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Abstract: In the last decade there has been an increasing interest in the use of  
highly- and weakly- nonlinear solitary waves in engineering and physics. Nonlinear 
solitary waves can form and travel in nonlinear systems such as one-dimensional chains of 
particles, where they are conventionally generated by the mechanical impact of a striker 
and are measured either by using thin transducers embedded in between two half-particles 
or by a force sensor placed at the chain’s base. These waves have a constant spatial 
wavelength and their speed, amplitude, and duration can be tuned by modifying the 
particles’ material or size, or the velocity of the striker. In this paper we propose two 
alternative sensing configurations for the measurements of solitary waves propagating in a 
chain of spherical particles. One configuration uses piezo rods placed in the chain while the 
other exploits the magnetostrictive property of ferromagnetic materials. The accuracy of 
these two sensing systems on the measurement of the solitary wave’s characteristics is 
assessed by comparing experimental data to the numerical prediction of a discrete particle 
model and to the experimental measurements obtained by means of a conventional 
transducer. The results show very good agreement and the advantages and limitations of 
the new sensors are discussed. 

Keywords: highly nonlinear solitary waves; discrete particle model; transducers; 
magnetostrictive sensors 
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1. Introduction 

In the last fifteen years the numerical and experimental studies on the propagation of nonlinear 
solitary waves in one-dimensional chains of granular media, and in particular of spherical elastic 
beads, have thrived [1–20]. The nonlinearity arises from the Hertzian type contact between two 
adjacent particles and zero tensile force. When the chain is non- or weakly-compressed by means of its  
self-weight or by the action of some form of static pre-compression, highly nonlinear solitary waves 
(HNSWs) can form and propagate in the chain. The term “weakly” implies that the pre-compression is 
very small compared to the dynamic force amplitude associated with the wave propagation. 

It has been demonstrated that HNSWs propagating in granular crystals have the potential to be used 
as acoustic lenses [21], vibration absorbers [22], impurity detectors [15,23], acoustic diodes [24] and 
as a tool for nondestructive testing [25–28]. In some of these engineering applications, the 
measurement of the dynamic force is necessary. To date, this measurement is attained either by means 
of one or more sensor beads placed in the chain [6–14,25–30] or by using a force sensor mounted at 
the base of the chain [4–8]. The former usually consists of two half beads bonded to a thin 
piezoelectric crystal in order to form a sensor particle able to measure the dynamic force at its center. 
The main advantage of this assembly is two-fold: it can be placed anywhere in the chain; it does not 
alter the characteristics of the propagating wave, since the geometry and the material property of the 
sensor are essentially identical to those of the other particles composing the chain. However, the 
manufacture of sensor beads requires machining and therefore can be time-consuming and costly. 
Moreover, once in place, the bead should not be allowed to rotate in order to maintain its sensitivity 
constant and the wires are prone to accidental breakages. A force sensor instead measures the 
characteristics of the wave at the end of the chain. This configuration is unpractical when the same end 
needs to be in contact with another material or structure. Finally, few studies exploited the 
photoelasticity to measure the stress wave propagation in photoelastic grains [31,32]. However, this 
approach is not suitable for metallic or other non-photoelastic materials and might be expensive. 

In the study presented here, we investigated numerically and experimentally two alternative sensing 
systems to measure the propagation of solitary waves in a 1-D chain of metallic particles. The first 
design replaces the sensor beads with piezo rods having thickness and diameter comparable to the size 
of the particles composing the chain. The second system considers the use of coils wrapped around a 
segment of the chain to create a magnetostrictive sensor (MsS). To the best of the authors’ knowledge, 
the use of magnetostriction or piezoelectric cylinders to measure the propagation of HNSWs was never 
reported in the past. In this paper the working principles of these novel transducers are introduced and 
the experimental results are compared to the measurements obtained using conventional instrumented 
beads and to the numerical prediction derived with a discrete particle model. 

