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Abstract: A novel and practical self-calibration method for misaligned non-central 
catadioptric cameras is proposed in this paper. Without the aid of any special calibration 
patterns in the scene, the developed method is able to automatically estimate the pose 
parameters of the mirror with respect to the perspective camera. First it uses the ellipse 
corresponding to the mirror boundary in the image to compute the possible solutions for 
mirror postures. With two pose candidates, thereafter we propose a novel selection method 
to find the correct solution by using the image of the lens boundary. The whole calibration 
process is automatic and convenient to carry out since nothing more than a single image 
acquired from the catadioptric camera is needed. Experimental results both on synthesized 
and real images prove our success. 

Keywords: non-central catadioptric camera; self-calibration; mirror posture; mirror 
boundary; lens boundary 

 

1. Introduction 

A catadioptric camera system usually consists of a revolutionary symmetric reflective mirror and a 
conventional perspective camera observing a scene reflected by the mirror. Such vision systems 
featuring the advantage of large field of view are being increasingly used in many applications [1–3], 
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such as mobile robot navigation, video surveillance, virtual reality, outer space exploration and 3D 
reconstruction. Depending on whether they pose a single viewpoint [4,5], catadioptric cameras can be 
classified as central or non-central imaging systems. 

Since camera calibration is a preliminary step in most applications, a variety of calibration methods 
for catadioptric systems have been reported. Currently most of these calibrations focus on central 
systems due to their popularity and relatively mature computing theories. However there are only a 
few combinations of mirror type and camera can have the opportunity to meet the single viewpoint 
requirement, which are insufficient for lots of applications. Furthermore when misalignment happens, 
all of the central catadioptric cameras become non-central, aside from when the mirrors are not the 
type in the central list [6]. Therefore non-central catadioptric systems are more general and the 
researches of calibration on them are of greater importance.  

Calibration works on non-central systems can be divided into two categories. The first one focuses 
on non-central mirrors with unknown parameters and tries to model and calibrate them [5,7–9].The 
model is called caustic surface which represents the actual locus of the viewpoints. They use known 
light patterns [5] or known camera motion and point correspondence [7] to calculate the caustic. In [9], 
it was reported that three polarization images taken with different orientations could estimate the 
caustics of any combination of specular mirror and lens. During the calibration they assume the 
perspective camera is co-axial with the symmetric axis of the mirror. The second category [3,6,10,11] 
models the non-central system as a generalized camera where each pixel in the image corresponds to 
an incident ray reflected by a special point on the mirror. Micusik et al. [6] calibrated non-central 
cameras in two steps. First an approximate central camera is calibrated and then the non-central model 
was used to finish the 3D reconstruction. In [3] and [11] the forward projection model to calculate the 
reflective point on the mirror by non-iterative algorithms was proposed and used in motion estimation 
and 3D reconstruction. They all assume the coaxial mounting of the mirror and the perspective camera. 
Another major part of the researches in this category can deal with the misalignment between the 
camera and the mirror. Fabrizio et al. [10] presented a method which uses the internal and external 
mirror boundaries to calibrate the perspective camera and its posture relative to the mirror. In their 
configuration, a black needle was specially designed and mounted at the bottom of the mirror to 
provide the internal calibration circle. Mashita et al. [12] used the mirror boundary and a number of 
lines at infinity to estimate the mirror posture. Nonlinear optimization algorithms are commonly used 
in the calibration [11,13–15]. Strelow et al. [14] and Goncalves and Araujo [15] proposed methods for 
calibrating part and full parameters of the entire non-central camera systems by using bundle 
adjustment. They use preset calibration patterns in the scene and calculate the unknown parameters by 
minimizing the re-projection error. The accuracy of these methods mainly relies on the goodness of 
initial values because of nonlinear optimization. The majority of those misalignment-calibration 
methods can only deal with slight misalignment due to the assumptions they make in their algorithms. 
Caglioti [16] proposed a calibration algorithm for large off-axis non-central cameras by using line 
patterns. However they need the profile of the mirror to be seen in the image, which is not very 
practical in lots of cases. Recently Agrawal [3] extended their original work [17] to an off-axis forward 
projection model.  

