
Sensors 2013, 13, 16829-16850; doi:10.3390/s131216829

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

Design Methodology of an Equalizer for Unipolar Non Return
to Zero Binary Signals in the Presence of Additive White
Gaussian Noise Using a Time Delay Neural Network on a Field
Programmable Gate Array

Santiago T. Pérez Suárez *, Carlos M. Travieso González and Jesús B. Alonso Hernández

Institute for Technological Development and Innovation in Communications, University of Las Palmas

de Gran Canaria, Las Palmas de Gran Canaria 35017, Spain;

E-Mails: ctravieso@dsc.ulpgc.es (C.M.T.G.); jalonso@dsc.ulpgc.es (J.B.A.H.)

* Author to whom correspondence should be addressed; E-Mail: sperez@dsc.ulpgc.es;

Tel.: +34-928-451-277; Fax: +34-928-451-243.

Received: 31 October 2013; in revised form: 29 November 2013 / Accepted: 29 November 2013 /

Published: 6 December 2013

Abstract: This article presents a design methodology for designing an artificial neural

network as an equalizer for a binary signal. Firstly, the system is modelled in floating point

format using Matlab. Afterward, the design is described for a Field Programmable Gate

Array (FPGA) using fixed point format. The FPGA design is based on the System

Generator from Xilinx, which is a design tool over Simulink of Matlab. System Generator

allows one to design in a fast and flexible way. It uses low level details of the circuits and

the functionality of the system can be fully tested. System Generator can be used to check

the architecture and to analyse the effect of the number of bits on the system performance.

Finally the System Generator design is compiled for the Xilinx Integrated System

Environment (ISE) and the system is described using a hardware description language. In

ISE the circuits are managed with high level details and physical performances are

obtained. In the Conclusions section, some modifications are proposed to improve the

methodology and to ensure portability across FPGA manufacturers.

Keywords: equalizer; AWGN; neural network; FPGA; floating point; fixed point; Matlab;

Simulink; System Generator; ISE

OPEN ACCESS

Sensors 2013, 13 16830

PACS Codes: 84.40.Ua; 89.70.-a; 89.70.Hj; 89.20.Ff; 07.50.Qx; 84.30.Sk; 07.50.Hp;

07.05.Mh

1. Introduction

Artificial Neural Networks (ANNs) have been widely used as identifiers of patterns [1], and their

advantages and benefits are well known. This paper exposes a design methodology for designing an

ANN as an equalizer for a binary signal. The signal is a unipolar Non Return to Zero (NRZ) with

Additive White Gaussian Noise (AWGN) [2]. Firstly, the system is modelled in floating point format

using Matlab [3]. Afterward, a design methodology is described for a Field Programmable Gate Array

(FPGA) using fixed point format [4].

The FPGA design is based on the System Generator from Xilinx [5]. Xilinx is one of the most

important FPGA manufacturers, and System Generator is a design tool over Simulink of Matlab [6].

Simulink is a graphical environment Matlab design tool. In Simulink designs are described in the form

of block diagrams and it has utilities for displaying and analysing the simulations. System Generator

allows one to design in a fast and flexible way. It uses a low level of circuit details, so the simulations

are fast, and the functionality of the system can be fully tested. System Generator can be used to

check the architecture and to analyse the effect of the number of bits on the system performance.

Furthermore, it gives an approximate estimation of required hardware resources. Finally, physical

performances are extracted with the Xilinx Integrated System Environment (ISE) [7].

In this regard there have been several studies on ANN over FPGA for real time processing. Some of

them focused on baseband signals, and are used as receptors [8] or as equalizers [9,10]. In the same

way, others studies are for band pass signals [11]. The equalization can be performed to minimize

distortion and noise introduced in the channel. With modulated signals such systems can also be used

for identifying the modulation type [12]; obviously, these studies are restricted to certain values of

carrier frequencies and certain types of modulation. In multiuser communication ANNs are used to

identify and synchronize the channel or to make demodulation [13–15]. Other studies have been

developed on a very specific scenario [16]. In any case, few have been developed on FPGA [17],

generally these studies use numerical floating point format on a personal computer. Many of these

studies focus on the development of new architectures of ANNs [18] or new training methods [19].

