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Abstract: Tracking moving targets in complex scenes using an active video camera is  
a challenging task. Tracking accuracy and efficiency are two key yet generally incompatible 
aspects of a Target Tracking System (TTS). A compromise scheme will be studied in this 
paper. A fast mean-shift-based Target Tracking scheme is designed and realized, which is 
robust to partial occlusion and changes in object appearance. The physical simulation 
shows that the image signal processing speed is >50 frame/s. 
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1. Introduction  

Visual tracking plays an important role in various computer vision applications, such as  
surveillance [1,2], firing systems [3], vehicle navigation [4] and missile guidance [5]. Target tracking 
using an active video camera is a challenging task mainly due to three reasons [6–8]: (1) the tracking 
system should have good robustness to the targets’ pose variation and occlusion; (2) tracking requires 
properly dealing with video camera motion through suitable estimation and compensation techniques; 
(3) most applications would introduce some real-time constraints, which require tracking techniques to 
reduce the computational time [5]. 

Target tracking, according to its properties, can be mainly divided into two types: feature- and 
optical flow-based approaches. Optical flow is the vector field which describes how the image changes 
with time [9]. The amplitude and direction of the optical flow vector of each pixel is usually computed 
by the Lucak-Kande algorithm. Shi and Tomasi [10] also proposed the well-known Shi-Tomasi-Kanade 
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(STK) tracker which iteratively computes the translation of a region centered on an interest point [9]. 
However, optical flow computation is too complicated to meet real-time requirements, and it is 
sensitive to illumination changes and noises, which limit its practical application. 

Feature-based algorithms were originally developed for tracking a small number of salient features 
in an image sequence. These features include: color, grain, contour and some detection operators such 
as invariant feature transform (SIFT) [9] or histogram of oriented gradient (HOG) [11]. Feature-based 
algorithms involve the extraction of regions of interest in the images and then location of the target in 
individual images of the sequence. Typical feature-based tracking algorithms are: multiple hypothesis 
tracking (MHT) [12], Template Matching (TM) [13–16], Mean-Shift (MS) [17–19], Kalman filtering 
(KF) [20] and particle filter (PF) [21,22]. 

The TM is a simple and popular technique in target tracking, which is widely used in civilian and 
military automatic target recognition systems. Given an input and a template image, the matching 
algorithm finds the partial image that most closely matches the template image in terms of some 
specific criterion, such as the Euclidean distance or cross correlation. The conventional template 
matching methods consume a large amount of computational time. A number of techniques have been 
investigated with the intent of speeding up the template matching, and have given perfect results [14,15]. 
However, the TM does not achieve robust performance in complex scenes, especially in the case of 
clutter and occlusion [3]. 

The Kalman filter and particle filter are used to estimate target location in the next frame,  
which has also been extensively studied. Comparing to the Kalman filter, the particle filter  
has a more robust performance in the case of nonlinear and non-Gaussian problems due to the 
simulated posterior distribution. Many efforts have been carried out to speed up the particle filter. 
Martinez-del-Rincon et al. [21] proposed a new particle filter algorithm based on two sampling 
techniques, which improves substantially the efficiency of the filter. Sullivan et al. [23] proposed 
layered sampling using multiscale processing of images. It turns out that these solutions significantly 
reduce the computational costs, but in-depth efforts are desirable for better efficiency. 

In image sequences, the target appearances have a strong correlation. Among all appearance based 
tracking models, there is one popular subset called “subspace model”. Black [24] used a set of 
orthogonal vectors to describe the target image. Principal Component Analysis (PCA) and other classic 
dimensionality reduction methods provide an effective tool to compute the set of orthogonal vectors. 
Levy and Linden-Baum [25] presented a novel incremental PCA algorithm (Sequential Kathunen-Loeve, 
SKL) to update the eigen-basis when new data is available with greatly reduced computation and 
memory requirements. Lin applied Fisher linear discriminant analysis in subspace tracking to take 
background into account [26], however, it cannot perform well in case of non-Gaussian distribution. 

