
radar imaging techniques [15,27], on one hand, and the VA-related anisotropic diffusion [16,18], 
selective anisotropic information fusion [20] and other nonparametric “model-free” robust adaptive 
beamforming based image enhancement approaches [28-33], on the other hand. 
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The reminder of the paper is organized as follows. In Section 2, we provide the formalism of the 
radar/SAR inverse imaging problem at hand with necessary experiment design considerations. In 
Section 3, we compare the ML-APES approach with the DEED-related family of the SSP estimators. 
The performance guarantees are conceptualized in Section 4. An extension of the VA-based dynamic 
POCS regularization unified with the DEED paradigm that results in a new proposed DYED 
framework is addressed in Section 5 followed by some illustrative simulations and discussion in 
Sections 6 and conclusions in Section 7, respectively. 

2. Background 

The general mathematical formalism of the problem at hand and the DEED regularization 
framework that we employ in this paper are similar in notation and structure to that described  
in [10,11,25,34] and some crucial elements are repeated for convenience to the reader. 

2.1. Problem Formalism 

In a general continuous-form (functional) formalism, a random temporal-spatial realization of the 
data field, u, is considered to be created by some continuous distribution of the far-distant 
radiation/scattering sources e as plane or spherical wavefronts, which sweep across the radar sensor 
array (moving antenna in the case of SAR). These fields satisfy an operator-form linear stochastic 
equation (the so-called equation of observation (EO) [10,21]): 

( ) ( ( ))( ) ( ); ( ) ( ); ( ), ( ) ( )u e n e R u n P= + ∈ ∈p r p p r p pS E U  (1) 

where p = (t, ρ) defines the time (t)—space (ρ) points in the temporal-spatial observation domain  
p ∈ P =T× P (t ∈ T, ρ ∈ Ρ) (in the SAR case, ρ = ρ(t) specifies the carrier trajectory, i.e., the array is 
composed of the moving antenna); e(r) represents the random scene reflectivity over the probing 
surface; r is a vector of the scan parameters, usually the polar, cylindrical or Cartesian coordinates of 
the probing surface R; n corresponds to the additive noise field, and the linear kernel SFO 

: ( ) ( )R P→S E U  defines a mapping of the source signal space ( )RE  onto the observation signal space 
( )PU . The metrics structures in the corresponding Hilbert signal spaces ( )PU  and ( )RE  are imposed 

by scalar (inner) products: 

[ , '] ( ) '*( ) , [ , '] ( ) '*( )
P R

u u u u d e e e e d= =∫ ∫p p p r r rU E  (2) 

respectively, where asterisk stand for complex conjugate. In the conventional integral form, EO (1) 
may be rewritten as: 

( ) ( , ) ( ) ( ),
R

u S e d n= +∫p p r r r p  (3) 

where S(p, r) = S(t, ρ; r) represents the functional kernel of the SFO referred to as the unit  
signal [10,34] determined by the time-space modulation employed in a particular RS system, and the 
scene domain R specifies the bounded SFO support. For explicit definitions of the unit signals for array 
radar systems we refer readers to to [7], (Sec. 6, [21]) and for imaging SAR systems to [4,22],  
(Sec. 5, [11]) and (Sec. 6, [26]). 
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It is convenient in the RS applications to assume that due to the integral signal formation model (3), 
the central limit theorem conditions hold [3,23,34,35], hence the fields e, n, u in (1), (3) are considered 
to be the zero-mean complex-valued random Gaussian fields. Next, since in all RS applications the 
regions of high correlation of e(r) are always small in comparison with the resolution element on the 
probing scene [3,10,11,34], the signals e(r) scattered from different directions r, 'r ∈ R are assumed to 
be uncorrelated, i.e., characterized by the correlation function: 

*( , ') ( ) ( ') ( ) ( '); , 'eR e e b Rδ= = − ∈r r r r r r r r r  (4) 

where ( )δ ⋅  defines the delta function and ⋅  is the averaging (expectation) operator. The average 

*( ) ( ) ( ) | ( ) | ;b e e e R= = ∈2r r r r r  (5) 

of the square modules of the random scattering field e(r) as a function over the analysis domain (scene 
frame) R∋ r has a statistical meaning of the average power scattering function and is traditionally 
referred to (in the RS and radar imaging literature, e.g., [1,4,31,32,34], etc.) as the SSP of the scattered 
field. Representing the spatial distribution of the average power of the random scatterers, the SSP b(r) 
characterizes in an explicit statistical sense the brightness reflectivity of the scene being mapped (for 
this reason, b is adopted in the notations as an abbreviation from brightness reflectivity). The estimate 
( )b̂ r of the SSP formed using some statistically grounded method is associated with the scene image to 

be formed via processing the recorded data observations. 

2.2. Experiment Design Considerations 

The formulation of the data discretization and sampling in this paper follows the experiment design 
formalism given in [10,23,30,34] that enables one to generalize the finite-dimensional approximations 
of Equations (1,3) independent of the particular system configuration and the method of data 
measurements and recordings employed. Following [10,34], consider the sensor array (synthesized 
array) specified by a set of distanced in space (i.e., orthogonal) tapering functions *{ ( ); 1,..., }l l Lκ =ρ  (in 
the SAR case, the *{ ( )}lκ ρ  are synthesized by the moving antenna over L spatial recordings [4,34]). 
Consider next, that the output signals in such spatially distributed measurement channel are then 
converted to I samples at the outputs of identical temporal sampling filters defined by their impulse 
response functions { ( ) 1 }*

iv t ; i ,...,I=  where complex conjugate is taken for notational convenience. 
Without loss of generality [2-4,10,21,34], the sets { }lκ  and { }iv  are assumed to be orthonormal (e.g., 
via proper filter design and sensor antenna calibration [4,10]). The composition {hm(p) = κl(ρ)vi(t); 

( ), 1,..., }m l i L I M= = × =  ordered by multi-index m = (l, i) composes a set of the orthonormal  
spatial-temporal decomposition functions (base functions) that explicitly determine the vector  
of outcomes: 

[ ], ( ) ( ) ; 1,...,m m mm
P

vec u u h u h d m M∗⎧ ⎫
= = = =⎨ ⎬

⎩ ⎭
∫u p p p

U  (6) 

of such an M-dimensional (M-D in our notation) data recording channel, in which the employed base 
functions {hm(p)} span the relevant M-D data representation subspace ( )MU = ( )MPU U = Span(M){hm(p)} 
specifying the corresponding projection operator ( )MUP  defined by Equation (6). 
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In analogy to Equation (6), one can define now the K-D vector-form approximation of the scene 
random scattering field: 

[ ], ( ) ( ) ; 1,...,k k kk
R

vec e e g e g d k K∗⎧ ⎫
= = = =⎨ ⎬

⎩ ⎭
∫e r r r

E
 (7) 

with the elements composed of the decomposition coefficients {ek} with respect to some chosen 
normalized set of expansion functions {gk(r)} that span such K-D source signal subspace 