When the rate of the input signal increases the ANN implemented in a computer in floating point

format cannot operate in real time. For decreasing the response time the ANN should be passed to a

digital circuit, normally in fixed point format. The reason is that floating point arithmetic in a digital

device needs a lot of hardware resources and power, without substantial improvement in speed.

Besides, with the digital device the volume and the power consumption will decrease.

One alternative is to use an Application Specific Integrated Circuit (ASIC). The ASIC has low area

occupation, low power consumption and high speed, but its disadvantages are: high price, difficult

debugging and verification, long time to market, the fact that it does not allow reprogramming and has

high non-recurring engineering costs. For these reason, ASIC is undesirable to develop prototypes

where the number of units to be produced is small.

Sensors 2013, 13 16831

On the other hand, Digital Signal Processors (DSPs) can be used, which are cheaper than ASICs.

DSPs reach higher clock frequencies, but the data rate that can be processed is limited because of the

parallelism of the data, the size and format of the data, and the pipelined are fixed. All this is imposed

by its predetermined architecture.

Finally, the use of Field Programmable Gate Arrays (FPGA) has several advantages: low price, no

non-recurring engineering costs, minimum development time, ease of debugging and verification,

short time to market, high data parallelism, flexible data format and flexible pipelined structure.

Although the clock frequency is not as high as in DSPs, with the above characteristics an increase in

the data rate can be achieved. Moreover FPGAs have higher power consumption, but they are

appropriate for individual prototypes because FPGAs can be reprogrammed by the designer.

2. The Equalizer System

This study focuses on a binary unipolar NRZ signal, and the digital cero (“0”) and digital one (“1”)

have the same probability (Figure 1). That is, the “1” and “0” are respectively represented by +A and

0 volts (or amps) during a bit time (Tb seconds). The bit rate value is Rb = 1/Tb bits per second. For

simplicity and without loss of generality it may be assumed that +A is equal to 1. It is assumed that the

signal is affected by additive AWGN. The received NRZ signal has infinite bandwidth and does not

suffer distortion, although its higher spectral components are near the zero frequency. The AWGN also

has infinite bandwidth and its power spectral density is uniform, its power is infinite, and therefore the

Signal Noise Relation (SNR) is zero. The AWGN is not bounded in amplitude, although very large

values are unlikely as indicated its Gaussian probability density function. The input signal of the

Sampler and Hold block is analogue and continuous.

Figure 1. Proposed model.

In summary, it is assumed that the signal has been transmitted over a channel with infinite

bandwidth which adds AWGN. The received signal is sampled each Tm seconds; the sample frequency

is fm = 1/Tm Hz. An integer number of samples will be taken in each bit interval. Each sample of the

sampled signal is composed of the data signal component plus the noise component. The component of

the sampled noise is additive Gaussian with zero mean value. The noise power at the output of the

sampler is finite and is given by the variance, which is the same as the square of the typical deviation.

The SNR in the sampler output is a nonzero finite value. The sampler output is a discrete time signal,

and it can be introduced into a digital system through a convenient quantification. The output of the

sampler can be introduced into a discrete time digital system.

Sensors 2013, 13 16832

One objective of this study is to check if a Time Delay Neural Network (TDNN) can be used as a

preamplifier or equalizer; increasing the output Signal to Noise Relation. Furthermore, it is proposed a

design methodology over a FGPA for the TDNN. The tool used to simulate the system in floating

point format was Matlab and Simulink, and especially the Neural Network Toolbox was used [20].

Initially the bit rate (Rb) was set to one kilobit per second and ten samples were taken per bit

(n = 10), therefore the sampling frequency (fm) was set to 10 kHz. The value of the bit rate has not

transcendence, the important parameter is the number of samples per bit. In the final system the bit rate

can increase as much as the technology permits, according to the maximum clock frequency. Figure 2

shows the original data signal and the sampled received signal with +10 dB of SNR.