The paper is organized as follows: the experimental setup is described in Section 2. The principles 
of the three types of sensors are introduced in Section 3. Section 4 presents the numerical model of 
wave propagation in a chain of spherical particles. In Section 5, the experimental results are presented. 
Finally, Section 6 concludes the paper with a discussion on the advantages and disadvantages of the 
three sensing configurations. 
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2. Experimental Setup  

In order to compare the novel sensing systems to the conventional one, a plastic tube with inner 
diameter of 4.8 mm and outer diameter of 12.7 mm was filled with twenty nine 4.76 mm-diameter, 
0.45 gr, low carbon steel beads (McMaster-Carr product number 96455K51). An identical bead was 
used as striker. For convenience, the particles are herein numbered 1 to 30 where particle 1 identifies 
the striker and particle 30 represents the sphere at the opposite end of the chain. The stroke of the 
particle 1, equal to 7.2 mm, was governed by an electromagnet mounted on top of the tube and 
remotely controlled by a switch circuit connected to a National Instruments PXI running in LabVIEW. 
Figure 1 schematizes the setup described above. 

Figure 1. Schematic diagram of the experimental setup. 

 

Three pairs of sensors were used in this study: bead sensors, rod-form piezos, and MsSs. Each bead 
sensor was assembled by embedding a zirconate titanate based piezogauge (3 mm by 3 mm by  
0.5 mm) inside two half steel spheres, as shown in Figure 2(a). They were located at the positions 13 
and 18 in the tube. Figure 2(b) shows instead one of the two piezoelectric cylinders. They were custom 
made (Piezo Kinetics Inc. ND0.187-0.000-0.236-509) with 36AWG × 25.4 mm soldered tinned copper 
lead wires. The rods had nominal dimension 4.76 mm outer diameter and 6 mm height. According to 
the manufacturer, their mass was 0.8144 g, Young’s modulus 63 GPa, and Poisson’s ratio equal to 
0.31. When they were used, the piezo cylinders replaced the bead sensors at location 13 and 18 in the 
tube. Finally, each MsS consisted of a 7 mm coil made of AWG36 magnetic wire and 1100 turns 
wrapped around a plastic tube having inner diameter of 12.7 mm and 1.6 mm thick. A permanent 
bridge magnet (McMaster-Carr product number 5841K12) was fixed to the coil as shown in  
Figure 2(c) in order to create a constant magnetic field parallel to the longitudinal axis of the chain. 
Figure 2(d) shows the schematic of the sensor once the plastic tube containing the chain of particles 
was inserted. The two magnetostrictive transducers were mounted such that their centers were located 
at the same elevation of particles 13 and 18.  
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Figure 2. Sensing technologies used in this study. (a) Bead sensor formed by a thin 
piezoelectric crystal embedded between two half particles, (b) commercial piezo rod,  
(c) magnetostrictive sensor formed by a coil and a bridge magnet, (d) Schematic diagram 
of one magnetostrictive sensor assembled with the tube filled with spherical particles. 

 

The capability and the repeatability to measure the amplitude and speed of the HNSWs was 
evaluated by taking 500 measurements at 10 MHz sampling rate for each sensing configuration.  

3. Background 

In a one-dimensional chain of spherical particles, the interaction between two adjacent beads is 
governed by the Hertz’s law [1,4]: 

23δAF =  (1)

where F is the compression force between two beads, δ is the closest approach of particle centers, and 
A is a coefficient given by: 

( )213
2
ν−

= REA  (2)

where R is the radius of the particles, and ν and E are the Poisson’s ratio and Young’s modulus of the 
material constituting the particles, respectively. The combination of this nonlinear contact interaction 
and a zero tensile force in the chain of spheres leads to the formation and propagation of compact 
solitary waves. More detailed formulation on the analytical foundation of HNSW propagation may be 
found in several references [1–12]. 

A single pulse is commonly induced by mechanically impacting the first bead of the chain with a 
striker having the same mass of the particles composing the chain. Ni et al. [13] showed that  
laser-pulses can also be used in lieu of mechanical impacts. When a bead sensor is inserted in a chain, 
the force measured is the average of the dynamic forces at the bead’s ends [6]. Similarly, the force 
measured by a piezoelectric cylinder is the average of the dynamic forces at the two cross-section ends. 
Both sensing configurations are based on the use of piezoelectric crystals. 

