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Abstract: This paper presents the design of a wireless pressure-monitoring system for 

harsh-environment applications. Two types of ceramic pressure sensors made with a  

low-temperature cofired ceramic (LTCC) were considered. The first type is a piezoresistive 

strain gauge pressure sensor. The second type is a capacitive pressure sensor, which is 

based on changes of the capacitance values between two electrodes: one electrode is fixed 

and the other is movable under an applied pressure. The design was primarily focused  

on low power consumption. Reliable operation in the presence of disturbances, like 

electromagnetic interference, parasitic capacitances, etc., proved to be contradictory 

constraints. A piezoresistive ceramic pressure sensor with a high bridge impedance was 

chosen for use in a wireless pressure-monitoring system and an acceptable solution using 

energy-harvesting techniques has been achieved. The described solution allows for the 

integration of a sensor element with an energy harvester that has a printed thick-film 

battery and complete electronics in a single substrate packaged inside a compact housing. 
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1. Introduction 

Micro-electro-mechanical systems (MEMS) can be fabricated with a variety of technologies and 

from a wide range of materials. MEMS are normally made by micro-machining silicon, but in some 

applications ceramic materials are a very useful alternative, especially in harsh environments and at 

high temperatures. The laminated 3D structures made using low-temperature cofired ceramic (LTCC) 

are especially practical for so-called Ceramic MEMS [1-7].  

One of the biggest segments of the MEMS market is pressure sensors. The market is currently 

dominated by silicon pressure sensors, but in some demanding applications thick-film technology and 

ceramic materials can be used for the fabrication of sensor systems, i.e., ceramic or thick-film pressure 

sensors. In comparison with semiconductor sensors they are larger, more robust and have a lower 

sensitivity, but they have a high resistance to harsh environments. Low-temperature cofired ceramic 

(LTCC) technology and materials are suitable for forming a three-dimensional (3D) construction of 

pressure sensors and thick-film technology and the materials are used for the creation of electronic 

interconnections, capacitor electrodes, piezoresistors and other resistors [4-8].  

In typical wireless pressure-sensor systems, the power sources are autonomous and mostly based on 

different types of energy harvesting or on batteries. In both cases, the level of power consumption has 

a significant influence on the dimensions and the complexity of the system, and on the required 

frequent charging in the case of the battery power supply. Therefore, the power consumption of the 

autonomous operating sensors should be minimized as much as possible, not only in the electronic 

circuitry (signal conditioning, microcontroller, wireless transceiver, etc.) but also in the sensing element 

or transducer. Another very important reason for reducing the power consumption of the sensing element 

relates to the high power dissipation in the sensing element that generates heat. More heat increases the 

warm-up time of the sensor and decreases the stability of the sensor’s characteristics [9]. 

Wireless pressure monitoring [10-12] in the industrial environment must satisfy many different 

requirements [13-15]. This paper is focused primarily on two aspects. The first is the design and 

fabrication of the sensing element (transducer) for harsh-environment applications. The second is low 

power consumption and an effective energy management of the system. The energy management 

includes how to obtain energy from the environment (energy harvesting), energy storage and/or an 

autonomous energy source and the low energy consumption of all the components of the system, 

including the sensing element. The paper is organized as follows. In the next section, basic 

characteristics of the two sensor candidates for harsh-environment applications are briefly outlined. 

Their design is described in more details in [8]. Integration into an autonomous wireless-sensor node is 

described in Section 3, followed by the implementation and experimental results report in Sections 4 

and 5. In Section 6 the conclusions are drawn. 

2. Sensor Device 

2.1. Construction of LTCC Pressure Sensors 

LTCC technology and materials are suitable for making the ceramic structure of a thick-film 

pressure sensor, which can work in a wide temperature range and in different media (gasses,  

liquids) [2,8,16,17]. This structure consists of a circular, edge-clamped, deformable diaphragm that is 
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bonded to a rigid ring and the base substrate. In the base substrate is the hole for the applied reference 

or differential pressure. These elements form the cavity of the pressure sensor. The depth of the cavity 

is especially important for the capacitive type of pressure sensor and depends on the thickness of the 

rigid ring. The cross-section and the top-view of the LTCC construction of the ceramic pressure sensor 

are schematically shown in Figure 1. 

Figure 1. Photograph (a), cross-section (b) and top-view (c) of the construction of a LTCC 

pressure sensor. 