The MS based tracker has very good robustness to the variation of translation, rotation and scale.  
The MS algorithm is a nonparametric density gradient estimation approach to local mode seeking and 
it was originally invented for data clustering. Comaniciu [18] was the first to develop its application in 
target tracking. The tracker needs a target model to be able to track. The target model is obtained  
from the color histogram of the moving object. The target candidate is obtained in the same way at  
a location specified by the MS algorithm. The similarity measure between the target candidate and the 
target model is computed using the Bhattacharya coefficient.  
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One of MS’s drawbacks is that it often converges slowly. To the best of our knowledge, few attempts 
have been made to speed up the convergence of MS. The kd-tree can be used to reduce the large 
number of nearest-neighbor queries. Although a dramatic decrease in the computational time is achieved 
for high-dimensional clustering, these techniques are not attractive for relatively low-dimensional 
problems such as visual tracking. Cheng [27] showed that mean shift is gradient ascent with an 
adaptive step size, but the theory behind the step sizes remains unclear.  

The innovative work in this paper is to propose a novel fast robust tracking algorithm combining 
the MS with the template match (TM), which is a balanced scheme between robustness and real-time 
performance. A fast MS-based target tracking scheme is designed and implemented, which has a good 
robustness to target pose variation and partial occlusion. The hardware-in-loop simulation shows that 
the image signal processing speed is >50 frame/s.  

The paper is organized as follows: the target tracking system description is described in Section 2, 
the hardware composition is presented in Section 3, the software structure and algorithm are described 
in details in Section 4, and, finally, Section 5 reports tests and results, and Section 6 describes the 
future works. 

2. System Description 

As shown in Figure 1, the target tracking system in this paper mainly has the following parts: video 
camera, signal processing module, monitor and 2D-turntable. In order to meet some practical 
application requirements the TTS must to have the following two performance features: 

(1) Robustness. In a complex background, most of the applications require the tracker to be robust 
to partial occlusion, clutter and changes in object appearance. 

(2) Real-time performance. TTS needs to complete the image signal pre-processing, tracking and 
predicting target location, control 2D-turntable and other computational tasks which requires that the 
image processing speed should be >25 frames/s, and for some special applications processing speeds 
need to be >50 frame/s. 

Figure 1. The target tracking system structure chart. 

 

The signal flow diagram of a typical target tracking system is shown in Figure 2. The TTS obtains 
the target image by a video camera. Through a tracker, the target location X in the current image is 
obtained and sent to the predictor to predict the target location Xp in the next frame. The predicted 
result θc, the desired angle θ and the feedback angle θm are used to control the 2D-turntable.  
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Figure 2. Signal flow diagram of a typical target tracking system. 

 

3. Hardware Composition 

3.1. Signal Processing Module 

The video signal processer used in this paper is the TDS642EVM multi-channel real-time image 
processing platform produced by the TI Company. Its main performance features are listed in Table 1. 

Table 1. The mainly performance of TDS642EVM. 

DSP DSP Chip TMXDM642 
Operating voltage I/O:3.3 V Vcore:1.4 V 

Clock 600 MHz 
External bus clock 100 MHz 

Video In/Out PAL/NTSC/SECAMS 
External Interface RS232 UART 

The structure of the TDS642EVM is shown in Figure 3. The red line denotes video signal flow; the 
green line denotes control signal flow.  

Figure 3. The structure of TDS642EVM. 
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3.2. Video Camera and 2D Turntable 

The pitch and yaw axis of 2D-turntable (as shown in Figure 4) are linked with the output shaft of 
the stepping motor, respectively. The control of the 2D-turntable is realized by controlling the two 
stepper motors. The turntable controller obtains control instructions from TDS642EVM by a UART, 
and generates the pulse signal to drive the stepping motor. The rotation angle of the turntable measured 
by a potentiometer is used as the feedback for the closed-loop control system. The performance 
characterstics of the 2D turntable are given in Table 2. 

Figure 4. 2D turntable and video camera. 

 

Table 2. Performance of the 2D turntable. 