( ) ( )K K= EE EP = Span(K){gk(r)} specifying the corresponding projector ( )KEP . Note, that to satisfy the 
observability requirement [2,21], it is desirable (but not mandatory in the super-resolution  
case [22,24]) that these basis functions be properly adjusted in such a way that ( )KPE  defines  
a projector onto the M-D orthogonal complement to the null-space [2] of the degenerate  
(projection-dependent) SFO ( )MUP S  for any given/chosen ( )MUP  so that the observations (6) contain 
information of the observable M-D signal projection specified by Equation (7), i.e., K ≤ M . The reader 
is referred to [2,10,21,22,24,25,34] for the mathematical and signal processing details related to the 
construction of such feasible projectors ( )MUP  and ( )KEP . In this paper we adopt the technically 
inspired fine representation basis formed by a Kx×Ky regular pixel-formatted lattice with unitary pixel 
amplitudes and the spacing between lattice points normalized to one pixel width [2,25,34] where  
Kx defines the dimension of the rectangular pixel grid over the horizontal (azimuth) coordinate x and  
Ky defines its dimension over the orthogonal (range) coordinate y in the scene frame. Note that  
such rectangular pixel frame {pixk(r)} specified by the ordered multi-index k = (kx, ky); kx= 1,.., Kx;  
ky= 1,.., Ky; k = 1,…, K = Kx × Ky is practically motivated in a majority of RS imaging  
applications [1,3-11,18,26,34,37], etc, because the ordinary pixels coincide with their squares 

( ) ( )2{pix pix }k k=r r  which makes the same pixel grid {gk(r) = pixk(r)} applicable for fine  
discrete-form representation of both the complex scattering function e(r) and the SSP b(r) 
approximating for large Kx, Ky the continuous scene framing [2]. 

With the specified decompositions (6), (7), the discrete (vector-form) approximation of the 
continuous-form EO (1), (3) is given by: 

,= +u Se n  (8) 

where the u, n and e define the vectors composed of the decomposition coefficients um, nm and ek of 
the finite-dimensional (truncated) approximations of the fields u, n and e defined by the scalar products 
(6), (7), and S represents the matrix-form approximation of the SFO S  with elements [21]: 

[ ], ( , ) ( ) ( ) ; 1,..., ; 1,...,  .mk k m k m
R P

S g h S g h d d k K m M∗

×

⎧ ⎫
= = = =⎨ ⎬

⎩ ⎭
∫∫ p r r p r p

U
S  (9) 

Zero-mean Gaussian vectors e, n, and u in Equation (8) are characterized by the correlation matrices 
Re, Rn, and: 

Ru = SReS+ + Rn = SD(b)S+ + Rn (10) 

respectively, with the diagonal-form Re = D(b) = diag(b), in which the K × 1 vector b of the principal 
diagonal is composed of elements bk = k ke e∗  and the superscript + defines the Hermitian conjugate 
when stands with a matrix (or a vector). The vector b is referred to as a vector-form representation of 
the SSP, i.e., the SSP vector. 
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The nonlinear inverse problem of radar/SAR imaging with the discrete-form measurement data (8) 
is formulated now as follows: to derive an estimator for the SSP vector b and use it to reconstruct the 
SSP distribution: 

 
(11) 

over the pixel-formatted observation frame R ∋ r (referred to as the scene image) by processing the 
recorded data u (in the operational scenario with the single processed data realization, e.g., SAR 
system) or J > 1 whatever available independent realizations {u(j); j = 1,.., J} (e.g., in a multiple 
snapshot scenario [5,15]) collected with a particular imaging radar/SAR system. Recall that in this 
paper we intend to develop and follow a new DYED framework to derive such the estimator  
est{⋅} (11) that unifies the previously proposed DEED regularization with the VA dynamic image 
enhancement approach. 

2.3. Conventional Kernel Spectral Estimator 

We, first, recall the conventional continuous-form kernel estimator [2,21] that is an MSF-based 
extension of the periodogram smoothing spectral analysis technique [36,37]. With such the method, 
the SSP estimate ˆ( )b r  is derived from only one random observation (realization) of the data field u(p) 
as the generalized periodogram (the so-called sufficient statistics [21]) formed as a squared modulus of 
the MSF output | ( )( )u+ rS |2 smoothed by the kernel window operator (WO) W  (i.e., pseudo 
averaged): 

2

2 *ˆ( ) | ( )( ) | ( ) ( , ) ( ) ,
R P

b u W S u d d+ ′ ′ ′= = −∫ ∫r r r r r p p p rW�S  (12) 

where W(r) is the functional kernel of the WO W , and *( , )S ′r p  represents the functional kernel of 
the MSF operator +S , that is, the adjoint SFO. Here, superscript + stands for the adjoint operator in 
the relevant signal spaces. In the Hilbert signal spaces introduced above, the MSF operator +S  adjoint 
to the SFO S  is defined via corresponding inner products (2) as follows, [ , ] [ , ]e u e u+ =S SE U . For a 
detailed analysis of this method and the corresponding synthesis of different windows with special 
scaling and smoothing properties we refer to [36]. Note that in a classical case of an isotropic kernel 
WO, the Equation (12) relates to a category of low-resolution kernel-type SSP estimators.  

3. Related Work 

3.1. ML-Based Approach 

In this Section, we extend the recently proposed high-resolution maximum likelihood-based 
amplitude phase estimator (ML-APES) [24] to the SSP estimation problem at hand via its modification 
adapted to the distributed RS scene (not composed of sparse multiple point-type targets as originated  
in [24]). In the considered low snapshot sample case (e.g., one recorded SAR trajectory data signal), 
the sample data covariance matrix Y = ( ) ( )1

(1/ ) J
j jj

J +
=∑ u u  is rank deficient (rank-1 in the single radar 

snapshot and single look SAR cases, J = 1). As it is shown in [24], minimization of the negative 
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likelihood function 1lndet{ }+tr{ }−
u uR R Y with respect to the SSP vector b related to Ru = Ru(b) via 

Equation (10) is equivalent to minimizing the covariance fitting Stein’s loss, 1 1lndet{ } tr{ }− −− +u uR Y R Y . 

The solution to such minimization problem found in [24] results in the solution-dependent ML-APES 
estimator ([24], Equation (32)): 

1 1

1 2
ˆ

( )
k k

k
k k

b
+ − −

+ −= u u

u

s R YR s
s R s

; k = 1,…, K. (13) 

In the APES terminology (as well as in the minimum variance distortionless response  
(MVDR) [9,33] and other ML-related approaches [23,35], etc.), ks  represents the so-called steering 
vector in the kth look direction, which in our notational conventions is essentially the kth column 
vector of the SFO matrix S. By the authors’ design [24], the numerical implementation of the  
ML-APES algorithm (13) assumes application of an iterative fixed-point technique by building the 
model-based estimate of the unknown covariance Ru modeled by Equation (10) from the 
latest (ith) iterative SSP estimate [ ]

ˆ
ib  with the zero step initialization  computed applying 

the conventional MSF estimator. 
Let us adapt the algorithm (13) to the considered here single snapshot/single look case (J = 1) 

substituting Y by +uu , taking into account the properties of the convergent MVDR estimates of the 
SSP, which in a coordinate/pixel form are given by 1ˆ 1/k k kb + −≈ us R s  (also referred to as properties of a 
conventional Capon beamformer [9,24]), and making the use of a fixed-point nature of the algorithm 
(13) according to which the ML-APES estimates in the vector form ˆˆ { ; 1,..., }kk

vec b k K= =b  are to be 
found as a numerical solution to the nonlinear matrix-vector equation: 

 
(14) 

with the solution-dependent: 

 (15) 

where operator {⋅}diag returns the vector of a principal diagonal of the embraced matrix. Specifying the 
ML-APES matrix-form solution operator (SO): 