 

The structure in Figure 1 was constructed for measuring pressures in the range from 0 to 100 kPa, 

and for a burst pressure of about 400 kPa. For these characteristics we designed the diaphragm with a 

thickness of 200 μm and with a radius of 4.5 mm. The depth of the cavity is about 80 µm when the 

structure is designed for a capacitive type of pressure sensor. It should be as low as possible, but the 

technology limitations are around 50 µm. For high volume stable production, the 80 µm was chosen as 
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optimal tradeoff between manufacturability and required performance. The LTCC foil used for the  

80 μm cavity was DuPont 951PP, which is 100 μm foil when unfired. After firing the thickness shrinks 

to 80 μm. When the structure is designed for a piezoresistance type of pressure sensor, the functional 

window is deeper, because the diaphragm should be suspended only at the edges and gap size is not 

important, therefore it is equal to standard LTCC raw material thickness 200 µm. The LTCC foil used 

for 200 μm membranes was DuPont 951PX. The cross-section of the cavity within the 3D LTCC 

structure fabricated with LTCC materials is shown in the above figure. The applied pressure on the 

ceramic pressure sensors deforms the flexible and deformable diaphragm. The deformation is 

presented in Figure 2. 

Figure 2. Cross-section of the construction of the LTCC pressure sensor under an applied 

pressure P, which causes the deflection y(0) in the middle of the diaphragm. 

 

The construction, the dimensions and the material properties of the sensor structure influence the 

sensors’ characteristics for all types of ceramic pressure sensors. The dependence of the geometry and 

the material properties of the LTCC construction on the deflection of an edge-clamped deformable 

diaphragm under an applied pressure are described by Equation (1): 

where the deflection y at the position r from the centre of the diaphragm is a function of the applied 

pressure P, the material characteristics of the diaphragm (Young modulus E, and Poisson’s ratio ν), 

and the dimensions of the diaphragm (thickness t, and radius R). 

2.2. Piezoresistive Ceramic Pressure Sensor 

A piezoresistive ceramic pressure sensor (Figure 3) is based on the piezoresistive properties of the 

thick-film resistors that are screen-printed and fired onto the deformable diaphragm. The piezoresistive 

ceramic pressure sensor has four thick-film resistors, which act as strain gauges and transduce a strain 

into an electrical signal. The sensing resistors are located on the diaphragm so that two are under 

tensile strain, and two are under compressive strain. These four resistors are electrically connected in a 

Wheatstone-bridge configuration and excited with a stabilised bridge voltage. The Wheatstone-bridge 

is integrated with the electronic conditioning circuit in one single ceramic substrate (Figure 4). 
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Figure 3. The piezoresistive ceramic pressure sensor. 

 

Figure 4. The piezoresistive sensing element is connected to the electronic conditioning circuit. 

 

The resistances of the sensing resistors connected in a Wheatstone-bridge and the bridge voltage 

(Vb) have a direct influence on the power consumption. A lower bridge voltage causes a lower current 

and therefore a lower power consumption, but the value of the output signal is also lower. The power 

consumption can also be reduced by the use of a resistor with a high resistance (high sheet resistivity). 

In this case the sensitivity is slightly higher but the signal-to-noise ratio is lower. The lower bridge 

voltage and/or the high resistance cause another problem—the sensor becomes more susceptible to the 

parasitic effects and other interferences. 

The values of the resistivity of piezoresistors can be between a few hundred ohms and up to a few 

hundred thousand ohms. The values of the bridge voltage can be between one volt and a few tens of 

volts. Therefore, the values of the power consumption can be in a very wide range. However, a typical 

value of the resistances of the piezoresistors is 10 kΩ and a typical value of the bridge voltage is  

5 V. These parameters result in a power consumption of about 2.5 mW. 

2.3. Capacitive Ceramic Pressure Sensor 

The capacitive ceramic pressure sensor (Figure 5) is based on the fractional change in capacitance 

induced by the applied pressure. The capacitance change is due to the varying distance between the 

electrodes of the air-gap capacitor. These electrodes are within the cavity of the LTCC structure 

(Figure 1). The bottom electrode of the capacitor is on the rigid substrate and the upper electrode is on 

the deformable diaphragm. The areas of the electrodes and the distance between them define the value 

of the initial capacitance (C0) of the capacitive pressure sensor. The distance between the electrodes is 

calculated from the cavity depth and the thickness of both electrodes.  
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Figure 5. The capacitive ceramic pressure sensor. 

