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Abstract: The paper investigates approaches for loosely coupled GPS/INS integration. 
Error performance is calculated using a reference trajectory. A performance improvement 
can be obtained by exploiting additional map information (for example, a road boundary). 
A constrained solution has been developed and its performance compared with an 
unconstrained one. The case of GPS outages is also investigated showing how a Kalman 
filter that operates on the last received GPS position and velocity measurements provides a 
performance benefit. Results are obtained by means of simulation studies and real data. 
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1. Introduction 

The error in an inertial system grows very quickly over time even if when an initial calibration 
procedure has been performed. Position error bias on startup also significantly affects position error 
over time. In fact, an initial calibration can correct short term errors only and the position error can 
become unacceptable after a very short period of time. In order to mitigate the error of inertial devices 
another sensor can be used in cooperation with the Inertial Measurement Unit (IMU). Typically, an 
absolute precise position estimate from a GPS receiver can be used to reset an Inertial Navigation 
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System’s (INS) solution or may be integrated with it by applying a data fusion algorithm (e.g., Kalman 
filter). The benefits of a GPS/INS integration are that the INS estimates can be corrected by the GPS 
data and that the INS can provide position and angle updates at a quicker rate than GPS. For highly 
dynamic vehicles such as missiles and aircraft, INS navigation solutions can interpolate between the 
GPS updates. Additionally, GPS signal losses may occur and the INS can continue to calculate 
position, velocity and orientation angles during outages. The two systems are complementary and are 
often employed together. Several approaches are possible for the integration of GPS and INS to 
provide a combined navigation solution. Such integration strategies differ on the type of information 
that is shared between the systems. There are four different categories of integration approaches:  
un-coupled [1], loosely coupled (LC) [2,3], tightly coupled (TC) [4,5], and ultra-tightly coupled (UTC) 
techniques [6–8]. The first method is the simplest integration of GPS and INS. The two systems 
operate independently, but when a GPS position and/or velocity measurement is available the IMU is 
reset. This method does not provide any performance enhancement. The second approach uses GPS 
position and velocity measurements in a Kalman filter that models INS error dynamics, while the third 
uses GPS estimates of Pseudoranges and Doppler and inertial estimates within a Kalman filter. In  
the UTC approach, outputs from the central navigation processor, after projection into satellite  
line-of-sight coordinates, are used to control the code and carrier replica signals for each satellite 
channel. On the other hand, a conventional tightly coupled GPS/INS system uses separate tracking 
loops for each satellite channel, which operate autonomously. As a result, the UTC design is 
considered more robust to jamming and vehicle dynamics. 

In this work we address a loosely coupled approach. The paper investigates the performance of such 
an integration using both simulated and real measurements. For real tests we have used a  
Sirf-JP13 [9] and a Microstrain 3DM-Gx2 [10] modules as GPS receiver and IMU, respectively. In this 
work we have also considered the possibility to receive additional geographic information as an aiding 
to the position provided by the GPS receivers. This extra info can be delivered by a Google Map (GM) 
service if we have an embedded system equipped with GPS, IMU and a communication transceiver in 
order to establish an internet connection to download data from the GM service. In such a scenario we 
have developed a LC algorithm able to exploit additional position information when available. 
Furthermore, the case-study of an operational scenario in which GPS outages are experienced, has 
been analyzed. In such a case, a Kalman filter that leverages on the last received GPS measurement has 
been designed in order to reduce the error of INS-only navigation solution. 

The paper is organized as follows: Section 2 describes the main characteristics of the INS 
mechanization equations and it provides the main features of the Kalman filter that will be applied in a 
loosely coupled integration. Results obtained through simulations and in a real scenario are presented. 
Section 3 deals with the improvements obtained by using known information to constrain the solution, 
such as the boundaries of the road along which the system is travelling, provided by an external aiding 
source such as Google Map. A description of the Kalman filter designed to include constraints 
information is also given. Performance comparisons are presented for an unconstrained loosely 
coupled system using simulated and real data. 