In this paper, we propose a novel self-calibration method for non-central catadioptric systems by 
using the camera itself as calibration pattern. Our method belongs to the second category listed above 
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and is not subject to the constraint of slight misalignment. Like [10] and [12], we use the mirror 
boundary as the main reference pattern. However, unlike [10] and [12], where specially-designed 
needles or lines are used as extra calibration patterns, we do not need any extra calibration patterns 
apart from camera itself. We use the lens boundary of the perspective camera as extra condition. To 
our knowledge it is the first time that the calibration of anon-central system without using any extra 
calibration patterns apart from the camera itself is reported. 

We focus on calibrating the relative pose between the perspective camera and the mirror. First, we 
use the ellipse-shaped mirror boundary image to estimate the four possible mirror postures based on 
Chen’s extrinsic calibration method [18]. In order to remove the ambiguity of mirror posture, we then 
present a novel selection method making use of the imaged lens boundary to find the correct solution. 
Experiments conducted both on simulated data and real images confirm the performance of the 
proposed method. 

In the following section the general model of non-central camera is briefly explained. After giving 
the algorithm idea in Section 3, Sections 4, 5, and 6 describe the three main steps of our algorithm in 
detail. Experimental results both on simulated data and real image are represented in Section 7. Finally, 
conclusions are given in the last section. 

2. Camera Model 

2.1. General Configuration of the Camera System 

Figure 1 shows the general configuration of a catadioptric camera system, where the camera and the 
mirror coordinate systems are denoted with the subscripts “C” and “M” respectively. Due to the 
misalignment the rigid body transformation between the two coordinate systems, i.e., the rotation ࡾெ 
and translation ܂ெ, drifts from the ideal configuration and makes the system non-central. 

Figure 1. General configuration of the non-central catadioptric camera system. 

 

The full model of the non-central system should include the parameters of the mirror and the 
conventional perspective camera as well as the relative posture between the mirror and the camera. 
Generally the manufacture of the mirror can be fairly accurate and the deviation from the theoretic 
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design could be very small. Meanwhile the intrinsic parameters of the perspective camera can  
also be computed in advance by some mature algorithms like the calibration toolbox from  
Jean-Yves Bouguet [19], and they do not change when misalignment of catadioptric system happens. 
Therefore we believe it is reasonable and valuable to find a good self-calibration method by computing 
the relative posture between the mirror and camera given their intrinsic parameters. 

2.2. Perspective Camera Model 

Let ܺ ൌ ሺܺ, ܻ, ܼሻ்  be the coordinates of a 3D point in the camera coordinate system and ࢛ ൌ ሺݑ, ,ݒ 1ሻ்be the homogenous coordinates of the image point respectively, according to the pinhole 
model we have:  

 (1) 

where s is a scale factor and ۹ is the camera intrinsic matrix. For off-the-shelf camera the radial 
distortion in the image has to be removed before calibration with Equation (2): 

 (2) 

where  ݇ଵ, ݇ଶ are radial distortion coefficients ሺݔ, ,ௗݔሻ and ሺݕ  ௗሻ are the undistorted and distortedݕ
normalized image coordinates, respectively. The intrinsic parameters of the perspective camera can be 
calibrated independently and are assumed known in advance throughout the paper. 

3. Algorithm Idea 

The idea of the calibration algorithm will now be described. Before calibration a calibrating image 
should be acquired from the catadioptric camera. Different from most of the existing calibration 
methods, there is no any special calibration pattern in the environment. The only requirement for the 
image is the mirror boundary and the lens boundary or at least part of them should be clearly visible in 
the image, which is true for most of the catadioptric cameras. Now it is required to determine the 
mirror posture relative to the camera coordinate system. The steps of the algorithm are as follows. 

(1) Image preprocessing and robust ellipse extracting. The images of the mirror and lens boundary 
can be extracted and fitted with ellipses, which actually encodes the mirror posture (Section 6). 

(2) Mirror posture computing based on the imaging ellipse of the mirror boundary. It is a  
non-iterative method and finally two posture candidates are obtained (Section 4). 

(3) Correct posture selecting based on the image of lens boundary. During the selection process, 
the unknown position of the real lens boundary relative to the optical center should also be 
estimated simultaneously (Section 5). 