The MsS takes advantage of the efficient coupling between the elastic and magnetic states of the 
ferromagnetic particles and in particular of the magnetostrictive phenomena that convert magnetic 
energy into mechanical energy and vice versa [33]. The magnetostriction principle can be used in the 
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active or in the passive mode based upon the Faraday’s law and the Villari’s effect, respectively. 
According to the Faraday’s law an electrical current passing along a coil induces a magnetic field that 
is perpendicular to the current’s direction. If the coil enwinds a ferromagnetic material, an alternating 
current passing through a wire creates a time-varying magnetic field within the coil that, in turn, 
produces a change of magnetostriction of the material. The subsequent deformation known as Joule’s 
effect [34] produces a stress wave. According to the Faraday’s law the voltage output in the coil can be 
expressed as [33,35–37]: 

dt
dNV ϕ−=   (3) 

where V is the induced voltage in the coil, N is the number of turns of the coil, φ = BSc is the magnetic 
flux. Here B is the magnetic induction, Sc is the area of coil in the magnetic field. Equation (3) can be 
written as: 

dt
dBNSV c−=   (4) 

The inverse mechanism can be used for the detection of waves. A pulse propagating in the 
ferromagnetic material modulates an existing magnetic field by means of the Villari’s effect [33,38], 
thereby exciting a voltage pulse in the receiver coil. In both transduction and detection, a constant 
magnetic field (bias) is superimposed to enhance the coupling between the elastic and magnetic states, 
i.e., to increase the signal-to-noise ratio of the stress wave generated and detected by the 
magnetostrictive transducer. One of the authors have designed, built, and used magnetostrictive 
transducers for the generation and detection of ultrasonic guided waves in strands, solid cylinders, and 
pipes [39–44]. 

In the design of the MsS used in the present study we exploited the Villari effect to detect the 
propagation of nonlinear solitary waves across the chain. The particles are the magnetostrictive material 
subjected to a biased magnetic field and are surrounded by a coil. We hypothesized that the change of the 
magnetic induction is proportional to the change of the dynamic contact force between neighboring 
particles. The output voltage was proportional to the time-derivative of dynamic contact force: 

dt
dFV ∝   (5) 

Therefore, the dynamic force associated with the solitary wave propagation is proportional to the 
integral of the sensor output voltage. Based upon the geometry of the MsS [see Figure 2(d)], we assumed 
that the permanent magnet biased four contact points, which implied that the dynamic force measured by 
the coils sensor could be reasonably considered the average of four dynamic forces at these points.  

4. Numerical Model 

4.1. Formulation 

The experimental setup was simulated using a chain of spherical particles in contact with a wall 
which was considered as a half-infinite medium, as shown in Figure 3. We adopted the discrete 
particle model [1,11] to predict the characteristics of the nonlinear solitary pulses generated by the 
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impact of a striker. In the model the motion of the particles was considered in the axial direction, and 
the interaction between two adjacent spheres was governed by the Hertz’s law (Equation (1)). The 
equation of motion of the i-th particle can be expressed as [1,11,12]:  

NiFAAum iiiiiiiiiii ,,2,1,11
2/32/3
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Figure 3. Schematic diagram of the one-dimensional discrete element model. The c1, c2,…, 
cN indicates the points of contact between two neighboring particles. When the presence of 
the piezo rod is modeled, the spheres 13 and 18 are replaced by solid rods. 

 

Here, the subscripts c and w refer to the point of contact between two neighboring particles and the 
point of contact between the last particle and the half-infinite wall, respectively. The values of R, m, 
and u are respectively the radius, mass, and axial displacement from the equilibrium position of the 
particle. A is the contact stiffness between adjacent beads (Ac) or between the last bead and the wall 
(Aw). γ is a coefficient that takes into account the dissipative effects associated with the contact of the 
chain with the inner tube’s surface and the wall [11,12]. F is the sum of the body force, e.g., gravity, and 
external forces applied on the chain. The dot represents the time-derivative while the operator []+ returns 
the value of the variable if the variable is positive, otherwise it returns 0. Finally, E and ν are the 
Young’s Modulus and the Poisson’s ratio, respectively, of the beads (Ec, νc) and of the wall (Ew, νw). 
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The impact of the striker was simulated by setting the initial displacement u0=0 and the initial 
velocity ghu 20 =� , where g is the gravitational constant and h is the experimental falling height  
(h = 7.2 mm). The other initial conditions were ui = 0 for i = 1, 2, …, N, 01 uu �� =  and 0=iu�  for  

i = 1, 2, …, N. The differential Equation (6) was solved to calculate u and u�  for each particle by using 
the fourth order Runge-Kutta method.  