 (16) 

we next represent the estimate (14) in a more compact format: 

 
(17) 

where  defines the Shur-Hadamar (element vise) vector/matrix product. The algorithmic structure of 
the nonlinear (i.e., solution-dependent) ML-APES estimator (17) guarantees positivity, but does not 
guarantee the consistency. Next, convergence enforcing regularization via performing projections onto 
convex solution sets (POCS) at each iteration step should be incorporated into the overall fixed-point 
iterative scheme for solving Equations (14,17) to guarantee the convergence in the considered here 
deficient-rank case. We defer the analysis of the consistency and convergence issues, as well as the 
POCS regularization with the relevant modifications of Equations (14,17) to the next Section 
proceeding now with the analysis of an alternative high-resolution SSP estimation approach based on 
the DEED regularization. 
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3.2. DEED Regularization Framework 

The DEED regularization framework proposed and developed in [25,26,30,34] can be viewed as a 
problem-oriented formalization of the requirements to the signal/image processing/post-processing  
co-design aimed at satisfying the desirable properties of the reconstructed RS images, namely:  
(i) maximization of spatial resolution balanced with noise suppression, (ii) consistency, (iii) positivity, 
(iv) continuity and agreement with the data [2,25,34]. Within the general DEED framework [25,34], all 
these aspects are formalized via the design of balanced resolution-enhancement-over-noise-suppression 
SSP estimation techniques unified with the POCS regularization. Such unification-balancing is 
descriptive in the sense that the user/observer can induce the desirable metrics (geometrical) structures 
in the image/solution space, and next, specify the type, the order and the amount of the employed 
regularization via constructing the related resolution-enhancement-over-noise-suppression performance 
measures with adjustable balancing factors (regularization parameters). Different feasible assignments 
of such user-controllable “degrees of freedom” specify a family of the DEED-related techniques. For a 
detailed formalism of the DEED method we refer to [25,30] and for its implementation in a family of 
fixed-point iterative techniques to [26,34]. Here we provide a modification of the original DEED 
method [25,26] (in terms related to the presented above ML-APES strategy) to adapt it for the dynamic 
experiment design (DYED) regularization framework that we next develop in Section 5. 

The DEED-optimal SSP estimate b̂  is to be found as the POCS-regularized solution to the 
nonlinear equation [26]: 

DEED DEED DEED diag
ˆ { }+ +=b F uu F�P  (18) 

where DEEDF  represents the adaptive (i.e., dependent on the SSP estimate b̂ ) matrix-form DEED 
solution operator and P  is the POCS regularization operator. Two fundamental issues constitute the 
benchmarks of the modified DEED estimator (18) that distinguish it from both the kernel algorithm (12) 
and the ML-APES method (17). First, the strategy for determining the DEED solution operator DEEDF  
in Equation (18) is reformulated in the minimum risk (MR)-inspired worst case statistical performance 
(WCSP) optimization setting [9,25] to provide robustness of the SSP vector estimates against possible 
model uncertainties, in particular, possible random distortions SΔ  in the perturbed SFO matrix 
= + SS S Δ  that result in multiplicative noise occurring in practical RS scenarios due to calibration 

errors and speckle noising effect [25,31,34]. The second issue relates to the problem-oriented  
co-design of the POCS regularization operator P  in Equation (18). Such co-design (that we perform 
in the next Section) is aimed at satisfying some intrinsic and desirable properties of the solution such 
as positivity, consistency, model agreement (e.g., despeckling with edge preservation), and 
convergence [2,37]. 

Following the DEED framework [25], the strategy for deriving the optimal SO DEEDF  is formalized 
by the MR-WCSP optimization problem: 

2DEED arg min max
η≤

=
S

F Δ
F {ℜ (F)} (19) 

in which: 

ℜ (F) =tr{ ( ) ( ) } αtr{ }+ +− − + nFS I A FS I FR F  (20) 
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represents the DEED objective function where the averaging in the first term (systematic risk 
component) is performed over the randomness of the distorted SFO = + SS S Δ  with the uncertainty 
conditioned by the statistical bound 2 tr{ } η+= ≤S S SΔ Δ Δ . The regularization parameter α and the 
invertible weight matrix A constitute the user controllable/adjustable “degrees of freedom”: α is 
viewed as a tolerance factor that balances the systematic risk component (specified by the first term in 
ℜ (F)) and the fluctuation risk component (specified by the second term in ℜ (F)) in the composite risk 
objective function (20), while A induces the weighted metrics structure in the systematic risk 
tr{ ( ) ( ) }+− −FS I A FS I  that measures “how far” is the DEED-optimal SO from the pseudo inverse 
to the uncertain SFO S  in the averaged operator metrics induced by the employed weight matrix A. 
The solution to the conditioned optimization problem Equation (19) derived in the previous  
study [25,34] yields the DEED-optimal SO: 

(2) 1
DEED ,+ −

Σ= =F F KS R  (21) 

where ( ) 11 1α
−+ − −

Σ= +K S R S A  defines the so-called reconstruction operator (with the regularization 
parameter α and stabilizer 1−A ), and 1−

ΣR  is the inverse of the diagonal loaded noise correlation  
matrix [34], (β) βΣ Σ= = +nR R R I . In the practical RS scenarios (and specifically, in all SAR imaging 
applications [1,3-7,25,32,34], etc., it is a common practice to adopt the robust white additive noise 
model, i.e., Rn = N0I, attributing the unknown correlated noise component as well as the speckle to the 
composite uncertain noise term, +SΔ e n , in which case [25,34]: 

0; βN N NΣ Σ Σ= = +R I  (22) 

with the composite noise power 0N NΣ = +β , the additive observation noise power N0 augmented by 
the loading factor β = γη/α ≥ 0 adjusted to the regularization parameter α, the Loewner SFO ordering 
factor γ > 0 of the SFO S and the uncertainty bound η imposed by the conditional maximization in 
Equation (19) (see [25,34] for details). For these assumptions, the robust DEED-related SO becomes: 

( ) 1(3) 1
DEED α ,N

−− + +
Σ= = + =F F Ψ A S KS  (23) 

i.e., a composition of the MSF operator S+ and the self adjoint reconstruction operator 
( ) 11αN

−−
Σ= +K Ψ A recognized to be the regularized inverse of the discrete-form ambiguity function 

(AF) matrix operator: 

,+=Ψ S S  (24) 

with the type and amount of regularization specified by the DEED degrees of freedom, A and  
α, respectively. 

Putting (2)F , (3)F  in Equation (18) results in two POCS-regularized DEED-related SSP estimators 
that produce the SSP estimates defined as (2)b̂  and (3)b̂ , respectively. Note that other feasible 
adjustments of the processing level degrees of freedom {α, NΣ, A} summarized in [26,34] for the robust 
RS adopted model (22) of the correlation matrix ΣR  specify the family of relevant POCS-regularized 
DEED-related (DEED-POCS) techniques (18) represented in the general form as follows: 

 (25) 
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where: 
Q = S+uu+S (26) 

defines the measurement statistics matrix independent on the solution b̂ , and different reconstruction 
operators {K(p); p = 1,…,P} specified for different feasible assignments to {α, NΣ, A} define the 
corresponding DEED-POCS estimators (25) with the relevant SOs’ {F(p) = K(p)S+; p = 1,…,P}. 