The steps of this algorithm will be described in detail in the subsequent sections of the paper. The 
main subject of this paper comprises the last two steps of this algorithm, which will be described first. 
The first step is of peripheral interest, and a description of the robust method used for automatic ellipse 
extracting and fitting will be postponed to a later section. 
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4. Computing Mirror Posture Candidates 

As show in Figure 1, the mirror posture can actually be represented by the transformation between 
the camera coordinate system ܱ െ ܺ ܻܼ  and the mirror coordinate system ܱெ െ ܺெ ெܻܼெ . With 
intrinsic parameters of the perspective camera in hand, the next step is to compute the possible 
solutions of mirror postures by using the image of the mirror boundary. We apply Chen’s method [18] 
to accomplish this. Considering a camera coordinate system ܱ െ ܺ ܻܼ  that the origin ܱ  is the 
optical center and the ܼ-axis is the optical axis asshown in Figure 1, the imaged mirror boundary can 
be described as an ellipse with the following form: 

 (3) 

The quadratic form of Equation (3) is: 

 (4) 

where ܝ ൌ ሺݑ, ,ݒ 1ሻ் represents the image coordinates of the points in the ellipse and: 

 

(5) 

Substituting ܝ in Equation (4) by Equation (1), an oblique ellipse cone in the camera coordinate 
system is obtained as follows: 

 (6) 
where: 

 (7) 

As shown in Figure 1, a mirror boundary coordinate system  ܱ െ ܺ ܻܼ (the subscript “mb” 
stands for “mirror boundary”) is defined where the origin ܱ overlapswith the optic center  ܱ and ܼ-axis parallel with the unitnormal vector of the supporting plane of the circle to beviewed. The 
circle of mirror boundary centered at  ۱ ൌ ሺݔ, ,ݕ ሻ் on  ܼݖ ൌ ܼ  plane with known radius  ݎ  
can be described as: 

 (8) 

where: 

 (9) 

and Xmb is the mirror boundary points represented in the mirror boundary coordinate system. 
Based on the definition of the two coordinate systems, only a rotation RM exists between the camera 

and mirror boundary coordinate system and the relationship can be expressed as: 

(10) 
Integrating Equations (6), (8) and (10) we have: 
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 (11) 

To solve the above equation, first we convert QC into a diagonal matrix by eigenvalue decomposition: 

 (12) 

where Λ = diag{λ1,λ2,λ3}, V = (v1,v2,v3). From Equations (11) and (12), we get: 

 (13) 

where R = VTRM. We assume and , Solving RTR = I and Equation (13), we finally get 

R according to [18], where θ is a free variable,  ଵܵ  and  ܵଶ  are undetermined signs, and  
g1 = ඥሺߣଶ െ ଵߣଷሻ/ሺߣ െ ଵߣଷሻ, g2 = ඥሺߣ െ ଵߣଶሻ/ሺߣ െ  :ଷሻߣ

 (14)

And from Equations (12), (13) and (14), the rotation from the mirror boundary coordinate to the 
camera coordinate is: 

 (15) 
Finally we can describe the center of the circle and unit normal vector of the supporting plane in the 

camera coordinate system by the following expression: 

 (16) 

where  ܵଷ  is an undetermined sign. Equation (16) gives a total of four sets of possible solutions 
although some of them are not physically possible, as shown in Figure 2. 

In the mirror coordinate system  ܱெ െ ܺெ ெܻܼெ, being the central symmetric axis of the mirror, the ܼெ-axis is parallel to the vector ܖ while the origin ܱெ  does not overlap with the optical center. The 
translation between the mirror and the camera coordinate system is obtained by Equation (17), where ݄݀  is the distance from the mirror boundary center to ܱெ. 

 (17) 

Constraining  ܖ  points back towards the camera and ܥ lies in front of the camera as follows: 

(18) 

we can get two candidate solutions  ൛܀ெ , ெ܂ ൟሺ݅ ൌ 1,2ሻ  of the mirror posture which are both  
physically possible. 
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Figure 2. Illustration of four possible solutions. 

 

5. Mirror Pose Selection 

Obviously more constraints are necessary to finally select the correct solution from the obtained 
posture candidates. In order for the calibration method to be independent of any special designed 
calibration patterns, we propose a novel method to achieve this by using the image of the  
lens boundary. 