The model of the chain with the instrumented beads did not consider the fact that they are slightly 
heavier than the other spheres. This is because it was demonstrated [6,8] that the effect of the mass 
difference on the wave propagation can be neglected in the model. As such, particles 13 and 18 had the 
same mass of all the other particles. Moreover, because the piezogauge-half sphere contact stiffness is 
much higher than the sphere-sphere contact stiffness, the sensor still could be considered as a rigid body. 

In order to model the presence of the piezo rods, the modeled chain comprised two solid rods 
having the same geometric and material properties of the piezoelectric cylinders at position 13 and 18. 
And the mass and contact stiffness (terms Ai) at positions 13 and 18 were replaced accordingly. 
Finally, the model relative to the presence of the coil and the bias magnet, considered the tube filled 
with 29 particles. The presence of the magnetic bias was included by considering four particles per 
coils subjected to a static compressive force equal to 1.8 N. This value was estimated by comparing the 
experimental wave speed of the incident solitary wave to the analytical prediction provided by the 
long-wavelength limit [1,7,13]. Irrespective of the sensing system considered the model included the 
static pre-compression due to the self-weight of the particles, and the dissipation coefficients γ, whose 
determination will be discussed in Section 5.1.  

4.2. Numerical Results  

The numerical model was applied to simulate the three setups described in Section 2. To predict the 
measurements of the three types of transducers, the numerical values of the force-time profiles at 
contact points c8, c11, c12, and c13 (see the notation in Figure 3) are presented in Figure 4. The figure 
shows the presence of a single solitary wave, whose amplitude and time of arrival are almost the same 
for all three types of sensors. The pulse measured by MsS at contact points c11-c13 has a slightly earlier 
arrival due to the presence of the magnetically induced precompression. The presence of the cylinder 
alters the temporal force profile due to the following mechanism. As the single pulse propagates, the 
particle 11 compresses the next particle giving rise to the first peak visible in Figure 4(b). Because the 
piezo rod is heavier than particle 12, particle 12 bounces back. Thus, the corresponding amplitude of 
the dynamic force is higher and it is visible in Figure 4(c). By bouncing back, particle 12 gets closer to 
sphere 11 originating the small hump visible in Figure 4(b). This reflected wave propagates backward 
to the top of the chain and it appears also in Figure 4(a) at around 170 microseconds. Meantime, after 
particle 12 is compressed by particle 11 for the second time, its velocity becomes slightly larger than 
that of the cylinder. This compresses again particle 12 against the rod, as demonstrated by the small 
pulse in Figure 4(c) at 200 microseconds. This creates a state of compression between the cylinder and 
its neighboring particle 14, which gives rise to a secondary pulse that trails the incident wave and is 
visible in Figure 4(d) at 220 microseconds. The figure also indicates that the amplitude of the wave 
passing through the cylindrical sensor reduces significantly when compared to the same pulse 
monitored by the bead sensor or the MsS. 
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Figure 4. Discrete particle model results showing the temporal force profile for all 
threesensing configurations at contact points: (a) c8, (b) c11, (c) c12, and (d) c13. 

 

The numerical results of the force profiles at position 13 for the three sensing systems are shown in 
Figure 5. Figure 5(a) refers to the sensor bead. The dashed lines represent the dynamic forces at the 
contact points c12 and c13, whereas the continuous line is the average value of the two dynamic contact 
forces and it represents the force measured by the sensor bead [6]. Figure 5(b) presents the results 
relative to the rod. Similar to Figure 5(a), Figure 5(b) shows the values of the force at the contact 
points of the cylinder with the particles 12 and 14 (dashed lines) and the averaged value (continuous 
line). Because the cylinder’s mass and stiffness are different than those of the spheres, the incoming 
wave is partially reflected at the interface, thus reducing the amplitude of the transmitted pulse. 