 

First, the general outline dimensions are defined. Within the given outline, the cavity supporting 

structure is constructed. The geometry depends on the required pressure range and assembling 

conditions. Generally, a sensor for high pressures requires more rigid supporting structure, and plastic 

housing also requires more rigid sensor element compared to a sensor packaged in an alluminium 

housing. When the membrane size is determined, the gap is calculated first from the capacitor 

calculation, and then a simulation is run using the estimated geometry. The design is optimized using 

simulations. Finally, a batch of different designs is produced and evaluated. For reference, a capacitive 

ceramic pressure sensor (as shown in Figure 6) with 80 μm air gap, 100 μm membrane and 1 cm2 

electrodes/membrane area has nominal capacitance between 5 pF to 15 pF with capacitance change of 

100 fF over 1,000 mBar full scale input pressure. 

Figure 6. The capacitive sensing element integrated with the electronic conditioning 

circuit: (a) block diagram; (b) prototype with surface mounted signal conditioning circuit. 

 

(a) (b) 

The capacitive ceramic pressure sensor is integrated with the electronic conditioning circuit with a 

frequency output in most cases (Figure 6). In this case the typical output frequency is between 10 and 

100 kHz, and this varies according to the applied pressure. The power consumption of the sensing 

element for the capacitive ceramic pressure sensor is very low and depends mostly on the values of the 

operating frequency and the voltage, as well as the capacitance of the sensing element. Our test 

samples have a capacitance of around 8 pF, an operating voltage of 1 V, and an operating frequency of 

10 kHz. These parameters result in a power consumption of about 0.5 µW. The power consumption 

was calculated from the impedance and the applied voltage. The values of working frequency and 

voltage are determined by the electronic signal-conditioning circuit. If we reduce the values of any 

mentioned parameters the power consumption of the sensing element is lower. But at the same time the 

pressure sensitivity is lower and the problems with the quality of the output signal and also with the 

parasitic capacitance are more serious. 
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2.4. Benchmarking of the Sensing Element 

The capacitive ceramic pressure sensor has lower power consumption (0.5 µW) in comparison with 

the piezoresistive sensor (2.5 mW). It is very sensitive to any disturbances, like parasitic capacitances, 

electromagnetic interference, temperature, humidity, etc., [18]. Because of this effect the capacitive 

pressure sensor is less suitable for use in most prevalent applications for demanding industrial 

environments. On the other hand, the power consumption of piezoresistive ceramic pressure sensors 

can be easily controlled by the values of the Wheatstone-bridge resistances. Therefore, the 

piezoresistive ceramic pressure sensors with a high bridge impedance were chosen for use in a wireless 

pressure-monitoring system in an industrial environment. Typical characteristics are shown in Table 1. 

Table 1. Benchmarking of the sensing element. 

Parameter Capacitive 
Conventional 
Piezoresistive 

High resistance 
Piezoresistive 

Power consumption 0.5 µW 2.5 mW <1 µW  
Noise High Low High 

Technology Difficult Easy Easy 
Environment impact on sensor High Low Low 
Signal conditioning demands High Low Low 

3. Integration into Autonomous Wireless-Sensor Node 

A typical energy-harvesting wireless-sensor node configuration usually consists of a (free) energy 

source, an energy harvester, sensors with ADC converters, amplifiers, a microcontroller and a  

low-power radio communication, as shown in Figure 7. 

Figure 7. The block diagram of autonomous wireless node. 

ENERGY
SOURCE

ENERGY
HARVESTER

SENSORS,
SIGNAL ACQUISITION,
MICROCONTROLLER

WIRELESS
TRANSCIEVER

 

Energy sources such as a thermoelectric generator (TEG), a small indoor solar cell, a piezoelectric 

generator, a thermopile or similar supply electrical energy to the energy harvester. These small, sparse 

and low-power energy bursts with limited peaks are then converted into a usable form to power 

downstream circuits, such as the low-power sensing elements, the analogue-to-digital converter and a 

low-power microcontroller. The microcontroller sleeps with an ultra-low-power consumption, usually 

below 1 µA and periodically wakes up to supply a sensor, takes a reading from it and prepares this data 

for transmission via a low-power wireless transceiver [19]. 