In the calibrating image, the lens boundary of the camera can also be easily observed in the center 
part of the image. The observed lens boundary in the image, whose size and position depends on the 
posture and the shape of the mirror, can be represented by a closed curve. Normally the curve is 
difficult to describe strictly by some special type of conics. For the revolutionary symmetric mirrors 
used in the catadioptric system, we find fitting the curve into an ellipse is accurate enough for the pose 
selection purpose, as we will see in the experiments. Theoretically, given the 3D position and the size 
of the lens boundary in the camera coordinate system, the correct posture can be selected by checking 
the similarity between the “observed” and the “predicted” lens boundary. There are two ways to define 
the “observed” and the “predicted” boundaries, each of which corresponds to checking the similarity 
under 2D image plane or 3D camera coordinate. In the 2D image plane, the “observed” one is the real 
ellipse we obtained and the “predicted” one is an ellipse computed by projecting the lens reflection on 
the mirror to the image plane. That is what our previous work has done [20] and it needs to calculate 
the reflective point on the mirror for each point on the lens boundary. The calculation has to be 
finished by a nonlinear optimization process and is very time-consuming. Here we propose a better 
way to check the similarity, where the “observed” is the real lens boundary in 3D camera coordinate 
and the “predicted” is the intersecting curves of a “cutting plane” with the reflective “cone” composed 
of the incident rays from the lens boundary. The “cutting plane” is actually the plane where the lens 
boundary lies in the camera coordinate system. For each pixel in the imaged lens boundary, the 
corresponding mirror points can be computed straightly and consequently the reflective “cone” can be 
obtained. Therefore this algorithm is much more effective. 
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Figure 3. Relative position among lens boundary and three other coordinate systems: 
camera (blue), mirror (red) and mirror boundary (green). 

 

However, in practice not all of the parameters of the lens boundary are known. Among those 
unknown the most important are the position parameters. Only the radius of the lens boundary can be 
found in the data sheet of the lens. By reasonably assuming the plane where the lens boundary lies be 
parallel with the X-Y plane of the camera coordinate system, the distance of the plane to the optical 
center is still left as an unknown. Therefore we need to estimate the distance of the lens boundary and 
select the correct mirror posture solution simultaneously.  

Apparently this selection method can be applied to any type of the mirror as long as the mirror 
parameters are known. For simplicity we take the common hyperboloidal mirror as an example to 
explain the computing process. 

The hyperboloidal mirror can be expressed by Equation (19): 

 
(19)

Transforming Equation (19) into the canonical form yields: 

(20) 
where: 

 (21) 
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 (22) 

Given the mirror parameter  ۿ ሺ݅ ൌ 1,2ሻ, the next step is to obtain a reflective cone emitting from 
the mirror corresponding to the image of lens boundary. Due to the nonlinearity of the mirror shape, 
it’s difficult to obtain a linear matrix form for the reflective cone. However as shown in Figure 3, the 
cone can be represented by a set of discrete reflective rays  ܚܞ  emitting from the mirror point , where 
each ray  ܚܞ  corresponds to a sampling point ܝሺ݆ ൌ 0,1,2, ڮ , ݊ሻ in the imaged lens boundary.  

In camera coordinates, from the perspective projection model, we have: 

 
(23) 

Therefore the incident ray  ܞ ൌ ,ଵݒൣ ,ଶݒ  :  can be parameterized asݑ  ଷ൧் corresponds toݒ

 (24) 

With the normalized incident ray ܞത ൌ ሻߣೕฮ in hand, the reflective mirror point ܵሺܞೕฮܞ ൌ  ത்   1൧்ܞߣൣ

can be determined by the factor which satisfies Equation (25): 

 (25) 

Expanding Equation (25) yields a quadric equation about  ߣ . By imposing a positive depth 
constraint the correct root ߣ can be selected from the solution and hence  ܁  can be determined. The 
normal vector to the quadric mirror at the reflective point is given by the first three coordinates of the 
tangent plane  Пே ൌ  :. The normalized normal vector is thus given by܁ۿ

 
(26) 

where  ۷ଷ  is a  3 ൈ 3  identity matrix. The reflective vector  ܚܞ  can then be obtained according to the 
law of reflection: 

 (27) 