Figure 5. Discrete particle model results showing the temporal force profile at some 
contact points (dashed lines) and as measured by three sensors (solid lines): (a) bead 
sensor, (b) piezo rod, (c) magnetostrictive sensor.  
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Figure 5. Cont. 

 

Finally, Figure 5(c) shows the results associated with the presence of the coil centered at location 
13. Owing to the length of the coil and the position of the magnetic bias (Figure 2(d)) the dynamic 
forces at contact pointsc11 to c14 are presented. Because the force measured by the MsS is the average 
of four dynamic contact forces at contact points 11 to 14, its amplitude is smaller and its duration is 
longer with respect to the dynamic force measured by the other two sensing systems.  

5. Experimental Results and Discussions 

Although the dissipation coefficients can be determined empirically by measuring the magnitudes 
of the dynamic forces at different positions in the chain [11,12], we adopted another approach that is 
illustrated here. Figure 6 shows the voltage output measured by both spherical sensors. The first pulses 
represent the main solitary wave traveling from the impact point to the wall, while the second pulses 
are the waves reflected from the rigid wall. We characterized the HNSW by means of three 
parameters: the time-of-flight (TOF), the speed, and the amplitude ratio (AR). The first parameter 
denotes the difference in the transit time at a given position between the incident and the reflected 
wave. The speed can be simply computed by dividing the distance between two sensors over the 
difference in the arrival time of the two amplitude peaks. Finally, we define the AR as the ratio of the 
reflect wave amplitude over the incident pulse amplitude. 

Figure 6. Typical waveforms measured by the bead sensors. 

 

5.1. Dissipation Coefficients 

In order to calibrate the numerical model to our experimental setup, the dissipation was taken into 
account. Because the force amplitudes of both incident and reflected solitary pulses were proportional 
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to the voltage-force conversion factor, their AR was independent upon this conversion factor. We 
computed the dissipation coefficient by considering the 500 experimental measurements of the 
amplitude ratios ARtop and ARbottom measured by the sensors located at positions 13 and 18, 
respectively. For different combination of dissipation coefficients γc and γw, the numerically predicted 
ARtop-num and ARbottom-num were calculated. Then an objective function y: 
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was defined in terms of the difference between numerical and experimental results. We optimized this 
function by finding the combination of γc and γw that minimized the value of the objective function 
subjected to the following constraints: γc ≥ 0 and γw ≥ 0. The result of the optimization process yielded 
to γc = 4.8 kg/s and γw = 0. As it is not very plausible that there is no dissipation at the wall, the result 
of the optimization may suggest that the dissipation along the chain might be more dominant than the 
energy loss from the last particle-wall interaction. 

As is said earlier, when the piezoelectric cylinders and MsSs were used, the sensor beads were 
replaced by the two piezo rods and two spheres, respectively. Because the coefficient γc accounts for 
the dissipation along the entire chain, we assumed that the replacement of two particles out of 29 had 
negligible effect on the value of γc. Thus, the value γc = 4.8 kg/s was applied to all three kinds of 
sensing technology. 

5.2. Voltage-Newton Conversion 

In applications such as nondestructive testing, voltage measurements are sufficient to correlate the 
characteristics of the solitary pulses to the properties of the structure or material under inspection. 
However, other engineering applications may require the quantitative measurement of the dynamic 
force associated with the traveling pulse. Thus, the relationship between this force and the output 
voltage from the sensor needs to be known. To establish this relationship, we adopted the following 
procedure for all sensing configuration. The experimental time profiles, expressed in Volts and 
collected using the experimental setup described in Section 2 were compared to the force profiles 
(expressed in Newton) computed with the discrete particle model described in Section 4. The model 
considered the effect of dissipation. Figure 7(a,c,e) shows the voltage output associated with the three 
transducers pair. One out of 500 measurements is displayed. With respect to Figure 7(a,c), Figure 7(e) 
shows negative values of the output voltage. When the solitary pulse travels through the particles 
surrounded by the MsS, there is an increase in compression due to the contribution of the dynamic 
contact force. This increase generates a positive gradient of the magnetic flux visible in the positive 
output voltage. When the pulse propagates away, the compression between adjacent spheres decreases, 
creating a negative gradient of the magnetic flux. This negative gradient is represented by the  
negative portion of the signal in Figure 7(e). Similarly, the dashed lines in Figure 7(b,d,f) shows the 
corresponding numerical predictions. Because the overall shapes of the incident experimental and 
numerical temporal profiles were almost identical, a conversion factor Ki associated with each 
measurement i was calculated as: 
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Figure 7. (a) Experimental results for bead sensors, (b) comparison of experimental and 
numerical results for bead sensors, (c) experimental results for cylindrical sensors,  
(d) comparison of experimental and numerical results for cylindrical sensors,  
(e) experimental results formagnetostrictive sensors, (f) comparison of experimental and 
numerical results for magnetostrictive sensors. 