Figure 2. (a) Original data signal and (b) sampled received signal.

(a)

(b)

3. The Floating Point Modelling

Figure 3 shows a Time Delay Neural Network (TDNN), it is a neural network which includes input

cascaded delay elements. In this case, each element delays the signal a sampling interval (Tm seconds).

For processing n samples, (n – 1) delay cells are necessary. This architecture has a transitory period for

the first input symbol until the first n samples arrive. Without the delay cells the system is a Multilayer

Perceptron Neural Network type.

The question is whether this TDNN will improve the SNR of the sampled signal. This TDNN is

trained with its input noisy sampled signal and the target is the original data signal. The signal received

at the input of the sampler is called r(t), which is equal to the data signal d(t) plus noise signal n(t); that

is, r(t) = d(t) + n(t). At a given time, called t0, the delay elements of the neural network store the

samples r(to – kTm), where k is equal to 0, 1, 2, ..., 9. For these values the target for the neural network

training is d(to), the original data value in t0. The observation interval is Tb seconds.

Initially to train, validate and test the neural network a sequence of 1,000 random bits with +10 dB

of SNR was used. Only one hidden layer with five neurons was used, so the neural network size can be

denoted as 10/5/1.

Sensors 2013, 13 16833

Figure 3. Time delay neural network.

Typically the number of neurons in the intermediate layer is initially the geometric or arithmetic

average between the inputs and outputs. As transfer function the “logsig” type was used in all neurons

(Figure 4). The Levenberg-Marquardt algorithm was used for training with the Mean Squared Error

(MSE) function. In this process, the Neural Network Toolbox of Matlab was used, and 80 percent of

the samples were taken for training, 10 percent for validation and 10 percent for testing.

Figure 4. Log-sigmoid transfer function.

a = log sig(n) = 1/(1 + exp(−n))

Secondly, the neural network was tested with another 1,000 random bits for the same SNR (+10 dB).

It can be said that the testing SNR was +10 dB. Original data, sampler output and TDNN output are

shown in Figure 5. It can be observed that the SNR has improved, and it will be measured below.

The TDNN restricts the output signal to (0,1) interval because the output neuron has as transfer

function a “logsig” type. The error in the output is bounded to 1. It should be noted that the signal

power in the input and output have the same value. This is due to the waveform obtained in the output,

because of the target values specified on training.

Finally, the TDNN trained with +10 dB of input SNR, was tested with different values of the input

SNR. The testing SNR was varied from −5 dB to +25 dB in 0.5 dB increments. For each testing SNR

1,000 random bits were simulated. Figure 6 shows the output SNR versus input SNR, where the

straight line where the output would be equal to the input is marked. The output SNR is always greater

Sensors 2013, 13 16834

than the input SNR. It should be noted that the curve depends on the training, but this is the typical

shape obtained.

Figure 5. (a) Original data signal, (b) noisy sampled signal with +10 dB of SNR

and (c) TDNN output.

(a)

(b)

(c)

Figure 6. Output SNR versus input SNR in TDNN.

The high number of parameters involved in the TDNN design should be emphasized. First of all,

other neural network architectures are possible, some of them have signal feedbacks from the output to

the input and besides the number of feedback samples can be varied. This study is focused on a TDNN

without feedback. Once the architecture of the neural network has been fixed the design parameters are

the number of intermediate layers, the number of neurons in each layer, the transfer function used in

neurons, the training algorithm, the error function used in training, the observation interval duration,

-5 0 5 10 15 20
-10

0

10

20

30

40

50

SNRe (dB)

S
N

R
s

(d
B

)

Sensors 2013, 13 16835

the training SNR, the testing SNR, the duration of the signal used for training, validation and testing,

and the method of splitting the sampled signal for training, validation and testing.