3.3. Relationship between DEED and ML-APES 

The relationship between two high-resolution SSP estimators, the ML-APES (17) and the  
DEED-POCS (18), can now be established using the second equivalent form for representing the  
SO (16) given by (Appendix B, [21]): 

 
(27) 

which coincides with (2)
DEED =F F  specified by Equation (21) for the simplified scenario of completely 

certain SFO ( SΔ = 0), thus, 0NΣ = =nR R I  in (22). Due to such structural algorithmic similarity, the 
DEED method (18) can be addressed as a regularized robust version of the APES approach (17) 
adapted to the uncertain RS scenarios. 

4. Performance Guarantees 

4.1. Consistency Guarantees 

Following the DEED-POCS regularization formalism [26,34], the POCS-level regularization 
operator P  in Equation (18) could have a composite structure, i.e., could be constructed as a 
composition of operators/projectors conditioned by non-trivial prior information that formalizes some 
desirable properties of the solution, e.g., positivity, consistency, etc. We specify such RS-adapted 
composite regularization in Section 4.4. In this Section, we are going to establish that to guarantee the 
consistency of the DEED-related estimator(s) (18), (25) the P  should incorporate a kernel-type WO 
W  (not necessarily isotropic) as a necessary requirement. To verify this consistency guarantee, we 
limit ourselves here with the relevant simplest regularization operator model, P =W . Analysis of the 
consistency requires the hypothetical continuous asymptotes, ( )lim KK→∞

=EP I , ( )lim MM →∞
=UP I , the 

identity operators. Adopting these assumptions and white observation noise model, the DEED 
estimator given by Equation (25) can be expressed in the following generalized continuous functional 
form: 

2

2ˆ( ) | ( )( ) | ( ) ( ; ) ( ) ,
R P

b u W F u d d′ ′ ′= = −∫ ∫r r r r r p p p rW�F  (28) 

where W(r) is the functional kernel of the WO W , and ( ; )F r p  represents the functional kernel of the 
continuous-form DEED-optimal SO +=F KS , a composition of the MSF operator +S  and the 
DEED-optimal reconstruction operator K  given by the continuous-form assymptotic to (23) (subscript 
DEED is omitted to simplify the notations). To analyze the consistency of the estimator (28), one should 
consider the large measure [2] of the observation domain, M = mes P. For the hypothetical asymptotes, 
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M→ ∞ , NΣ→ 0 the operator composition +=FS KS S  tends to the identity operator [2], in which 

case, the estimator (28) produces the degraded (smoothed by the WO) estimate of the SSP with the 
asymptotic bias || b – ˆlim b

→∞
< >M

M
||2 = ||(I –W )b ||2 where || b ||2 =[ , ] ( ) *( )

P

b b b b d= ∫2
r r rL  defines the 

conventional (Lebesgue) squared norm in the 2L  Hilbert space, and subscript M  indicates the 

measure of the observation domain for which the relevant estimate has been obtained. The ratio of the 
average fluctuation noise energy in the estimate (28) to the average fluctuation noise energy in the 
high-resolution sufficient statistics (SS), 2( ) | ( ; ) ( ) |

P

v v F u d= = ∫r r p p pM M M , is evaluated as follows: 

ξ
2

2

|| || tr{ } ,
tr{ }|| ||

v v

v v

+−
= =

−

W W WC W
C

M M M

MM M

(M)  (29) 

where CM  defines the covariance operator of the SS, ( )v rM , i.e., the linear integral operator with the 
functional kernel cov{ ( ) ( )v v ′r rM M } = ( ) ( )v v ′r rM M − ( ) ( )v v ′r rM M . In the limiting case, M→ ∞, 
statistics ( )v rM  becomes δ - correlated with the variance b2(r) [21]. Thus, one can evaluate the 
boundary value of the fluctuation noise ratio (29) as lim

→∞M
ξ(M ) ∼ lim

→∞M
( 1−M tr{ }+WW ). Hence, the 

consistency requirement [36], lim
→∞M

ξ(M ) = 0, is satisfied for any WO W  with the bounded operator 

norm, tr{ }+WW  < ∞ that provides lim
→∞M

( 1−M tr{ }+WW ) = 0, that is for a kernel operator [2]. This 

restricts the class of admissible windows W  in Equation (28) by the kernel operators that in the 
engineering interpretation simply means that feasible windows must be restricted by a class of  
kernel-type filters.  

Remark 1: The APES approach, as well as other ML-based high-resolution SSP estimators [21,24], 
etc., do not imply regularizing windowing at all, i.e., W  = const⋅I  while the identity operator is not 
a kernel operator. Hence, in the uncertain scenarios with rank-deficient data covariance any ML-based 
approach inevitably produces an inconsistent estimate of the SSP. Technically it means that any  
ML-based resolution enhancement attempt should be combined with the relevant kernel windowing 
(not necessarily isotropic linear spatial smoothing) to guarantee the consistency.  

4.2. Iterative Implementation 

The next crucial performance issue relates to construction of convergent iterative scheme for 
efficient computational implementation of the POCS regularized DEED-related estimators. To convert 
such the technique to an iterative procedure we, first, transform the Equation (18) into the equivalent 
equation: 

ˆ{ } { }=DΦ b qP P  (30) 

a numerical solution to which produces the desired SSP estimate b̂ , where {}⋅P  defines application of 
operator P  to the embraced vector quantity, DΦ  is the solution-depended diagonal loaded point 
spread function (PSF) matrix operator: 

 (31) 
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constructed from the diagonal loaded AF matrix (24) via the Shur-Hadamar (element vise) product , 
and vector q represents the measurement statics vector 

q = {Q}diag = {S+YS}diag, (32) 

formed from the sampled data matrix Y (Y = uu+ in the considered above rank-1 data covariance 
matrix case) applying the MSF SO S+; i.e., the q given by Equation (32) defines the low-resolution 
image formed by an RS radar or a fractional SAR imaging system that employs the conventional 
matched spatial processing algorithm. Fixing the Equation (30) at iteration [i], i = 1, 2, … , and 
inducing the “contractive mapping” term , yields the progressive contractive mapping 

iterative scheme: 

 
(33) 

with the zero-step iteration [ ]0
ˆ =b q  defined by Equation (32), in which the relaxation parameter τ and 

the regularization operator P  constitute the POCS regularization-level degrees of freedom that should 
be specified to guarantee the contractive mapping of Equation (33), hence, the convergence. 

4.3. Convergence Guarantees 

Following the POCS regularization formalism [2,26], the regularization operator P  could be 
constructed as a composition of projectors nP  onto convex sets nC ; n = 1,…, N with not empty 
intersection. Then for the composition of the relaxed projectors: 

( ),n n n= − −P I P Iλ λ  (34) 

with the “speeding-up” regularization parameters {λj}, the general-form POCS-regularized fixed-point 
iteration rule becomes: 

 
(35) 

and it is guaranteed to converge to a point in the intersection of the sets { nC } provided 0 < λn < 2 for 
all n in any order regardless of the initialization [ ]0b̂  that is a direct sequence of the fundamental 
theorem of POCS (Sec. 15.4.5, [20]) (see also (Sec. 6, [25]) and (Appendix B, [26]). In this study, for 
simplicity, we fix λn = 1 for all n = 1,…, N. Also, any operator that acts in the same convex set  
(e.g., kernel-type WO) can be incorporated into such composite regularization operator P  [2]. Our 
next task is to make the use of the presented convergence enforcing POCS regularization paradigm 
employing some practical imaging radar/SAR-motivated considerations. 