Now we have two set of rays  ܚܞሺ݅ ൌ 1,2; ݆ ൌ 1,2, ڮ , ݊ሻ which represent two reflective cones 
corresponding to the two posture candidates respectively. As shown in Figure 3, the lens boundary 
with radius  ݎଵ  lies ahead of the optical center  ܱ  with distance  ݄ଵ. Two sets of intersecting points  ۾  can be obtained by intersecting the rays  ܚܞ  with the “cutting plane” at a distance ݄ଵ  to  ܱ . 
Writing ܁ ൌ ൣ ଵܵ, ܵଶ, ܵଷ, 1൧் and  ܚܞ ൌ ,ଵݎݒൣ ,ଶݎݒ  : can be computed by Equation (28)۾  ,ଷ൧்ݎݒ
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set of ۾ can be obtained by Equation (28). The set of the points can be fitted into an ellipse whose 

center ܱሺ݅, ݄ଵሻ ൌ ቂ ௫ܱሺ,భሻ, ௬ܱሺ,భሻ, ݄ଵቃ்
 and the length of the major axis ܽሺ݅, ݄ଵሻ  and minor axis  ܾሺ݅, ݄ଵሻ  are all the functions of variables i and h1 and can all be computed, respectively. Obviously 

the correct i and h1 should result in a circle with radius  ݎଵ  and central coordinates  ሺ0,0, ݄ଵሻ் . 
Therefore it is reasonable to construct an error function E measuring the difference between the 
intersecting ellipse and the real lens boundary as follows: 

 (29)

In Equation (29) the first term and the second term of E represent the central position error and the 
radius error respectively. Finally, the correct i and h1 can be obtained byminimizing the function, that is: 

 (30) 

The function E is difficult to differentiate analytically, therefore a derivative-free optimizer is 
preferred. The downhill simplex method is a good candidate for this type of optimization [21]. 

6. Robust Ellipse Extracting and Fitting 

In order to estimate the mirror posture, ellipses of the mirror and lens boundaries in the image need 
to be extracted accurately. Given a calibrating image, we propose a robust method to finish the ellipse 
extraction task automatically. First the Canny operator is applied to obtain an edge image. Then by 
using two Regions of Interest (ROIs) where the mirror boundary and lens boundary should appear 
respectively, most of the edge pixels outside the ROIs are removed. Meanwhile edge pieces with small 
length are also deleted from the image. After that, we do iterative least mean square ellipse fitting to all 
the remaining pixels within each ROI until convergence. As can be seen from Figure 10, the ideal 
mirror and lens boundary in the image appear to be the outmost and inmost elliptical contour. For 
mirror boundary, the initial fitted ellipse always sits inside the real boundary due to the existence of 
non-boundary pixels. Therefore during each iteration those edge pixels staying inside the fitted ellipse 
are removed so as to “expand” the fitted ellipse in the next iteration. A similar process is applied to the 
lens boundary except that a “shrinkage” strategy is used. The iteration continues until the fitting error 
is less than a threshold. To further improve the fitting accuracy, 5-point RANSAC ellipse fitting is 
applied to the rest edge pixels and the final optimal ellipse parameters can be obtained [22,23]. The 
advantage of this technique is that it can automatically extract the ellipse and obtain the ellipse 
parameters with high accuracy. 

7. Experiments 

To verify the proposed self-calibration method, some experiments based on simulation data and real 
images were carried out. 

7.1. Experiment with Simulation Data 

Based on the simulated camera configuration listed in Table 1, the synthesized imaging ellipses of 
the mirror and lens boundaries can be easily generated for calibration, respectively. 
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Table 1. Simulated camera configuration. 

Intrinsic Parameters 

Focal Length (pixel)  

Skew Coefficient  

Principal Points ,  

Mirror Parameters 

Mirror Boundary radius (m)  

Major axis (m)  

Minor axis (m)  

Lens Parameters 
Lens Boundary radius (m)  

Height From Optical (m)  

Mirror Posture 

Mirror Center to ܱெ (m)  

Normal vector 

Mirror Center (m)  

The calibration results are summarized in Table 2. They show that the calibration method is 
effective and the proposed selection method does find the correct pose solution and the height  ݄ଵ.  

Table 2. Calibration results with simulated data. 