Section 4 demonstrates the performance of a loosely coupled system in case of a 50-s-long GPS 
outage. An approach that uses a Kalman filter to reduce INS position error has been developed by 
exploiting the last available GPS position and velocity. Eventually, conclusions are drawn in Section 5. 
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where: 

• f is the correct acceleration or angular velocity (in the body frame); 

• aS , gS are the scale factor of accelerometers and gyros; 

• ab , gb ,is the bias of accelerometers and gyros that can be considered constant over time t; 

• aw , gw is the white noise component of accelerometers and gyros respectively. 

In the paper we have modeled the accelerometers and gyroscopes’ noises as white noise 
components (i.e., aw , gw ) and we did not consider the deterministic errors, such as the scale factor 
and the bias, since their contribution is negligible. Moreover, we have used both simulated and real 
data to model gyro and accelerometers errors. As far as the simulation test is concerned, we have 
developed a proper software in Matlab® able to generate accelerometers and gyros raw measurements 
at different rates (e.g., sampling frequency at 500 or 100 Hz) and with different noise components. 
Furthermore, the simulator can provide information about the orientation angles (yaw, pitch and roll) 
of a vehicle that is moving along a trajectory. As far as the simulated path is concerned, we have 
implemented the same surveyed track of the real scenario in which the tests have performed, giving us 
the possibility to do accurate comparison between synthetic data and the real ones. In the case of real 
data we have utilized measurements from a 3DM-Gx2 MEMS-IMU. It has been argued in [11] that 
gyro and accelerometer errors of this device are dominated by white noise (see Figure 2). Therefore, a  
9-state Kalman filter should be adequate for correcting inertial solutions.  

Figure 2. Theoretical Double Integration of different noise sources for a calibrated 
Gx2IMU. 

 

The perturbation of the inertial navigation equations to obtain error states is detailed in [3]. A 
scheme that summarizes the overall n-frame INS processes is provided in Figure 3. A common 
orientation for Local Tangent Plane is the North-East-Down (NED) system defined as follows: 
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Xn horizontal axis in the direction of increasing latitude; 
Yn horizontal axis in the direction of increasing longitude; 
Zn to make a right-handed orthogonal coordinate system. 

In the following we will refer to the NED coordinate system as n-frame. 

Figure 3. Scheme of the INS Mechanization equations [3]. 

 

The position in the n-frame is expressed in geodetic coordinates, namely 
Tn hr ],,[ λϕ=  (2)

where φ, λ and h represent the latitude, longitude and altitude of the estimated user’s position, 
expressed in radians and meters (for altitude) respectively. 

The velocities in the n-frame are given by: 
T

DEN
n vvvv ],,[=  (3)

where DEN vvv ,, are the velocities along North, East and Down coordinates and computed in m/s. 
The motion of a vehicle can be described by equations that involve INS kinematics. The derivations 

of these equations can be broken up into three parts: position, velocity and attitude. A full derivation is 
reported in [12]. The position, velocity and attitude rates (from [3] and [13]) are given by: 
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1−D is a diagonal matrix defined as follows:  
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where RM is the radius of curvature in the meridian and RN is the prime vertical at certain latitude 
expressed as:  
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with a = 6378317.0 m and e = 0.0818 and where bf  is the acceleration information in the body-frame 

and n
b

R  is the frame rotation matrix from body to n-frame.  
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A more detailed explanation of the previous equations can be found in [3] and [17]. The vector 
[ ]ψθφ ,,=Ω  consists of the Euler angles (Roll, Pitch and Yaw). The orientation angles are computed 

by exploiting the gyroscopes sensors. Other techniques are based on a blending of accelerometers and 
magnetometers to compute the attitude [18,19]. Although this last method is particularly suitable for 
low-cost MEMS IMUs whose gyroscopes are not sensitive to the Earth’s rotation (for this reason the 
yaw can not be estimated properly through gyro-compassing techniques [20]), it requires, on the other 
hand, an additional Kalman filter to combine the measurements coming from the two sensors (i.e., 
accelerometers and magnetometers). Therefore, we prefer to keep the integration level as simple as 
possible and we will design a unique GPS/INS Kalman filter where the yaw information is provided by 
the GPS receiver itself [21]. 