Maximum Speed 10°/s 
Rotation Range Pitch: ±20°; Yaw: ±80° 
Motor Type Stepper Motor  
Maximum Torque 2 Nm 

4. Software Structure and Algorithm 

The structure of the TTS software is shown in Figure 5. The TTS software mainly includes the 
following two parts: image tracking algorithm, the target prediction algorithm.  

(1) The tracking algorithm is to identify the location of the target in the current image. A fast 
robust MS-based target tracking algorithm is presented. 

(2) The target prediction algorithm is to predict the location of the target in the next image though 
the sequence image. There are many algorithms that can achieve the prediction goal such as 
Kalman filter, particle filter and linear prediction method. Although the Kalman filter and 
particle filter [20,21] have obtained good results, these two algorithms are both inefficient.  
In this paper we use a linear prediction method to implement the target location prediction. 

  



Sensors 2012, 12 8223 
 

 

Figure 5. The structure of the TTS software structure. 

 

4.1. Fast MS Tracking Scheme 

4.1.1. Mean-Shift Basis [19]  

Kernel density estimation is a nonparametric method that extracts information about the underlying 
structure of a data set when no appropriate parametric model is available. Given n data points xi, i = 1 n, 
in the d dimensional space Rd×d, the kernel density estimation at the location x can be computed by: 

 
(1) 

where k(·) is the profile the kernel function K(·) and ck is a normalization constant. The optimization 
procedure of seeking the local modes is solved by setting the gradient equal to zero. Thus, we can 
derive the following equation: 

 

(2) 

where g(x) = −k′(x), mG(x) is the MS vector. 

4.1.2. Target Description and Distance Metric 

According to the classical MS tracking algorithm [19], we can compute the target and candidate 
target feature vectors as follows: 
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Target feature vectors: 

 
(3) 

Candidate target feature vectors: 

 
(4) 

where δ is the Kronecker delta function, b(xi) is the quantified number of the pixels value in the 
quantitative feature space, C, Ch are the normalization constants. 

The similarity function defines a distance between target model and candidates. To accommodate 
comparisons among various targets, this distance should have a metric structure. We define the 
distance between two discrete distributions as: 

 (5) 

 
(6) 

where (y) named Bhattacharyya coefficient. 

4.1.3. Tracking Algorithm 

To find the location of the target in the current frame, the distance (5) of a function of y should be 
minimized. The tracking starts from the location of the target in the previous frame and searches in the 
neighborhood. Minimizing the distance (5) is equivalent to maximizing the Bhattacharyya coefficient (y).  

Thus, the probabilities 0 1,...ˆ{ ( )}u u mp y =  of the target candidate at location y0 in the current frame must 
be computed first. Using Taylor expansion around the values 0ˆ ( )up y , the linear approximation of the 
Bhattacharyya coefficient (6) is obtained after some manipulations as: 

 (7)

This approximation is satisfactory when the candidate muu yp ,...1)}(ˆ{ =  and the initial muu yp ,...11)}ˆ(ˆ{ =

are little difference. In general, for adjacent two frames this assumption is reasonable. Thus we have: 

 
(8) 

In which: 

 
(9) 

In this way, minimizing d(y) becomes to maximize the second of Equation (8), which denotes the 
kernel density estimation computed by using k(x) at the y in current frame. In this process, the kernel 
shifts from the current location y to the new location y1. Thus we can use the MS procedure to find the 
great density estimation value in the neighborhood:  
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 (10)

The general MS algorithm steps are as follows [19]: 
Given: the target model {qu}u=1,…,m at y0in the previous frame, y1 is the new location of spot. Then 

the flow of MS algorithm is: 
Set the spot with a feature vector {qu}u=1,…,m, at y0 in the previous frame.  

(1) Compute the feature vector of candidate spot 0 1...{ ( )}u u mp y =
� � , and evaluate Bhattacharyya 

coefficient ∑ =
= m

u uu qypqyp
1 00 )ˆ(]),([ �����ρ  

(2) Derive {wi}i=1…m with Equation (9).  
(3) Find the new location of spot with Equation (10)  
(4) Compute 1 1...{ ( )}u u mp y =

� �  and evaluate ∑ =
= m

u uu qypqyp
1 11 )(]),([ �����ρ . 