Each circuit system block in this chain has its own unique set of constraints. It is essential to design 

a high-efficiency harvester and power management to keep the amount of time required to power up 

the complete system to a minimum. Longer power-up times increase the time intervals between taking 

a sensor reading and transmitting this data. Proper design of a pressure sensor is of great importance 

here. Many conventional designs are not suitable for autonomous wireless sensors. Quiescent currents 
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in individual blocks shown in Figure 7 define the lower usable limit of an energy-harvesting source. It 

must first supply the current needed for the system’s self-operation in sleeping mode before it can use 

any excess to supply and store this power to supply the outputs. A microcontroller with a periphery 

and RF link normally draws short pulse currents in the couple-of-tens-of-mA range when active. The 

energy-harvesting process collects available energy from the surrounding environment and stores it in 

an internal storage device [Figure 8(a)]. Some sources reported in [20] are listed in Table 2. 

Figure 8. (a) Schematic layout of power supply for pulsed operation of a wireless sensor, 

(b) typical internal voltages during pulsed operation (IL = Load current-pulse, VOUT = supply 

output voltage, VCP = Voltage across storage capacitor CP). 

(a) (b) 

Table 2. Energy-harvesting estimates (as reported in [20]). 

Energy Source Harvested Power 
Vibration/Motion 
Human 4 μW/cm2 
Industry 100 μW/cm2 
Temperature Difference 
Human 25 μW/cm2 
Industry 1–10 mW/cm2 
Light 
Indoor 10 μW/cm2 
Outdoor 10 mW/cm2 
RF 
GSM 0.1 μW/cm2 
Wi-Fi 0.001 μW/cm2 
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The operating principle of the energy-harvesting power management is shown in [Figure 8(b)]. The 

power is collected during sleep-mode operation and stored in a rechargeable battery. The batteries used 

in such systems are small; sometimes they are a thin film with large internal resistance RS, which 

limits the peak currents in active mode. The simplest solution to overcome this problem is to place a 

low- Equivalent Series Resistance (low-ESR) capacitor across the main energy-storage device, which 

is charged during normal charge cycles and can deliver high current pulses. The following key 

parameters should be defined to calculate the required capacitance and the minimal latency time: 

• Storage device internal resistance RS, 

• Average load resistance RL, 

• Maximum voltage to which the capacitor must be charged prior to delivering the next current 

pulse VMIN, 

• Average current-pulse amplitude and duration IL, tP, 

• Minimum supply voltage at the system input VMAX. 

4. Implementation 

The performance of the sensor system from Figure 7 depends on the selection of components for 

each building block. For our testing system setup we had a choice among different microcontrollers 

and radio solutions (Table 3). Notice that the Zarlink radio module has the lowest Rx and Tx current. 

The final selection was a MSP430 microcontroller and a Zarlink radio module due to the flexibility 

offered by two chip solution which proved to be most suitable for our application.  

Table 3. The list of different microcontrollers and radio solutions considered for test setup. 

Producer Type 
f 

(MHz) 
Rx 

(mA)
Tx1 

(mA)
Rate 

(kbit/s) 
VCCmin 

(V) 
TI CC2500 2,400 18 11 250 1.8 
TI Sensium 900 4.5 4.5 50 1.1 

Zarlink ZL70250 900 1.9 2 186 1.2 
Nordic nRF24L01 2,400 12 8 2,000 1.9 

EM EM9201 2,400 12 12 1,000 0.8 
Sensor Dynam. SD341 300–920 23 15 125 1.85 

The wireless pressure-monitoring system built on a piezoresistive LTCC-based pressure sensor is 

shown in Figure 9. The data acquisition and processing were done with an MSP430F2350 microcontroller. 

The wireless interface was based on a CC2500 transceiver with TI’s simplicity low-power radio 

frequency (RF) communication stack. For real industrial application, proper housing is required with 

circuit layout redesign to accommodate the dimensions of a particular model, shown in Figure 10. 
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Figure 9. Low-power wireless pressure-monitoring system with a piezoresistive  

LTCC-based pressure sensor. 

 

Figure 10. Industrial grade packaging for the target sensor. 

 

5. Experimental Results 

Test results were obtained by testing the system shown in Figure 11. We used the solar-energy 

harvester module SEH-01 from the TI development system. It uses photovoltaic energy from an indoor 

solar cell that converts ambient light into electrical energy. The low voltage from the solar cell is 

handled by an EnerChip thin-film battery solution. The module can provide a 100-μAh capacity with 

an average output power of 350 μW for a 1,000-lux light source. 

The power consumption of the pressure-sensor module with an LTCC-based sensing element was 

calculated by measuring the voltage drop with an oscilloscope over the shunt resistor between the 

energy harvester and the sensor electronics. 
  



Sensors 2012, 12 330 

 

 

Figure 11. Low-power testing system for LTCC-based pressure sensor. 