4.4. Resolution Preserving Anisotropic Windowing 

The DEED-POCS framework offers a possibility to design the POCS regularization operator P  in 
such a way that to preserve high spatial resolution performances of the resulting DEED-related 
consistent SSP estimates. Following the VA-based image enhancement approach [16,20], this task 
could be performed via anisotropic image post-processing that in our statement implies anisotropic 
regularizing windowing over the properly constructed convex solution set in the image space. To 
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proceed with the derivation of such a WO, in this paper, we incorporate the prior information on the 
desirable smoothness and geometrical properties of an image and its estimate by constructing the 
vector image/solution space ( )K ∋ bB  as a K-D discrete-form approximation to the corresponding 
function image space ( )RB , in which the initial continuous SSP functions ( ) ,b R∈r r  reside. To 
formalize the geometrical information on the image changes and simultaneously on the image edge 
changes over the scene frame, the metrics structure in ( )RB  must incorporate the image norm as well 
as the image gradient norm [2,3]. This is naturally to perform by adopting the so-called Sobolev 
metrics [21]: 

( ) [ ] ( )2

2 *, ( )( ( , ) ( ) ) ,
R R R R

b b b b M b d d′ ′ ′= = ∫ ∫r r r r r rB LM  (36) 

where ( , )M ′r r  is the functional kernel of the metrics inducing operator M  constructed as  
a composition: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }0 1 0 1 1 1 1 12
x x y ym m m m D D D D+ += + = + +rM I I∇  (37) 

in which ( )1
xD x= ∂ ∂  and ( )1

yD y= ∂ ∂  represent the first order differential operators with respect to the 
spatial variables x and y, respectively, 2

r∇  ( ) ( ) ( ) ( )1 1 1 1
x x y yD D D D+ += +  defines the Laplacian with respect to 

the 2-D space variable r = (x, y), and m(0) and m(1) are the nonnegative real-valued scalars that control 
the balance between two metrics measures in Equation (36). If m(0) = 1, m(1) = 0, then (36) reduces to 
the conventional Lebesgue 2L  metrics in the Hilbert space ( )RB  that does not incorporate 
information on the image derivatives. In the opposite case m(0) = 0, m(1) = 1, the metrics Equation (36) 
transforms into the so-called Dirichlet variational functional [37] that controls only the gradient  
flow [2,37]. In the equibalanced case, m(0) = m(1) = 1, the same importance is assigned to the both 
metrics measures specified by the kernel metrics inducing operator M . Incorporation of such metrics 
inducing operator as the WO into the general DEED-optimal technique (28), i.e., specifying W =M , 
results in the required anisotropic kernel-type windowing because it controls not only the SSP (image) 
discrepancy measure but also its gradient flow over the scene in the Sobolev-type image/solution space 

( ) ( )R b∋ rB . In the next Section we show that due to the gradient-dependent anisotropy, such regularizing  
post-processing is aimed at edge preservation in the scene regions with high gradient contrast while 
performing smoothed windowing over the homogeneous image zones corrupted by speckle. 

To proceed with designing the related WO adapted to the discrete problem model, the relevant 
( )K ∋ bB  as a K-D discrete-form approximation to ( ) ( )R b∋ rB  has to be defined via specifying  

the corresponding metrics 
( )

[ ]2 ,
K
=b b MbB  with the metrics inducing matrix M constructed as a 

matrix-form approximation of M  given by Equation (37). For the adopted pixel-framed discrete 
image representation format {bk = b(kx, ky)}; k = (kx, ky); kx= 1,.., Kx; ky= 1,.., Ky; k = 1,…, K = Kx×Ky} 
this yields the desired metrics: 

( )
[ ] ( )( ) ( ) ( ) ( )

( ) ( )

2
, ,22 (0) (1) 1

4B
, 1 , 1

1, 1,
, , , .

, 1 , 1

x y x y

K
x y x y

K K K K
x y x y

x y x y
k k k k x y y

b k k b k k
m b k k m b k k

b k k b k k= =

⎛ ⎞⎛ ⎞− + +
⎜ ⎟⎜ ⎟= = + −
⎜ ⎟⎜ ⎟+ − + +⎝ ⎠⎝ ⎠

∑ ∑b b Mb (38) 

The second sum on the right hand side of Equation (38) is recognized to be a 4-nearest-neighbors  
difference-form approximation of the Laplacian operator 2

r∇  in Equation (37) [2,16]; hence, it 
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represents the metrics measure of the high frequency spatial components in the discretized SSP that  
corresponds to is gradient variations. From Equation (38) we easily derive the corresponding metrics 
inducing matrix-form operator: 

( ) ( )0 1 2 ,m m= +M I ∇  (39) 

where 2∇  is the numerically approximated Laplacian operator 2
r∇ . Application of such 2∇  to a vector 

b returns the vector 2b∇  with elements defined by the terms in the second sum at the right hand side 
of Equation (38) ordered by multi index {k = (kx, ky) = 1,…, K = Kx × Ky } over the pixel-formatted 2-D 
frame. Also, in all applications below, we adopt the equibalanced metrics structure specifying  
m(0) = m(1) = 1. 

Last, we restrict the solution subspace (the so-called active solution set or correctness set in the 
DEED terminology [25,34]) to the K-D convex set ( )K+ ⊂B B  of SSP vectors with nonnegative 
elements (as power is always nonnegative). This is formalized by specifying the projector +P  onto 
such convex set +B  i.e., the POCS operator (as the positivity operator specifies POCS [2]) that has the 
effect of clipping off all the negative values. The composition: 

2 1,=P PP  (40) 

defines the required composite POCS operator with the regularizing WO  = M and 2 +=P P  
(in the function image space, ( )RB , the continuous-form generalization for the WO is given by  

). 

5. DYED Regularization Framework 

5.1. VA-Bases Dynamic Reconstructive Scheme 

With the model (40), the discrete-form contractive progressive mapping iterative process (33) 
transforms into: 

  i = 0, 1, 2, … (41) 

initialized by the conventional low-resolution MSF image [ ]0
ˆ =b q . Some theoretical generalizations of 

Equation (41) for a hypothetical continuous STAP over the 2-D scene frame ( )R x, y∋ =r  in 
“evolution time” are useful at this point for establishing the asymptotic dynamic adaptive 
reconstructive processing properties of the DEDR-VA approach. 

Associating the iterations i, i+1,… with discrete “evolution time”, i.e., 1 ; ; ,i t t i t tτ+ → +Δ → →Δ  
the Equation (41) can be rewritten in the “evolution” form: 

 
(42) 

with the corresponding dynamic scheme in hypothetical continuous evolution time 
( ;t dt t t t dtΔ → +Δ → + ) being: 

ˆ ( ) ˆ{ ( ) ( )},t t t
t +

∂
= −

∂ D
b Mq MΦ bP  (43) 
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where ˆ ( )t t∂ ∂b  represents the derivate with respect to the evolution time. Considering the continuous 
2-D rectangular scene frame ( )R x, y∋ =r  with the corresponding initial MSF scene image  
q(r) = ˆ( ;0)b r  and the “evolutionary” enhanced SSP estimate ˆ( ; )b tr , respectively, we proceed from 
(43) to the equivalent asymptotic dynamic scheme: 

ˆ

ˆ( ; ) ˆ{ {( ( ))} { ( , ; ) ( , ) }},
b

R

b t q t b t d
t +

∂ ′ ′ ′= − Φ
∂ ∫
r r r r r rP M M  (44) 

where ( )ˆ , ;
b

t′Φ r r  represents the kernel PSF in evolution time t corresponding to the continuous-form 
dynamic generalization of the PSF matrix ΦD[i] in Equation (31), and M  is the metrics inducing 
operator defined by Equation (37). 