(5) While ]),([ 1 qyp ���ρ < ]),([ 0 qyp ���ρ  

Do )(
2
1

101 yyy ��� +←   

Evaluate 1[ ( ), ]p y qρ � � �  
(6) If ε<− |||| 01 yy ��  stop iteration. 

Else 10 yy �� ←  jump to 2  

4.1.4. Fast Tracking Algorithm 

References [27,28] show that MS is actually a bound maximization. One step of the MS iteration 
finds the exact maximum of the lower bound of the objective function. The existing literatures [21,29–33] 
also show that MS is a gradient ascent algorithm with adaptive step size. Hence, its convergence rate  
is better than conventional fixed-step gradient algorithms and no step-size parameters need to be  
tuned [17]. From the viewpoint of bound optimization, the learning rate can be over-relaxed to make 
its convergence faster. 

From another point of view, bound optimization methods always adopt conservative bounds in 
order to guarantee increasing the cost function value at each iteration [17]. A lot of work has been done 
to speed up bound optimization methods. In [17,29], it was shown that by over-relaxing the step size, 
acceleration can be achieved. Supposing MG is the MS shift vector, and then the over-relaxed bound 
optimization iteration is given by: 

 (11) 

Apparently when the α = 1, over-relaxed optimization reduces to the standard MS algorithm. It is 
easily found that when α > 1 acceleration is realized, but for a fixed α, no convergence is guaranteed 
and it is hard to get the optimal α [17]. References [17,31] prove that in the case of general bound 
optimization model, convergence can be secured using the over-relaxed bound optimization iteration 
when the candidate are close to a local maximum and 0 < α < 2. Based on this proposition, an adaptive 
over-relaxed bound optimization is readily available: α can be adjusted by evaluating the cost function. 
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When the cost function becomes worse for some α > 1, then α has been set too large and needs to be 
reduced. By setting α = 1 immediately, convergence can be achieved. In this paper, we presented the 
accelerated MS algorithm as follows: 

1. Initialization: 

Set the iteration index k = 1, and the step parameter β > 1, α = 1. 

2. Iterate until convergence condition is met: 

(1) Compute 1ˆ +iy with Equation (13). And the MS vector )ˆ(m 1G +iy = 1ˆ +iy - iŷ . 
(2) 1+iy  = iy +α )ˆ(m 1G +iy  
(3) If )()( 1 ii yy ρρ >+  
Accept 1+iy  and α = 1, α = β·α. 
Else reject 1+iy , and 1+iy  = 1ˆ +iy , α = 1. 

(4) Set k = k + 1, start a new iteration 
(5) If )(ym 1G +i <ε  stop iteration.  

4.1.5. Case Study 

We compare the performance of the accelerated MS algorithm to the standard MS algorithm on real 
images (as shown in Figure 6). In the experiments, all codes run on the EVM642 mentioned in  
Section 3. We repeat all the tests 10 times and the average CPU time is reported in Table 3. From the 
test results we can conclude that the Fast MS is at least three times faster than the standard MS. 

Figure 6. Two images for fast MS versus the standard MS.  

Image 1 Image 2 

Table 3. Comparison of CPU times for two cases. 

 Image 1 Image 2 
Number of iterations CPU time Number of iterations CPU time 

Fast MS 8 18.8 ms 7 14.2 ms 
Standard MS 26 61.1 ms 28 60.8 ms 
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4.1.6. Occlusion Issue 

The occlusion issue is a technical challenge in the image tracking field. Many methods have been 
proposed to solve this problem. In this paper, the Bhattacharyya coefficient is used to determine whether 
the target is in occlusion or lost. Setting thresholds T1, T2, if T1 < Bhattacharyya coefficients < T2, the 
target is considered to be occluded, if Bhattacharyya coefficients < T1, the target is considered to be 
lost. In addition, by the effects of the environment illumination and the target appearance changes, the 
Bhattacharyya coefficient of the target candidate is, in general, the local maximum rather than  
the global maximum. When the target is in occlusion, the distance between the local maximum and the 
global maximum would increase, so some special method needs to be implemented to improve the 
tracking robustness. The Local Template Matching (LTM) method is used in this article to solve this 
problem. Template Matching (LM) is an existing algorithm, and, usually, it is a global template 
matching technique. In this paper template matching is implemented in the region of the candidate 
target, so here it is called Local Template Matching.  