n
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n
ie ωω ,  are the rotation vectors from the e-frame to the n-frame and the rate of change of latitude 

and longitude, respectively [3]: 
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where ( 5107.2921155 ⋅≈eω rad/s) is the magnitude of the Earth rotation rate. 
ng  is the local gravity vector and R  is the transformation matrix from the body-axes angular rates 

to the Euler angle angular rates and is given by [3] as:  
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b
ibω represents the raw measurement vector of the gyros sensors in the bodyframe [3]. 
Eventually, the equations describing the error dynamics are obtained by perturbing the kinematic 

Equation (4). These error equations are required in the construction of the INS/GPS Kalman filter. The 
perturbation of the position, velocity and Euler angles can be written as: 
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The linearized position error is given by: 
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The velocity error is given by:  
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The attitude error can be written as: 
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(13)

Details about Equations (10)–(13) can be found in [3,11–17]. 

2.2. Loosely Coupled Kalman Filter 

In this subsection we recall the traditional design of an error state Kalman filter for a loosely 
coupled GPS/INS application. An n-frame error state model [3] is given by:  
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where all the sub-matrices 
xxF are the ones as stated in Equations (10)–(13). nf is the raw 

measurements of accelerometers expressed in n-frame whereas n
inω is the raw information of the gyros 

sensors in the n-frame too. Eventually, parameters w  indicate the noise components of gyros and 
accelerometers, respectively. As previously explained in Section 2.1, only white noise has been 
considered. The discrete-time analogue of (14) is expressed as: 
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where h.o.t. means higher order terms that can be neglected for the computation. 
The covariance matrix ܳ associated to the discrete-time noise vector w  can be determined by the 

approximate expression [14]: 
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where ∆t is the sampling time that we set equal to 1 s andG  is a matrix equal to: 
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Q  is a diagonal matrix representing the white noise on the accelerometers 
a

q  and gyros 
g

q that can be 
stated as:  
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In a loosely-coupled integration approach, the filter measurement is the difference between the INS 
and the GPS navigation solutions. The measurement vector is given by:  
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Following the approach suggested in [3], since φ and λ are in radians and their values are very 
small, we multiply the first two rows of Equation (19) by )( hRM + and ϕcos)( hRN +  to obtain: 
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The design matrix becomes: 
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Finally, the measurement noise covariance matrix is calculated as: 
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The value of each element in the diagonal matrix R depends on the accuracy of the GPS estimates. 
A detailed description of Kalman filtering combining models with measurements is reported in [15]. 
However, since we use a feedback loosely coupled approach, the error state vector is set to zero after 
every measurement updates [16,17,22]. 

2.3. Results 

Tests were carried out along a surveyed track located within CSIRO’s site in Pullenvale, QLD, 
Australia. A 3-D plot of the test track and is shown in Figure 4. 

Figure 4. Test track view and 3D plot. 

We investigated the algorithm’s performance using both simulated data and real data. In the first 
case we have generated synthetic gyros and accelerometers values along a path that perfectly matches 
the realistic scenario. This simulation will be used as a term of comparison with the results we 
obtained by working with real GPS and INS measurements on the field.  

We have also corrupted the simulated data, representing the inertial accelerometer and gyro, with 
noise sources resembling the typical characteristics of a low-cost MEMS IMU, as in Table 1. 

Table 1. Typical characteristics of a low-cost MEMS IMU. 

Gyroscope 
(Angular Rate) 

Noise (ARW) [ / h ] 

3 
 

Accelerometer 
Noise (VRW) [ Hzg /ω ] 

1000 

Simulated GPS positions and velocities’ estimates were also generated, and the variances of those 
measurements were set equal to the values reported in Table 2. 

Table 2. Simulated measurement variances. 

 
GPS 
Noise Variance (R) 
 

Position [m2] 

100 

Velocity [m/sec]2 

10 
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The variances of Table 2 refer to the case of unfiltered GPS measurements. By utilizing the synthetic 
GPS and INS data we were able to run the LC algorithm and the results can be seen in Figure 5. 

Figure 5. LC performance obtained by Simulation: Position (LLH), Velocity and  
Euler Angles. 
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We have repeated the test, by using this time, data directly read from the GPS and the IMU sensors: 

• raw gyro and accelerometer outputs from a 3DM-Gx2 INS after an initial calibration, 
• positions and velocities’ estimates from a Sirf JP13- Falcom GPS receiver. 