3.1. The Number of Layers and Neurons

Hereafter, the effects of these parameters are analysed. To observe the effect of the number of

intermediate layers were tested configurations with two and three hidden layers, while the rest of the

parameters remained as in the previous section. None of them trained successfully. Therefore, the

architecture is fixed with a single intermediate layer. Then the effect of the number of neurons in this

layer was analysed; for this purpose it was varied from 1 to 20. Figure 7 shows the curves for 1, 10 and

20 neurons, respectively

Figure 7. Effect of the number of neurons in the hidden layer on the output SNR.

For high SNR in the input (>15 dB), one neuron in the middle layer gets high values of the output

SNR (>30 dB). For low input SNR the curves converge. At this point the designer must establish a

design criterion. It can be set to one neuron in the hidden layer if SNR values are good enough for the

application; if not, it should be increased. For describing the method one neuron is fixed in the hidden

layer. This is the smallest architecture, therefore it minimizes the area, the response time and power

consumption. It must be emphasized that the results depend on the training, but these are the standard

curves obtained. Henceforth, the system will have a single neuron in its intermediate layer.

3.2. Effect of the Transfer Functions

At this point the effect of different transfer functions can be checked. The other parameters were

held as in the previous configuration. The transfer functions must be increasing ones and differentiable

except at specific points. The function chosen can have impact in the hardware implementation. In the

intermediate layer the transfer functions shown in Figure 8 were checked. Since the unipolar output

signal is between 0 and 1, three types of functions were tested in the output neuron (Figure 9).

The combinations shown in the Figure 10 were simulated; in fact, the Log-Sigmoid Transfer

Function for all neurons already has been tested in the previous section. The curves obtained depend

on the training, the figure shows typical shapes.

-5 0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

100

SNRe (dB)

S
N

R
s

(d
B

)

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

SNRe (dB)

S
N

R
s

(d
B

)

1 neuron: “o”, blue
10 neurons: “+”, magenta
20 neurons: “*”, red

Sensors 2013, 13 16836

Figure 8. Transfer functions tested in the intermediate layer.

ne1

1
a

 1

e1

2
a

n2

1n;1

1n0;n

0n;0

a

1n;1

1n1;n

1n;1

a na

Figure 9. Transfer functions tested in output neuron.

In order to facilitate the design of the transfer function on a FPGA the cases in which the

intermediate layer has a Log-Sigmoid or Tan-Sigmoid Transfer Function were rejected (the first two

rows of the Figure 10). Both cases have similar shape for the output SNR. Such types of functions are

nonlinear and must be implemented using a method of approximation: memories, piecewise linear,

polynomial, etc.

When the intermediate layer has a Satlin or Satlins Transfer Function (third and fourth row of the

Figure 10) the output SNR is similar to previous cases. Since these functions are piecewise linear their

hardware implementation is simpler than that of the nonlinear functions, they need less hardware

resources, have less power consumption and less time delay. Basically they can be designed with

Sensors 2013, 13 16837

comparators and multiplexers, or using adders and the absolute value operator. Moreover, these

implementations will not introduce approximation errors.

Figure 10. Transfer functions checked in the neural network.

Output Layer

H
id

d
en

 L
ay

er

In the last row of the Figure 10 the Linear Transfer Function is used for the hidden layer, which is

the identity function. The design of this function is trivial, and the output is equal to the input. It can be

implemented with a short circuit with no approximation error. Therefore, this implies the lowest

hardware resources, lowest power consumption and non-significant time delays. In the output neuron

Linear Transfer Function is discarded by low output SNR. Log-Sigmoid and Satlin Transfer Functions

produce similar output SNR. For the above reasons the Satlin Transfer Function was chosen for the

-5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

SNRe (dB)

S
N

R
s

(d
B

)

-5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

SNRe (dB)
S

N
R

s
(d

B
)

-5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

SNRe (dB)

S
N

R
s

(d
B

)

-5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

SNRe (dB)

S
N

R
s

(d
B

)

-5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

SNRe (dB)

S
N

R
s

(d
B

)

-5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

SNRe (dB)

S
N

R
s

(d
B

)

-5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

SNRe (dB)

S
N

R
s

(d
B

)

-5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

SNRe (dB)

S
N

R
s

(d
B

)

-5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

SNRe (dB)

S
N

R
s

(d
B

)