Figure 7. The template matching algorithm. 

 

The final location (x, y) of the target is computed over a region of interest (ROI) surrounding the 
candidate location derived from the fast MS as shown in Figure 7. The LTM algorithm is as follows: 

1 1
( , ) | ( , ) ( , ) |

M M

u v
D x y R u x v y S x y

= =

= + + −∑∑
 

(12) 

where S(x, y) is the pixel value at (x, y) in template image, R(u+x, v+y) is the pixel value at (u+x, v+y) 
in the search area. (u, v) is the candidate location derived from the fast MS. D(x, y) is the distance  
in the feature space, and a smaller value shows a higher correlation. Then the minimum distance  
DMin(x, y) and the corresponding location (x, y) are determined. 

4.2. Target Prediction Algorithm 

In order to improve the TTS response speed it is necessary to use the prediction method in the 
tracking scheme. Compared to the Kalman filter and particle filter, the linear prediction algorithm is 
less complex and offers moderate performance. In this paper we use the linear prediction method to get 
the predicted angular position of the target.  
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A simple method to estimate the location of the target in the image can be formulated by the 
following equation:  

1 1 1 1ˆ ˆ ˆ ˆ( , ) ( , ) ( , )t t t t t t t t t tx y x x y y x x y y+ + + += +Δ +Δ ≈ +Δ +Δ  (13) 

where 1 1ˆ ˆ( , )t tx y+ +  represents the estimated location of the target, 1 1ˆ ˆ( , )t tx y+ +Δ Δ  represents the estimated 
shift vector from t to t + 1, ( , )t tx yΔ Δ  represents the real shift vector from t − 1 to t. This method 
assumes that the shift vector of velocity of the target is unchanged in a short time.  

Another advanced algorithm which formulates the shift vector 1 1ˆ ˆ( , )t tx y+ +Δ Δ  as a linear combination 
of the shift vectors: 1 1{( , ),( , ), , ( , )}t k t k t k t k t tx y x y x y− − − + − +Δ Δ Δ Δ Δ Δ… . Then the following equation is: 

tktkktkt xaxaxax Δ⋅++Δ⋅+Δ⋅=Δ +−−−+ 0111ˆ "  (14) 

tktkktkt ybybyby Δ⋅++Δ⋅+Δ⋅=Δ +−−−+ 0111ˆ "  (15) 

where 0, ,ka a… , 0, ,kb b…  is a group of fix coefficients which are set offline. 

The 2D-Turntable’s pitch and yaw angular deviation can be obtained by the following formula: 
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where xθΔ  and yθΔ  is respectively the pitch and yaw angular deviation. 

A reliable PD controller is used for the tracking system, and the angular deviation Δθ  obtained 
from linear prediction is used as feed forward compensation, then the final control algorithm is: 

0 1* ( ) *m
d
dt

θ= − + +eu k θ θ k Δθ  (17) 

where θ  represents the angles of the instruction, mθ  represents the angle of the feedback. The scheme 
of the feed-forward compensation based PD controller is shown in Figure 8. 

mθ = −θ θe  (18) 

Figure 8. The scheme of the feed forward compensation-based PD controller. 

Δθ

 
  



Sensors 2012, 12 8229 
 

 

5. Experiments Section 

5.1. Parameter Setting 

The kernel function has an important influence on the experimental results. In this paper the 
Epanechnikove kernel profile is used as: 

2 2
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0 || || 1
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where z = 128 is the bandwidth of MS tracking algorithm which is decided by the size of the target.  
x actually represents the distance between the effective pixels and the center of the tracking region.  