Three practically inspired versions of Equation (37) relate to three feasible assignments to the 
operatorM . These are as follows: 

(1) M  = I  specifies the conventional Lebesgue metrics, in which case the evolution process (44) 
does not involve control of the image gradient flow over the scene. 

(2) 2= rM ∇ , i.e., the Laplacian with respect to the space variable r = (x, y) specifies the Dirichlet 
variational metrics inducing operator, in which case, the right-hand side of (44) depends on the 
discrepancy between the corresponding Laplacian edge maps producing anisotropic gain. For short 
evaluation time intervals, such anisotropic gain term induces significant changes dominantly around 
the regions of sharp contrast resulting in edge enhancement [2,16]. 

(3) ( ) ( )0 1 2m m= + rM I ∇  combines the Lebesgue and the Dirichlet metrics, in which case the 
Equation (44) is transformed into the VA dynamic process defined by the partial differential equation 
(PDE): 

(45) 

For the purpose of generality, instead of two metrics balancing coefficients m(0) and m(1) we 
incorporated into the PDE (45) three regularizing factors c0, c1 and c2, respectively, viewed as  
VA-level user-controllable degrees of freedom to compete between smoothing and edge enhancement. 
Although due to the solution-depended nature the dynamic DEED-VA scheme in its continuous PDE 
form (45) cannot be addressed as a practically realizable procedure, the undertaken theoretical 
developments are useful for establishing the relationship between the general-form VA scheme (45) 
and the already existing dynamic image enhancement approaches [16-20]. 

5.2. VA-Relates Approaches 

Different feasible assignments to the processing level degrees of freedom in the PDE (45) specify 
different VA-related procedures. Here beneath we consider the following ones: 

(i) The simplest case relates to the specifications: c0 = 0, c1 = 0, c2 = const = –       c, c > 0, and 
( , ; ) ( )t δ′ ′Φ = −r r r r  with excluded projector +P . In this case, the PDE (45) reduces to the isotropic 

diffusion (so-called heat diffusion [16]) equation  with constant (isotropic) 
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conduction factor c. We reject the isotropic diffusion for the purposes of radar/SAR image processing 
because of its resolution deteriorating nature. 

(ii) The previous assignments but with the anisotropic factor, − c2 = c(r; t) ≥ 0 specified as  
a monotonically decreasing function of the magnitude of the image gradient distribution, i.e., a 
function ˆ( ,| ( ; ) |)c b t∇rr r ≥ 0, transforms the Equation (45) into the celebrated Perona-Malik 
anisotropic diffusion method [16,18] Because the “model-free” 
assignment ( , ; ) ( )t δ′ ′Φ = −r r r r  excludes the “model-based” (DEED regularization-based) SSP 
reconstruction, the anisotropic diffusion provides only partial despeckling of the homogeneous regions 
on the low-resolution MSF images preserving their edge maps. 

(iii) For the Lebesgue metrics specification c0 = 1 with c1 = c2 = 0, the PDE (45) involves only the 
first term at its right hand side. This case leads to the locally selective robust adaptive spatial filtering 
(RASF) approach investigated in details in our previous studies [25,34], where it was established that 
such the method provides satisfactory compromise between the resolution enhancement and noise 
suppression but suffers from low convergence rate. 

(iv) The alternative assignments c0 = 0 with c1 = c2 = 1 combine the isotropic diffusion with the 
anisotropic gain controlled by the Laplacian edge map. This approach addressed in [19,20] as a 
selective information fusion method manifests almost the same performances as the RASF method. 

(v) The VA-based approach that we address here as the DEED-VA-fused DYED method involves 
all three terms at the right hand side of the PDE (45) with the equibalanced weights, c0 = c1 = c2 = const 
(one for simplicity), hence, it combines the isotropic diffusion (specified by the second term at the 
right hand side of Equation (45)) with the composite anisotropic gain dependent both on the evolution 
of the synthesized SSP frame and its Laplacian edge map. This produces a balanced compromise 
between the anisotropic reconstruction-fusion and locally selective image despeckling with edge 
preservation. 

5.3. Numerical DEED-VA-Technique 

The discrete-form approximation of the PDE (45) in “iterative time” {i = 0, 1, 2, …} yields the 
iterative numerical procedure: 

 
(46)

with the same MSF initialization [ ]0
ˆ =b q , where we have attributed the relaxation parameter τ to the 

corresponding VA regularization factors, for simplicity. The numerical Laplacian 2{}⋅∇  applied to the 
embraces quantity is defined by the 4-nearest-neighbors difference-form approximation of the 
continuous Laplacian operator 2

r∇  specified by the terms in the second sum on the right hand side of 
Equation (38). Different feasible assignments to these degrees of freedom specify different related 
reconstruction techniques exemplified in the previous section, namely: isotropic diffusion, anisotropic 
diffusion, locally selective DEED-based reconstruction, and selective anisotropic reconstruction 
techniques. In particular, our DEED-VA-fused DYED method coincides with the previously developed 
conventional DEED regularization technique [26] in the case when no VA inspired discrepancy terms 
are adopted, i.e., patting c1 = c2 = 0 in Equation (46). In contrary, the extended DEED-VA approach 
combines the VA-based isotropic diffusion with the anisotropic DEED reconstruction in a balanced 
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fashion incorporating also the convergence enforcing POCS regularization. This not only speeds up the 
iterative process but provides perceptually enhanced imaging results as we illustrate in the comparative 
simulations presented in the next Section. 

Remark 2: With the performed extension of the DEED regularization method into the unified 
DEED-VA framework, the warnings about the dynamic process (46) being ill conditioned do not 
apply, since the purpose of the two-level regularization (the DEED level and the VA level) is aimed at 
curing that same ill conditioning providing the POCS-regularized iterative DYED technique (46) 
converges to a point in the specified convex solution set +B . Nevertheless (as it is frequently observed 
with nonlinear iterative processes [2,36,37]) such nonlinear iterative procedure (46) may suffer from 
some numerical instabilities demonstrating only local convergence. 