-5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

SNRe (dB)

S
N

R
s

(d
B

)

-5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

SNRe (dB)

S
N

R
s

(d
B

)

-5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

SNRe (dB)

S
N

R
s

(d
B

)

-5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

SNRe (dB)

S
N

R
s

(d
B

)

-5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

SNRe (dB)

S
N

R
s

(d
B

)

-5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

SNRe (dB)

S
N

R
s

(d
B

)

Sensors 2013, 13 16838

output neuron. Thereafter the TDNN will have nine delay cells for processing 10 samples of the

received signal. The hidden layer has one neuron with the Linear Transfer Function and the output

neuron has the Satlin Transfer Function. For this modelling the Matlab Neural Network Toolbox

was used.

3.3. Algorithm and Error Function Used for Training

For the above conditions, twenty training algorithms were tested. The Conjugate gradient

backpropagation with Polak-Ribiere updates training algorithm was set because of the output SNR

obtained, the limited number of iterations and the speed of convergence.

So far, the Mean Squared Error function has been used for the training algorithms. Under the

conditions of the previous section, including the mentioned training algorithm, the effect of the error

function was analysed. There are four functions available: mean squared error, mean absolute error,

sum squared error and sum absolute error. The error function is not critical for the training; despite

this, the Mean Squared Error function is used for the small improvement for low input SNR. Figure 11

shows the training window, which also details this architecture.

Figure 11. Matlab Neural Network Toolbox training window. Matlab has a bug in the

output neuron drawing the unipolar Satlin Transfer Function as bipolar.

Sensors 2013, 13 16839

3.4. The Observation Interval Duration

In this section the effect of the size of the observation interval is analysed. The rest of the

parameters have the same configuration of the previous section. For this purpose 10 samples per bit are

taken, the sampling frequency is 10 kHz and the training SNR is +10 dB. The number of samples

processed by the TDNN is varied between 1 and 20. The best result is for 10 processed samples.

Figure 12 shows the testing SNR for 8, 10 and 12 processed samples, respectively.

Figure 12. Effect of the observation interval.

These simulations justify the use of an observation interval of Tb seconds. Obviously, if less than

10 samples per bit are taken the system is deteriorated, the performance can be improved by increasing

the sampling frequency, but this can be a design constraint.

If the observation interval is longer than Tb seconds, when the last arrived sample coincides with

the beginning of a bit then the two previous bits are being processed. The last received sample should

force the decision in the TDNN output. In this case, the older bit is an unnecessary input for

the system. For a fixed number of samples processed, if the observation interval is smaller than a bit

duration (Tb seconds) then the sampling frequency is increased, but this can be a design constraint.

3.5. Signal to Noise Relation for Training

The noise power is one of the most important parameters in the TDNN design. It was tested by

sweeping the training SNR from −5 dB to +20 dB in 1 dB steps. Afterwards, the testing SNR was

varied from −5 to +20 dB in 0.5 dB steps for each training SNR. In Figure 13 the curves for different

training SNR are shown. It underscores the importance that:

 Training with −5 dB causes the best testing SNR for −5 dB,

 Training with 0 dB causes the best testing SNR for 0 dB,

 Training with +5 dB causes the best testing SNR for +5 dB,

 Training with +10 dB causes the best testing SNR for +10 dB,

 Training with +15 dB causes the best testing SNR for +15 dB,

 But training with +20 dB does not cause the best testing SNR for +20 dB; in fact, the best

testing SNR for +20 dB is for +15 dB training SNR.

-5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

SNRe (dB)

S
N

R
s

(d
B

)

8 samples: “*”, red
10 samples: “o”, blue
12 samples: “+”, magenta

Sensors 2013, 13 16840

Figure 13. Effect of the training SNR from −5 dB to +20 dB.