The quantization function b is: 

1 0 60
2 110 160

( )
3 160 210
4 210 255

x
x

b x
x
x

< <⎧
⎪ ≤ ≤⎪= ⎨ < <⎪
⎪ ≤ <⎩

 (20) 

Region of interest (ROI) is 20 × 20. 

5.2. Experiments Results  

Four experiments have been implemented to test the above target tracking scheme. A wireless 
remote control car (as shown in Figure 9) has been used to simulate a moving target. The experiments 
include four cases: in case of tracking with the traditional MS (as shown in Figure 10), tracking in case 
of poses variation with the proposed method (as shown in Figure 11), tracking in case of partial 
occlusion with the proposed method (as shown in Figure 12), tracking in the case of poses variation in 
a complex scene with the proposed method (as shown in Figure 13). 

From the following tracking image sequence, we can find two rectangular boxes. One represents the 
center of the optical system; the other represents the target location in the current image. The distance 
between the two rectangular boxes are used as errors to control the 2D-turntable. When the target is in 
stop condition, the two rectangular boxes should overlap. 

From the following experiments results, we can conclude that the TTS designed in this paper has 
good robustness to the target pose variation and occlusion. The system totally processes an image in 
18.21 ms, in which the fast MS consuming 14.6 ms, TM consumes 1.83 ms, other algorithms consume 
1.78 ms. The Target Tracking Scheme time-consuming statistical table is as shown in Table 4. The final 
image processing speed is >50 frame/s. The experiment results indicate our approach to tracking  
a moving target is fast and robust. However, this proposed algorithm needs to be comprehensively 
evaluated in a wider database. Although the tracking results are promising in certain situations, further 
development and more evaluation is anticipated in severe image clutter and occlusion situations. 
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Table 4. TTS time-consuming statistical. 

Algorithm Time 
Fast MS (10 iteration) 14.6 ms 
TM 1.83 ms 
Other 1.78 ms 
Total 18.21 ms

Figure 9. The wireless remote car. 

 

Figure 10. Tracking with the traditional MS. 

   

50 frame 51 frame 52 frame 
   

53 frame 54 frame 55 frame 
   

56 frame 57 frame 58 frame 
   

59 frame 60 frame 70 frame 
   

71 frame 72 frame 73 frame 
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Figure 11. Tracking with proposed method in case of poses variation. 

   

101 frame 110 frame 119 frame 
   

128 frame 137 frame 146 frame 
   

155 frame 164 frame 173 frame 
   

182 frame 191 frame 200 frame 
   

209 frame 218 frame 227 frame 
   

236 frame 245 frame 254 frame 
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Figure 12. Tracking with proposed method in case of occlusion. 

 
10 frame 11 frame 12 frame 13 frame 

 
14 frame 15 frame 16 frame 17 frame 

 
18 frame 19 frame 20 frame 21 frame 

 
22 frame 23 frame 24 frame 25 frame 

  
26 frame 27 frame 28 frame 29 frame 

 
30 frame 31 frame 32 frame 33 frame 
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Figure 13. Tracking with proposed method in case of poses variation under complex scene. 

 
34 frame 38 frame 42 frame 46 frame 

 
50 frame 54 frame 58 frame 62 frame 

 
66 frame 70 frame 74 frame 78 frame 

 
82 frame 86 frame 90 frame 94 frame 

 
96 frame 100 frame 104 frame 108 frame 

6. Conclusions and Future Work 

In this paper, a balanced scheme between the robustness and real-time performance of a TTS is 
presented. A novel robust tracking algorithm combining the MS with template match (TM) has been 
proposed, which has a good robustness to target pose variation, partial occlusion, and a fast MS-based 
target tracking scheme is designed and implemented. The hardware-in-loop simulation shows that the 
image signal processing speed is >50 frame/s. The TTS presented in this paper utilized s common 
CCD camera to realize acquisition of images, but for some special applications infrared CCD sensors 
or heterogeneous sensors are used, so IR CCD or heterogeneous sensor-based fast target tracking 
techniques would be a future research direction.  
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