Parameters Solution 
Mirror Center   (m) ,  

Translation  ܂ெ (m) ,  

Rotation  ܀ெ ,

Height  ݄ଵ (m)  

Calibration Result , ,  

Figure 4 shows the typical variance of the position and the size of the two predicted lens boundaries 
with respect to the actual one within  ݄ଵ’s supporting region. Figure 5(a–d) shows the central error, 
radius error, and combined average error between the predicted and the actual lens boundary 
respectively. From the two figures we can confirm that the minimum average error is reached when ݄ଵ 
is near 0.02 m, and the correct pose solution has been selected out.  

The results listed in Table 2, Figures 4 and 5 did not consider the noises which usually exist in the 
process of the boundary imaging, edge extraction and ellipse fitting. To see the robustness of the 
calibration method in the presence of noise, we added zero-mean Gaussian noise with standard 
deviation  ߪ to the sampled points on the image of mirrorboundary and lensboundary. ߪ  varies from  
0 to 5 pixels in 0.5 pixel steps. For each noise level, the mirror posture and ݄ଵareestimated by our 
algorithm. The difference between the estimated parameters and the ground truth were recorded as an 
error measurement. The resulting error of  ܖ  (angles, unitin degree), the error of ۱  (Euclidean 
distance, unit in meters) and the relative error of the detected  ݄ଵ  are shownin Figure 6. In all of the 
test cases, the calibration algorithm produced stable posture choices and the solution closer to the 
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ground truth was correctly found. The results show that the proposed algorithm is robust in the 
condition of different noise levels. 

Figure 4. Illustration of the actual (black) and the two sets of the predicted (red and blue) 
lens boundaries. 

 

Figure 5. (a) Central position error with respect toh1. (b) Radius error with respect to h1. 
(c) Combined error E with respect to h1. 

 

Figure 6. Calibration errors w.r.t. noise level: (a) direction error of the normal vector. 
(b) position error of the mirror center. (c) relative percentage error of the detected h1. 

 
  

(a) (b) (c)

 
  

(a) (b) (c)
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7.2. Experiment with Real Images 

7.2.1. Catadioptric Camera Setup 

The catadioptric camera system we used for real data experiment is made by NEOVISION and is 
shown in Figure 7. It consists of a H3S hyperbolic mirror and a Sony XCD-SX910CR camera and was 
originally made as a central single viewpoint camera. More specifications of the system are listed in 
Table 3.We deliberately changed the relative position between the mirror and the camera, making it 
bias from the factory configuration. Therefore it was not a central camera again and actually became a 
new non-central catadioptric system. The intrinsic parameters of the conventional camera  
XCD-SX910CR are listed as follows: ௫݂ ൌ 1455.07, ௬݂ ൌ 1459.51, ݇௦ ൌ ݑ ,0 ൌ ݒ ,639.2 ൌ 482.2 
the image resolution is 1,280 × 960. The radius of the lens boundary is: ݎଵ ൌ 0.0185݉. 

Figure 7. (a) The NEOVISION catadioptric camera system used in our experiment.  
(b) The omnidirectional image acquired by the system.  

 

Table 3. H3S hyperbolic mirror specification. 

Type hyperbolic 

 

Major Axis 28.0950 mm 

Minor Axis 23.4125 mm 

7.2.2. Ellipse Extracting and Fitting Results 

Figure 8 shows the calibration image and its canny detection result. Figure 9(a,b) shows the average 
fitting error of two boundaries with respect to the iteration number, respectively. It demonstrates that 
our iterative ellipse fitting process can refine the boundaries and quickly leads to convergence.  
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Figure 8. (a) Undistorted omnidirectional image. (b) Canny detection result. 

 

Figure 9. (a) Average fitting error of mirror boundary with respect to the fitting iterations. 
(b) Average fitting error of lens boundary with respect to the fitting iterations.  

 

Figure 10. Final result of ellipse fitting. 

 

After using the remaining edge pixels for 5-point RANSAC, we get the final extracted and fitted 
ellipses, as shown in Figure 10. The ultimate average fitting errors of mirror and lens boundaries are 
0.0022 and 0.0071 pixels, respectively. 

7.2.3. Real Image Calibration  

As we have the ellipse parameters of the mirror and the lens boundaries in hand, we apply our 
calibration algorithm to Figure 10. The final solution obtained is listed in Table 4. The resulting 
combined error between the actual and predicted lens boundary was 2.263 mm, which is very 
satisfying considering the existence of imaging noises. 
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Table 4. Calibration results of real image. 