6. Numerical Simulations and Discussion 

6.1. Simulation Experiment Specifications 

In the simulation experiment, we considered a fractional SAR as a sensor system, analogous to a 
single look fraction of a multi look focused SAR [4,5,26,31]. The resolution properties of such the RS 
imaging system that employs the conventional MSF processing are explicitly characterized by the AF 
of the unit signal S(t, ρ; r) given by the composition [4,5,26]: 

( ) ( ) ( ), .r aCΨΨ Δ Δ = Ψ Δ Ψ Δτ θ τ θ  (47) 

Here Ψa(Δθ) represents the azimuth AF over the azimuth angular spacing coordinate  
Δθ = arctan(Δx/rs) related to the cross-range spacing Δx = x x′−  between two scatterers at the 
particular slant range rs ; Ψr(Δτ) represents the range AF of the probe pulse signals as a function of the 
time delay variable Δτ = 2Δrs /c related to the corresponding displacement Δrs = s sr r′−  of the scatterers 
along the slant range directions explicitly specified by the pulse modulation employed [4,26], c is the 
speed of light, and CΨ is a normalizing constant, not essential in the simulations [26]. To benefit from 
the range-angular AF factorization (47), the MSF images can be originally formed in the slant range 
planes (rs, θ) and then projected to the ground scene (x, y) = r∈R with the corresponding pixel spacing. 
For the Gaussian antenna tapering function [26], the related azimuth PSF Φa(Δx) expressed over the 
Cartesian coordinate x in the ground scene plane R is given by [26]: 

( ) ( ) ( ) ( )( )22 2
0

22 2 ,s ax r L
a ax x e π λ− ΔΦ Δ = Ψ Δ ≈  (48) 

where λ0 is the wavelength of the radar signal transmitted, and La is the effective (fractional) 
synthesized aperture maxa aL Lψ= , a fraction aψ  of the maximum focused synthesized antenna length 

max 0 s AL r Lλ≈  corresponding to the physical antenna with horizontal aperture LA. To be specific, the 
effective width aκ  of the azimuth PSF Φa(Δx) is measured in pixels at the user selected threshold (e.g., 

aκ /2 at 0.5 from the maximum value Φa(0) at the midrange 
0sr  [6,26]). In the same manner, κr 

specifies the effective pixel width of the range PSF Φr(Δy) related to the discretized 
|sinc[2πψrB(( /sr c2 ) – ( /sr c′2 ))]|2-type ψr-fractional range AF [6,22,26] in the slant range gates 
{ ,sr }sr′  measured at the same user selected threshold ( rκ /2 at 0.5 from the maximum value  

Φr(0) [22,26]) where B represents the employed modulation signal bandwidth [4,6]. Because the 
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DEED-VA-related fractional SAR image enhancement algorithms belong to the category of the MSF 
image post-processing techniques, the simulations were performed at the image processing level, i.e., 
avoiding the SAR raw signal simulations [31]. We tested the (1024 × 1024)-pixel (i.e., a large scale) 
scene image shown in Figure 1 in two hypothetical operational scenarios. The original scene was 
borrowed from the real-world high-resolution RS imagery [38]. Following [4,5,26,31] the degradations 
in the spatial resolution due to the fractional aperture synthesis mode were simulated via blurring  
the original image of Figure 1 with the range PSF Φr(Δy) along the y-axis and with the azimuth  
PSF Φa(Δx) along the x-axis, respectively. The degradations at the image formation level due to  
the propagation uncertainties were simulated using the statistical model of a SAR image  
defocusing [4,22,32]. The fractional resolution along the x and y scene coordinates were controlled by 
assigning different effective pixel widths κr and κa of the range and the azimuth PSFs and their varying 
over the scene that account to the range variation effect and uncompensated carrier trajectory 
deviations [4,22,26,31]. 

Figure 1. Original scene (not observable in the radar imaging experiment).  

 

Next, to comply with the technically motivated MSF fractional image formation mode, the blurred 
scene image was degraded with the composite (signal-dependent) noise simulated as a realization of 

2
2χ -distributed random variables with the pixel mean value assigned to the actual degraded scene 

image pixel. The simulation experiment compares three most prominent SAR-adapted enhanced 
imaging techniques, namely: the celebrated VA-based anisotropic diffusion method [16,18] specified 
in Section 5.2.(ii); the ML-APES method [24] detailed in Section 3.1, and the developed fused 
anisotropic DYED reconstruction method aggregated with the POCS regularization performed via 
Equation (46). The simulations were run for two hypothetical operational scenarios. The first one 
corresponds to the partially compensated defocusing errors [4,22]. In the second scenario, no 
autofocusing was assumed, thus the degradations encompass both uncontrolled SFO distortions and 
MSF mismatches attributed to “heavy” propagation medium perturbations [22,31], range migration 
effect [4] and uncompensated carrier trajectory deviations that may occur in much more severe 
operational scenarios [26,29,31]. For both scenarios, the simulations were run for different values of 
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the composite signal-to-noise ratio (SNR) SARμ  defined as the ratio of the average signal component in 
the degraded image ( )1b̂  formed using the MSF algorithm (32) to the relevant composite noise 
component in that same speckle corrupted MSF image. 

6.2. Performance Metrics 

For objective evaluating of the reconstructive imaging quality, we have adopted two quality metrics 
traditionally used in image restoration/enhancement [2,3,11,37]. The first one evaluates the mean 
absolute error (MAE): 
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where { ( , )}x yb k k  represents the pixel values of the initial SSP and ( )ˆ{ ( , )}p
x yb k k  represents the pixel 

values of the SSP reconstructed applying the pth tested technique. In the performed simulations, p = 1 
corresponds to the MSF algorithm (32), p = 2 corresponds to the VA-based anisotropic diffusion 
enhancement technique [16], p = 3 specifies the ML-APES method [24] resulting in the estimator (17), 
and p = 4 relates to the developed DYED-optimal fused DEED-VA algorithm (46). This metrics is 
well suitable for quantification of fine image reconstruction details, such as edge preservation 
(sharpening) and resolution of small targets on the extended scene [37]. 

The second employed metrics is the so-called improvement in the output signal-to-noise ratio 
(IOSNR) [2,3,29] measured via the ratio of the corresponding squared l2 error norms: 

( )2( ) ( ) 2
10

ˆ10 log || || ,p pIOSNR = − −q b b b  (50) 

where b represents the original SSP frame, q = (1)b̂  is the low-resolution speckle-corrupted image 
formed by a fractional SAR system that employs the conventional MSF method (32), and ( )ˆ{ }pb  
represents the SSP reconstructed from the corrupted MSF image q applying the pth enhanced  
imaging method from the simulated family, the same as in (49). The lower is the MAE and the higher 
is the IOSNR, the better is the image enhancement/reconstruction performed with the particular 
employed method. 

6.3. Simulations Results and Discussions 

Figure 1 shows the original scene image (borrowed from the high-resolution RS imagery [38]) not 
observable with the simulated fractional SAR imaging systems. The images in Figures 2 and 3 present 
the results of image formation/enhancement applying different tested DEED-VA-related techniques in 
two operational scenarios as specified in the figure captions. Figures 2(a) and 3(a) demonstrate the 
images formed applying the conventional MSF algorithm. From these figures, one may easily observe 
that the MSF images suffer from imperfect spatial resolution due to the fractional aperture synthesis 
mode and composite observation/focusing mismatches and are corrupted by multiplicative  
signal-dependent noise. In the first scenario, the simulated degradations in the resolution are moderate 
over the range direction (κr = 10) and significantly larger over the azimuth direction (κa = 20). In the 
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second scenario, the fractional SAR system suffers from much more severe degradations due to 
additional defocusing in both directions (κr = 20; κa = 40) and lower SNR. 

Figure 2. Simulation results for the first scenario: (a) degraded MSF image corrupted by 
composite noise (fractional SAR parameters: κr = 10 pixels, κa = 20 pixels, SNR  
μSAR = 15 dB); (b) the same scene image enhanced using the VA-AD technique; (c) result 
of reconstructive imaging performed with the ML-APES method (17); (d) the same image 
reconstructed applying the fused DYED technique (46), all after 30 performed iterations. 