In our LC GPS/INS implementation, the process noise covariance, Q, was estimated through the 
Allan Variance technique which is detailed in [11]. The components of the measurement noise 
covariance, R, were selected as summarized in Table 3. 

Table 3. Noise covariance features. 

 
GPS 
Noise Variance (R) 
 

Position [m2] 

10 

Velocity [m/s]2 

0.2 

The results of such a GPS/INS hybridization technique are plotted in Figure 6. 

Figure 6. LC performance obtained with real data: Position (LLH), Velocity and  
Euler Angles. 
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Figure 6. Cont. 

 

It is clear from Figure 5 that the performance of the LC integration solution (red line) significantly 
improves the performance of the INS-only solution (black line). In fact, the LC approach trusts the 
GPS estimates (when they are available) and does not allow the INS navigation solution to drift. The 
main difference between the synthesized measurements and the real ones is that the positions obtained 
by the simulated GPS are centred on the reference track and the deviations are modelled as white 
noise. On the other hand, in a real scenario, the user’s position estimations at consecutive time instants 
are correlated because they are processed within the GPS receiver by a proper Kalman filter. Such 
measurements can have a bias offset with respect to the surveyed path (as it can be noted in Figure 6). 
This fact can be explained by considering that a GPS system has an accuracy that depends on several 
factors: quality of the GPS receiver, the algorithm used to compute the Position-Velocity-Time (PVT) 
with or without carrier phase information, the effect of ionosphere compensation in the PVT 
estimation, the number of visible satellites when the test is performed. Another aspect that is clear by 
observing Figures 5 and 6 is the different time required to the vehicle to complete the path when 
simulated or real data have been used. This fact should not be surprising if we consider the velocity 
profile of the two figures. By comparing the velocity along the eastern and northern directions, we can 
notice how the estimated speed is higher when real GPS data are applied with respect to the case of 
simulated data. As a consequence, the time necessary to run the trajectory will be shorter. Although the 
solution provided by GPS is sufficiently accurate (e.g. notice in Figure 6 the improvement in the Euler 
angles’ estimation when the INS is aided by the GPS), it is still unable to fulfil the requirements of 
continuity and reliability in many situations. In order to reduce the error of the GPS we have designed 
a LC integration scheme that uses a Kalman filter with some constraints. This aspect will be described 
in details in the next Section and details on constrained Kalman filters can be found in [23–26]. 

3. Loosely Coupled Integration Using Constraints 

3.1. Performance Assessment 

It is well known that GPS estimation is affected by a certain error that is strongly dependent on the 
number of satellites available for the PVT estimation. Thus, as a consequence, the LC solution trusts 
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the GPS position and velocity estimates in a way proportional to number of satellites in view. 
Therefore, the overall performance of the LC solution will leverage on the availability of the GPS 
updates. In order to improve the performance with respect to the results shown in Figures 5 and 6 we 
have designed a Kalman filter that exploits additional aiding information. In particular, we have 
considered an external source that provides some additional geographical data. For instance, such 
pieces of information can be obtained by the Google Maps service, as shown in the block diagram 
depicted in Figure 7. Such an implementation requires that the user is equipped with a smartphone 
designed to embed a GPS receiver, accelerometers and gyros sensors as well as a communication 
transceiver able to establish a wireless internet connection. In this way the user is able to receive 
information about the road being travelled, as provided by the Google Maps (GM) service. 

Figure 7. A closed-loop Loosely Coupled GPS/INS integration scheme with constraint. 

As far as the accuracy of GM is concerned, the last improvements in terms of position precision 
developed by Google on GE and GM can be found in [27]. It has been shown in [28] that comparing 
GM and Google Earth (GE), the difference between the two mapping systems is of 2.5 m. On the other 
hand, when he repeated the test by plotting the point on high-accuracy map he noticed a difference of 
10 m with respect to the GM. 

This means the GM can not be used for systems that require a high level of accuracy but it could be 
fine for mass-market applications. Another concern of using a Google Maps service is the process of 
receiving the map information should be quick enough to be applied in real-time and the internet 

Google Maps 

Road 
Constraints 

 

Loosely 
Coupled 

n
INSr n

INSv

n
GPSr n

GPSv
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connection should always be available for all the duration of the test. If this happens we can build up  
a more complex LC scheme that also integrates street constraints to estimate the user’s position  
and velocity. 