Parameters Solution 
Mirror Center ۱(m)  

Translation ܂ெ (m)  

Rotation ܀ெ  

Height ݄ଵ (m)  

7.3. Applications 

7.3.1. Image Transformation 

In this section, we evaluate the performance of our calibration method by image transformation. 
Since our catadioptric camera system does not maintain the single viewpoint characteristic, we cannot 
transform the whole omnidirectional image into a perspective one, but it is still possible to transform a 
patch of acquired image by assuming an approximate single viewpoint. 

Figure 11. Illustration of finding an approximate single viewpoint. 

 

As shown in Figure 11, we try to find a virtual single viewpoint vp by minimizing the sum of the 
angle error between each real ray vr and the virtual ray vr' originated from the viewpoint vp, as 
expressed in Equation (31): 

 (31) 

Figure 12(a,b) shows the original omni-directional image and the zoom-in view of the sub-image 
area to be converted, respectively. Figure 12(c) shows the perspective image transformed by the ideal 
mirror posture from factory configuration. Figure 12(d) shows the perspective image transformed from 
our calibration results. In the images one can easily observe the difference caused by the change of 
viewpoint, which corresponds to the bias of the “real” viewpoint from the ideal one. Other rectifying 
effects such as removal of distortion of the lines are comparable and not very distinct due to the low 
resolution of the image.  
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Figure 12. (a) Original omnidirectional image. (b) Sub-image area to be converted.  
(c) Perspective image produced by ideal configuration. (d) Perspective image produced by 
our calibration results. 

 

7.3.2. 3D Reconstruction 

To further verify the performance of our calibration algorithm quantitatively, we employed a 
trihedral object composed of three orthogonal checker patterns of known size (Figure 13(a)) and 
computed the angles between normal vectors of each checkerboard plane. First a sub-image containing 
the trihedral object was transformed into a perspective one using the method described above. Then a 
traditional camera calibration toolbox [19] was used to compute the normal directions of the three 
checkerboard planes respectively. Finally the three angles Θ1, Θ2 and Θ3, as shown in Figure 13(a) 
can be obtained. 

Two different non-central configurations are designed for the experiment. The first configuration is 
denoted as “slightly non-central” which means the mirror focus is only biased a little from the ideal 
position. The second configuration is denoted as “medium non-central” which has several centimeters 
in the translation and several degrees in the rotation away from the ideal case. The posture parameters 
from the default factory configuration, Mei’s calibration method [24] and our method are used for 
computing the angles, respectively. In each configuration 10 images with the trihedral object at 
different positions around the camera are acquired and the average values of the computed angles are 
recorded in Table 5. The three angles should all be 90 degrees in an ideal situation. From the table, we 
can see that angles calculated from our calibration algorithm are better than results from the default 
factory configuration in both configurations. For the slightly non-central case the results from our 
method and Mei’s are comparable, while for the second case our method shows superior performance 
than Mei’s. The reason is Mei’s method is only designed for the central camera while our method can 
deal with the central and non-central situation equally.  
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Table 5. Angles between normal of the planes in trihedron. 

Methods 
Slightly non-central/degrees Medium non-central/degrees
Θ1 Θ2 Θ3 Θ1 Θ2 Θ3 

Factory Configuration 85.37 96.58 83.65 93.41 107.99 91.33 
Mei’s Method 87.65 91.12 88.70 92.01 62.54 65.25 
Our Method 88.10 92.31 89.06 89.98 89.36 91.07 

Figure 13. (a) Trihedron used in experiment. (b) Real image with trihedron in the scene. 

 

8. Conclusions 

A novel self-calibration method for non-central catadioptric cameras is proposed in this paper. We 
use the mirror boundary in the image to obtain the possible mirror posture candidates, and then select 
the correct solution by using the image of the lens boundary. In the implementation stage we also 
presented a robust ellipse extraction algorithm based on iterative outlier rejection followed by 
RANSAC. Both the computer simulation and real data have been used to test the proposed technique, 
and very satisfying results have been obtained. The calibration method is not subject to the constraint 
of slightly non-central misalignment and is able to calibrate the non-central camera in a single image 
using only the catadioptric camera itself. This also makes the method qualified for on-the-fly 
calibration processes and is particularly beneficial for the situation where no calibration patterns are 
available, such as off-road and planet robot navigation.  
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