 

 

Table 1. Calibration coefficients adopted in this study. 

 
Calibration 
coefficient K 

Relative standard 
deviation (%) 

Unit of K 

Bead sensor top 2.072 4.71 N/V 
Bead sensor bottom 2.160 4.31 N/V 

Cylindrical sensor top 0.632 4.00 N/V 
Cylindrical sensor bottom 0.557 4.01 N/V 

MSS top 0.131 1.44 N/V·sec 
MSS bottom 0.156 1.56 N/V·sec 
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Here Vi,Exp is the maximum experimental output voltage, and FNum is the maximum amplitude of the 
dynamic force determined numerically. A unique conversion factor K was then established by 
averaging 500 ratios. Table 1 summarizes the coefficients determined for every transducer. The small 
standard deviations prove the repeatability of the setup and the consistency of the novel sensing 
systems. It is noted that, as the force measured by the MsS is related to the integral of the voltage  
(see Equation (5)), the corresponding units for factor K are different from the others. 

5.3. Comparison of the Numerical and Experimental Results  

In the last part of our study, we quantitatively compared the shape of the experimental and 
numerical force profiles. Figure 7(b) shows the time series associated with the bead sensors. For 
convenience of representation, the experimental data are shifted horizontally in order to overlap the 
numerical and experimental peak of the incident pulse at the particle 13. Clearly, the plot shows good 
agreement between the experiment and the numerical model and a slight discrepancy is only visible for 
the reflected waves. 

Similarly, Figure 7(d) refers to the results relative to the piezo rod. The figure shows that the 
amplitude of the incident pulse measured by the bottom cylindrical sensor is slightly smaller than the 
numerical prediction and the amplitudes of the reflected pulses are smaller than the corresponding 
numerical predictions. One possible reason is that the numerical model may underestimate the 
attenuation at the bead-cylinder interface, when the effect of possible static friction between the 
cylinder and the inner wall of the tube is ignored.  

Finally, Figure 7(f) shows the experimental force profiles measured by the MsSs and the 
corresponding numerical result. By integrating the signal in Figure 7(e) and multiplying the integral 
with the calibration coefficient K listed in Table 1, Figure 7(f) is obtained. The presence of the 
magnetically induced precompresson reduces the attenuation and increases the pulse’s velocity, thus 
reducing the TOF. The figure rveals the presence of a trough preceding the arrival of the main peak at 
both sensors. The origin of this response is not fully understood yet but we speculate that it might be 
associated with the presence of the permanent magnetic field. Nonetheless, the ability of the MsS to 
capture the presence and characteristics of HNSWs is evident. Overall Figure 7(b,d,f) shows very good 
agreement between the numerical and the experimental results relative to the incident pulse. There is 
some noticeable discrepancy in the time of arrival and amplitude of the reflected wave. This is likely 
due to the modeling of the rigid wall at the base of the chain.  

To assess and compare the capability of the novel transducers to measure the characteristics of the 
HNSW propagating in a straight chain of particles, Tables 2 and 3 are presented. Table 2 summarizes 
the numerical and experimental values of the TOF and AR associated with the propagating pulse. The 
experimental values represent the average and the standard deviation (std) of the 500 measurements. 
The small variation between numerical and experimental values suggest that the two novel transducers 
perform equally well to the sensor bead. The small standard deviation also remarks the repeatability of 
the sensing systems. The speed of the incident and reflected solitary pulses are presented in Table 3. 
The small differences between numerical and experimental results indicate that all three types of 
sensors are able to measure the wave speed accurately. The smallest standard deviation, which was 
found for the magnetostrictive transducer, indicates the highest degree of repeatability of the setup. 
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The speed of the solitary wave depends upon the setup. This is not surprising as the the solitary waves 
exhibit unique physical properties when compared to linear elastic waves. One of these properties is 
the dependency of the speed to the pulse’s amplitude and to the level of precompression in the chain. 
Thus, the wave speed measured by the MsSs was the largest because they induce precompression 
magnetically. The speed measured by the piezo rods was the smallest as the presence of the solid rod 
diminishes the amplitude of the traveling pulse. 