In Figure 8 an example of results obtained using as constraints the boundaries of the road is shown. 
The blue line represents a simulated GPS position estimation over time whereas the red line indicates 
the boundary of the path the user is driving along. Both the GPS and constraint information are 
expressed in latitude, longitude and altitude coordinate respectively. In this example we have supposed 
the street is 10meters wide in both latitude and longitude. As for the altitude we have considered that 
the GPS estimation can be acceptable only when it falls within an interval of 4 meters with respect to 
the altitude information received by Google Maps. The boundaries of the hypothetical road have been 
computed setting the offsets ∆݊ ൌ 10 ሾ݉ሿ, ∆݁ ൌ 10 ሾ݉ሿ and then obtaining the Coordinates offsets  
(in radians) ∆߮ ൌ ∆ோ  and ∆ߣ ൌ ∆ோ ୡ୭ୱቀ ഏകభఴబቁ, where R = 6378137 [m] is the Earth radius and where ϕ , λ  

are the latitude and longitude coordinates as stated in Equation (2).  
The offset in the position in decimal degrees is obtained as ߮ ൌ ߮  ∆߮ ଵ଼గ  and  ߣ ൌ ߣ  ߣ∆ ଵ଼గ . 

Figure 8. Example of constraints on position. The boundaries of the street are shown (red 
lines) and the user position has been approximated as affected by a white noise (blue). 
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Constraint information can be added by increasing the dimensions of the output mapping matrix H  
of Equation (21) and the measurements z  of Equation (20) as: 
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R =

(RM + h)2 ⋅σφ GPS
2 0 0 0 0 0 0 0 0
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(25)

As previously explained also in this case constraint information are computed in LLH coordinate 
system. The variances of the map measurements need to be well-selected so that the resulting position 
estimates fall within the constraint boundaries. 

3.2. Results 

The position estimates calculated from simulated data are shown in Figure 9, comparing the LC 
solution using both synthetic and real measurements with and without Map constraints.  
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Figure 9. LC with and without constraints (a) and Trend of error 3D (b). 

 
(a) 

 
(b) 

It can be seen from Figure 9(b) that the use of additional constraint information can improve the 
performance. Without constraints the absolute value of the average error is 8.036 m, while with 
constraints the error is reduced to only 3.056, with an improvement of almost 5 m. 

The same approach has been used with Google-Maps-sourced altitude information. In this case we 
have chosen a noise variance of 4 m2 for the height constrained filter. The calculated altitude position 
errors using simulated GPS and INS measurements are shown in Figure 10. 
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The mean error without additional altitude information is 3.69 m, whereas with constraints the 
mean error is 1.05 m, thus yielding an improvement of about 2.5 m. 

Figure10. LC without constraints (a) and with constraints (b). Error trend of altitude (c). 

 
(a) 

 
(b) 

 
(c) 

4. Loosely Coupled & GPS Outages 

The powerful synergy between the GPS and INS makes the combination of these two navigation 
technologies a viable position option. GPS, when combined with MEMS inertial devices, can restrict 
their error growth over time and allows for online estimation of the sensor errors, while the inertial 
devices can bridge the position estimates when there is no GPS signal reception. Generally speaking, 
during GPS outages the LC position estimates follow INS-only navigation solution [3]. As a 
consequence when dealing with low-cost IMU such as the MEMS, the position estimation error grows 
with time due to the IMU error growth, thus causing a drift in the solution that compromises the long 
term accuracy of the system. The performance of our LC solution in case of GPS outages of a duration 
up to 50 seconds is shown in Figure 11. 
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Figure 11. LC in case of GPS outage- Error in case of outage with LC algorithm. 

 

 

As shown in Figure 11 the error is about 400 m after a 50 s GPS outage. This quick drifting of the 
position from the expected one is justified by the low quality of the INS we have used. During the GPS 
unavailability, the Kalman filter works in prediction mode where the navigation solution leverages on 
the INS’s accelerometers and gyroscopes only. In order to reduce the error further, we employ a  
time-varying measurement covariance to take into account that the inertial error grows with time.  

We have designed a Kalman filter that, by propagating the last GPS information available, corrects 
the position and velocity estimation as computed by the INS navigation equation only. A block 
diagram that depicts this strategy is shown in Figure 12. 
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Figure 12. New approach in case of GPS outages. 