 

The LTCC-based pressure sensor sends data to the access point every 5 s. The access point for the 

testing purposes was USB dongle connected to a PC, used as a pressure monitoring instrument. A 

custom application was prepared to display and store received readouts. The current bursts are shown 

on the oscillogram in Figure 12. 

Figure 12. Power consumption of a low-power LTCC sensor over 25 s time. 

 

The diagram in Figure 12 shows the magnitude and duty cycle of the sensor’s power consumption. 

The average sleep-mode power consumption depends on the current draw between bursts. Increasing 

the time between the active periods could result in longer survival periods without any available 

power, e.g., when the ambient light conditions are dark. 

The inspection of the anatomy of a single current spike is possible by increasing the sampling 

frequency. Individual events during the active mode are shown in Figure 13. This is a good base for 

analyzing the contributions of different hardware parts and software events to the overall power 

consumption in active mode. Unfortunately, we had no influence on some parts of the radio 

communication, since the RF software stack was provided as a library and therefore abstracted from 

the final implementation. 
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Figure 13. Single current spike anatomy. 

 

Operation events and their power consumption are listed in Table 4. Total energy consumption in 

active mode is about 40 µAs, while in the sleep mode the circuit consumes 1.8 µA. The achieved 

solution provides an energy efficient platform for coin-battery operated products. 

Table 4. Operation events and their power consumption. 

Segment 

(Figure 13) 
Event Source 

Current 

(mA) 

Time 

(µs) 

Energy 

(nAs) 

Portion of power consumed 

(%) 

This work 
Conventionnal 

sensor 

A RF Start-up RF1 2.3 320 736 1.9% 1.0% 

B Waiting for RF ready RF1 1.75 150 262.5 0.7% 0.7% 

C Idle  RF1 1.55 382 232.5 0.6% 0.3% 

D PLL Calibration RF1 8.5 909 7726.5 19.7% 10.6% 

E Rx mode RF1 19.8 185 3663 9.4% 5.6% 

F Tx mode RF1 22.5 820 18450 47.1% 30.0% 

A-G Active processing MCU1 2.75 2845 7823.75 20.0% 18.2% 

A-G Low power mode  MCU1 1.2 65 78 0.2% 0.2% 

A-G ADC active MCU1 0.88 145 127.6 0.3% 0.4% 

A-G Sensor active Sensing 

element 

0.045 820 36.9 0.1%  

A-G2 Sensor active Conventional 

sensor 

1 35000 35000 
 

48.6% 

Note: 1–RF = Radio Frequency communication part; MCU = Micro Controller Unit. 

6. Conclusions and Future Work 

The power consumption of pressure-sensing elements (transducers) depends primarily on the 

sensing principles, as well as on the technology and the materials used. LTCC technology offers a 

good opportunity to significantly minimize the power consumption of industrial wireless pressure 

sensors. Our results show that when a low-power LTCC-based sensing element is used, it represents 

Time (μs)

0 1000 2000 3000 4000 5000

C
ur

re
n

t 
co

n
su

m
p

tio
n 

(m
A

)

0

5

10

15

20

25

30
A B C D E F G



Sensors 2012, 12 332 

 

 

only 0.1% of the total power consumed when in active mode. If a conventional silicon pressure sensor 

was used, this share would increase to 48.6%, partially due to a much higher current being drawn from 

the sensor and secondly, as an consequence of the longer warm-up and setup times due to the lower 

performance power-up behavior. Longer active times then increase the overall power consumption, 

because in the active mode not only is the sensor powered, but also other components, like the 

microcontroller and, partially, the RF module. 

Our pressure-monitoring system was developed for industrial application with an operating 

temperature range from −25 °C to +125 °C. The prototype was implemented with an energy harvester 

from the evaluation module. It shows the practical use of solar-energy harvesting and thin-film battery 

use. Both are compatible with LTCC technology. In the future, this will open up new possibilities for 

the integration of a sensor element with an energy harvester that has a printed thick-film battery and 

complete electronics in a single substrate packaged inside a very compact housing. 

The presented ceramic MEMS is the first building block of a platform for autonomous industrial 

sensors and has all the essential characteristics required for integration into harsh industrial environments. 

The compact, single-substrate design leaves plenty of room for additional electromagnetic protection 

circuitry and robust housing, which at the end forms a miniature industrial pressure transducer.  

Future work will be focused on encapsulation of the presented solution into ingress-protected, 

electromagnetically compatible housing for specific target applications.  
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