Table 2. Experimental and numerical time-of-flight and amplitude ratio. 

Sensor 
Type 

Sensor 
Position 

Time of flight (microsec) AR 

Numerical 
Experimental Difference 

(%) 
Numerical 

Experimental Difference 
(%) Mean Std Mean Std 

Bead 
Top 318.7 309.8 2.6 2.79 0.57 0.55 0.04 3.51 

Bottom 227.5 219.9 1.6 3.34 0.68 0.73 0.02 7.35 

Cylindrical 
Top 341.0 337.0 5.3 1.17 0.42 0.37 0.03 11.9 

Bottom 234.9 228.4 3.0 2.77 0.68 0.60 0.07 11.8 

MSS 
Top 298.8 287.3 0.9 3.85 0.70 0.69 0.02 1.43 

Bottom 217.6 207.0 0.7 4.87 0.79 0.86 0.01 8.86 

Table 3. Experimental and numerical speed of the incident and reflected HNSW pulse.  

Sensor 
Type 

Type of 
Wave 

Numerical 
(m/s) 

Experimental (m/s) Difference 
(%) mean std 

Bead 
Incident 540.0 547.0 13.1 1.30 

Reflected 505.6 514.1 16.0 1.68 

Cylindrical 
Incident 486.3 512.0 14.6 5.28 

Reflected 458.7 422.9 38.6 7.80 

MSS 
Incident 596.8 602.1 1.75 0.89 

Reflected 576.6 584.8 3.36 1.42 

6. Discussion and Conclusions 

In this paper we investigated numerically and experimentally three sensing systems for the 
measurements of highly nonlinear solitary pulses propagating in a chain of spherical particles.  
The transducers were a conventional pair of instrumented beads, and two novel designs based on the 
utilization of a pair of piezo rods, and a pair of coils. The latter aimed at exploiting the 
magnetostrictive properties of the particles.  

We compared the experimental results to the numerical predictions obtained by means of a discrete 
particle model. We found that the two novel designs performed equally well when compared to the 
conventional sensor beads, which require micromachining and must not be allowed to rotate in order to 
keep their sensitivity constant. From this study the following consideration can be made. Owing to its 
geometry the piezoelectric cylinder is not prone to rotation and does not require the machining of  
half-particles. However it may originate unwanted secondary pulses that trails the incident wave and 
attenuates the amplitude of the incident pulse. To prevent this problem, the cylindrical sensor should 
have the same mass of the other particles composing the chain, and the sphere-cylinder contact 
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stiffness should be the same as the sphere-sphere contact stiffness. Based on the contact mechanics 
theory, in order to have same contact stiffness, the elastic modulus of the cylinder should be 
approximately equal to 55% of the particle material’s elastic modulus [11], which may not be feasible 
in practice for piezoelectric material. Moreover the wiring of the cylinder may be too brittle and 
therefore prone to rupture. Conversely, the use of coils has multi-fold advantage: it can be mounted 
outside the chain; it is noncontact; is can slide at convenience at any position along the chain. 
However, this design can be used only when the particles composing the chain are sensitive to 
magnetostriction, i.e., they are able to convert magnetic energy into mechanical energy and vice versa. 
In fact, the magnetostrictive sensors exploit the coupling between the dynamic deformation of the 
magnetostrictive material to which they are applied and the variation of magnetic field surrounding the 
material. As confirmed by the empirical results, the voltage output is proportional to the dynamic 
deformation caused by the passage of the solitary wave pulse (Equation (5)). Future studies may look 
at improving the design of the magnetostrictive transducers and at investigating the response of the 
novel sensing system design in presence of much smaller and much larger crystals. 
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