 

As we mentioned before, we exploit the last received GPS position information, namely 

[ ] wFr
rr

n +=δ  (26)

The covariance matrix ܳ 
associated with the discrete-time noise vector w is the same as in (16). 

Concerning on the noise covariance matrix of the states Q , it can be written as: 
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The measurement vector z  becomes:  
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The output mapping matrix is given by: 
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The noise covariance corresponding to (28) is:  
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The time-varying measurement noise covariance results in a time-varying gain )(tK . At the 
beginning of a GPS outage, the GPS estimates are weighted more than the INS outputs. As long as the 
outage time increases, such weight is decreased. An example of )(tK with a linear trend over time is 
depicted in Figure 13. 
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Figure 13. K(t) linear profile. 

 

The performance resulting from the use of a time-varying measurement noise covariance yields is 
shown in Figure 14. 

Figure 14. LC in case of GPS outage with weigthening of the last available GPS solution. 

 

It can be seen from Figure 14 that the use of a time-varying measurement covariance can provide a 
reduction of the error that now has a magnitude of about 100 m after a 50 s GPS outage with respect to 
the cases of traditional GPS/INS loosely coupled approaches (i.e., with and without constraints). In this 
analysis the constrained LC has been designed to add boundaries on the altitude axis only. 

For the real scenario we have developed a similar Kalman filter that works by using the last 
available velocity information of GPS. The state-space matrices for the Kalman filter are: 

wFv
vv

n +=δ  (31)

The definition of all the variables in Equations (26)–(31) is the same as in Section 2 for the 
Equations (10)–(13) respectively. 
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The G matrix becomes:  
n
bRG =  (32)

and the noise covariance matrix Q  of the model is: 

)(
a

qdiagQ =  (33)

For the measurement we can write:  
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The design matrix H  that bounds the measurements to the error-states becomes:  
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and thus the noise covariance is: 
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α(t) defines the rate at which the noise covariance matrix (referred to the measurements) increases  
over time. 

We assumed that the parameter α increases very slowly with time (as the velocity of the user was 
almost constant) as shown in Figure 15. 

Figure 15. α design for Kalman filter. 

 

We have run again the LC solution after having included the modified noise covariance matrix in 
the Kalman filter design. In particular, Figure 16 highlights the altitude error by using different LC 
integration approaches. It follows from Figure 16 that the two LC solutions that adopt an adaptive 
measurements’ noise covariance matrix can provide significant improvement during GPS outages. 
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Figure 16. LC in case of GPS outage with weighting strategies. 

 

For example the first method that uses the last user’s position information, as provided by the GPS 
module, gives an error of about 20 m after 45 s of outage with a reduction of almost 30 m with respect 
a traditional un-constrained LC algorithm that is able to exploit the GPS data only when available and 
relying on the INS-only navigation during the period of GPS unavailability. The Kalman filter, that 
exploits the last received update of the GPS velocity and the time-varying weights, provides the best 
performance with an error after 40 s of only 12 m. 

5. Conclusions 

This paper addresses the subject of loosely-coupled GPS/INS integration. In particular, we have 
designed a nine states Kalman filter that gives a correction to inertial derived position, velocity and 
Euler angles by exploiting the available GPS measurements. We have demonstrated the performance 
of this approach using simulated and real measurements. 

In order to improve the LC performance, a constrained approach has been described. Use of maps 
or altitude constraints can provide benefits in the accuracy of the navigation solution. For example, 
with simulated measurements, the three-dimensional root-mean-square error (latitude, longitude and 
altitude) has been reduced of 5 m. In the case of real measurements, a 2.5 m reduction in altitude error 
has been observed. 

In addition, we have examined the performance of loosely-coupled integration solutions when GPS 
outages occur. When GPS information is not available we rely on INS estimates. In order to improve the 
error during outage times we have developed two solutions to improve performance that exploits an 
adaptive Kalman filter whose measurement’s noise covariance varies over time according to the last GPS 
update. From the results, it is observed that using the last received GPS position and velocity information 
can lead to decrease the position error between 30 m and 40 m when a 50-s-long GPS outage occurs. 
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