   
(a)       (b) 

   
(c)       (d) 

 
Next, Figures 2(b) and 3(b) show the images enhanced applying the anisotropic diffusion  

method [16,18]. The images reconstructed using the ML-APES method [24] are shown in Figures 2(c) 
and 3(c), and the corresponding images optimally reconstructed applying the DEED-VA-optimal 
technique (46) with the same equibalanced regularization factors c0 = c1 = c2 = 1, after the same  
30 iterations are presented in Figures 2(d) and 3(d), respectively. Figures 4 and 5 present comparative 
results of reconstructive imaging in a 1-D format with the operational parameters and scenarios 
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specified in the figure captions. Figures 6 and 7 report the quantitative performances evaluated via the 
two quality metrics (49) and (50) gained with three tested SSP estimation methods, namely: the  
VA-related anisotropic diffusion (VA-AD); the ML-APES and the DYED-optimal DEED-VA. 

Figure 3. Simulation results for the second scenario: (a) degraded MSF image corrupted 
by composite noise (fractional SAR parameters: κr = 20 pixels, κa = 40 pixels, SNR  
μSAR = 10 dB); (b) the same image enhanced using the VA-AD technique; (c) result of 
reconstructive imaging performed with the ML-APES method (17); (d) the same image 
reconstructed applying the fused DYED technique (46), all after 30 performed iterations.  

  
(a)       (b) 

  
(c)       (d) 
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Figure 4. Comparative analysis of the 1-D imaging results: (a) the tested 1-D original 
image related to the 700th row vector from the 2-D scene of Figure 2; (b) degraded 1-D 
MSF image corrupted by composite noise (fractional SAR parameters: κr = 10 pixels,  
κa = 20 pixels, SNR μSAR = 15 dB); (c) the same 1-D image enhanced using the VA-AD 
technique; (d) 1-D image enhanced with the ML-APES method (17); (e) the same 1-D 
image reconstructed applying the fused DYED technique (46); iterative reconstructions (c), 
(d) and (e) are reported for the same 30 performed iterations.  

 
(a) 

 

  
(b)      (c)  

 

  
(d)      (e) 
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Figure 5. Comparative analysis of the 1-D imaging results: (a) the tested 1-D original 
image related to the 512th row vector from the 2-D scene of Figure 4; (b) degraded 1-D 
MSF image corrupted by composite noise (fractional SAR parameters: κr = 20 pixels,  
κa = 40 pixels, SNR μSAR = 10 dB); (c) the same 1-D image enhanced using the VA-AD 
technique; (d) 1-D image enhanced with the ML-APES method (17); (e) the same 1-D 
image reconstructed applying the fused DYED technique (46); iterative reconstructions (c), 
(d) and (e) are reported for the same 30 performed iterations. 

 
(a) 

  
(b)      (c) 

  
(d)      (e) 

 



Sensors 2011, 11                            
 

 

4507

Figure 6. Quantitative reconstructive imaging performances for the first simulated 
operational scenario: (a) MAE metric; (b) IOSNR metric. 

  
   (a)       (b) 

Figure 7. Quantitative reconstructive imaging performances for the second simulated 
operational scenario: (a) MAE metric; (b) IOSNR metric. 

   
   (a)                (b) 

From the reported simulation results, the advantage of the well-designed imaging experiments 
(cases of the ML-APES and the optimal DEED-VA techniques) over the poorer design enhancement  
experiments (MSF and anisotropic diffusion (VA-AD) without ML-APES reconstruction) is evident 
for both scenarios. Due to the performed regularized inversions, the resolution was substantially 
improved. Quantitative performance improvement measures are reported in Figures 6 and 7 for the 
same 30 performed iterations. 

The highest values of the IOSNR, as well as the lowest values of the MAE, were obtained with the 
DYED-optimal SSP estimator, i.e., with the fused DEED-VA technique (46) adapted to the particular 
operational scenarios. Note that IOSNR (50) is basically a square-type error metric; thus, it does not 
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qualify quantitatively the “delicate” visual features in the reconstructed RS images; hence, small 
differences in the corresponding IOSNRs reported in Figures 6 and 7. Furthermore, all the  
DYED-related estimators manifest the higher IOSNRs and lower MAEs in the case of higher SNR. 
Both the 2-D and 1-D RS imaging results are indicative of the superior qualitative reconstructive 
performances achieved with the high-resolution DYED-related estimators (17) and (46), while the 
DYED-optimal DEED-VA approach outperforms the ML-APES method. Last, in Figure 8, we report 
the convergence rates (specified via the dynamics of the corresponding IOSNR and MAE metrics 
versus the number of iterations) evaluated for the first test scenario for the same three dynamic 
enhancement/reconstruction techniques: VA-AD, ML-APES, and the developed DYED-optimal 
unified DEED-VA technique. The reported convergence rates are indicative of the considerably 
speeded-up performances manifested by the DEED-VA algorithm (46) that outperforms the most 
prominent existing ML-APES and anisotropic diffusion methods in the both quality metrics requiring 
5–6 times less number of iterations to approach the same asymptotic convergence.  

Figure 8. Convergence rates evaluated via: (a) MAE metric versus the number of 
iterations, and (b) IOSNR metric versus the number of iterations for three tested enhanced 
RS imaging methods, VA-AD, ML-APES and DEED-VA, respectively. The reported data 
correspond to the first tested operational scenario for the SNR μSAR = 15 dB. 

 
(a)         (b) 

7. Conclusions 

In this paper, we have addressed the unified DYED method for nonparametric high-resolution 
adaptive sensing of the spatially distributed scenes in the uncertain RS environment that extends the 
previously developed DEED regularization framework via its aggregation with the dynamic VA-based 
enhanced imaging approach. We have treated the RS imaging problem in an array radar/SAR adapted 
statement. The scene image is associated with the estimate of the SSP of the scattered wavefield 
observed through the randomly perturbed kernel SFO under severe snapshot limitations resulting in a 
degraded speckle corrupted RS image. The crucial issue in treating such a nonlinear ill-posed inverse 
problem relates to the development of a statistical SSP estimation/reconstruction method that balances 
the resolution enhancement with noise suppression and guaranties consistency, convergence  
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and robustness of the resulting STAP procedures. In the addressed experiment design setting,  
all these desirable performance issues have been formalized via inducing the corresponding  
Sobolev-type metrics structure in the solution/image space, next, constructing the DEED-balanced  
resolution-enhancement-over-noise-suppression objective measures and, last, solving the relevant SSP 
reconstruction inverse problem incorporating the two-level regularization (the DEED level and the VA 
level, respectively). Furthermore, the incorporation of the second-level VA-based dynamic POCS 
regularization not only speeds up the related iterative processing procedures but provides also 
perceptually enhanced imagery. Also, the developed DYED method is user-oriented in the sense that it 
provides a flexibility in specifying some design (regularization) parameters viewed as processing-level 
degrees of freedom, which control the type, the order and the amount of the employed two-level 
regularization producing a variety of DYED-related techniques with different operational 
performances and complexity. Simulations verified that the POCS-regularized DEED-VA-optimal 
DYED technique outperforms the most prominent methods in the literature based on the ML and VA 
approaches that do not unify the DEED framework with the POCS-based convergence enforcing 
dynamic regularization in the corresponding applications.  
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