If the training SNR is less than −5 dB the training does not converge, it is too much noise. Above

+15 dB for training SNR suffers a relaxing process, there is very little noise. A criterion for fixing the

training SNR which produces the greatest output SNR for an input SNR, or for an input SNR range

could be set. Hereafter, we will try to find the optimal training SNR with the criterion of having

maximum output SNR with low input SNR; furthermore, the output SNR will be greater than the input

SNR for all the range. Figure 14 shows the output SNR for training SNR from +6 dB to +10 dB in

1 dB steps. With the mentioned criterion, the optimal training SNR is +7 dB.

Figure 14. Effect of the training SNR from +6 dB to +10 dB.

3.6. Summary of the Design

The objective is to design an equalizer using a TDNN for:

 1 kbit/s data binary rate,

 the signal received is unipolar NRZ with AWGN,

 10 samples per bit are taken, so the sample frequency is 10 kHz.

The TDNN has been designed with the following parameters:

 +7 dB for the training SNR,

 a observation interval of 10 samples,

 one hidden layer with one neuron,

 Linear Transfer Function in the hidden layer,

 one neuron in the output layer,

 Satlin Transfer Function for the output neuron,

 initially, 1,000 bits were used (80% for training, 10% validation and 10% for testing),

 conjugate gradient backpropagation with Polak-Ribiere updates training algorithm was used,

-5 0 5 10 15 20
0

10

20

30

40

50

60

SNRe (dB)

S
N

R
s

(d
B

)

-5 0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

SNRe (dB)

S
N

R
s

(d
B

)

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

11

SNRe (dB)

S
N

R
s

(d
B

)

-5 0 5 10 15 20
0

10

20

30

40

50

60

SNRe (dB)

S
N

R
s

(d
B

)

-5 0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

SNRe (dB)

S
N

R
s

(d
B

)

-5 -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

6

7

8

9

10

11

SNRe (dB)

S
N

R
s

(d
B

)

SNR training
+20 dB +
+15 dB o
+10 dB *

+5 dB �
0 dB x

-5 dB ∆

SNR training
+10 dB +

+9 dB o
+8 dB *
+7 dB ·
+6 dB x

Sensors 2013, 13 16841

 Mean Squared Error function for training.

Finally the TDNN was checking:

 with testing SNR from −5 dB to +20 dB in 0.5 dB steps,

 1,000 bits were simulated for each SNR value.

The solution obtained was subjected to a second round of parameter variations to see if the solution

obtained is local. The sweep was done in the same and reverse order, that is, if changing a parameter

can improve the system. By varying the parameters the same solution was obtained.

3.7. Stability Band

The TDNN architecture with associated parameters has been reached, but each time it is trained

different coefficients are obtained (weights and bias), these coefficients produce similar but not

identical curves. That is, variations may occur between TDNNs obtained with the same training SNR.

This is because each training session has different initialization of the algorithm. In addition, every

training session uses different data and noise signals; although, the values of its parameters: power,

statistics features, etc., are held. The stability band can be defined as the zone where it can be ensured

that most TDNN curves fit.

For this purpose, 100 training sessions were realized. The curves whose SNR output was less than

input SNR were neglected. There were 94 successful training sessions; in Figure 15a the 94 testing

curves can be observed. Then, for each value of the input SNR the mean value of output SNR was

calculated, and the mean value curve is shown in Figure 15b with a dotted line. Furthermore, the

typical deviation of the output SNR was calculated for each value of the input SNR. A lower boundary

was defined with these values, by subtracting the typical deviation from the mean value. Similarly, an

upper bound was defined, adding the typical deviation to the mean value. In Figure 15b the stability

band is shown, with its boundaries shown in black line. Of the curves 76% (71 of 94) fell within the

stability band.

Figure 15. (a) Testing curves of successful training. (b) Mean value and stability

band boundaries .

(a) (b)

-5 0 5 10 15 20
0

10

20

30

40

50

60

SNRe (dB)

S
N

R
s

(d
B

)

-5 0 5 10 15 20
0

10

20

30

40

50

60

SNRe (dB)

S
N

R
s

(d
B

)

Sensors 2013, 13 16842

4. The Fixed Point Modelling with System Generator

The calculation that performs a neural network can be fully or partly sequentialized, less hardware

resources implies more time delay. Furthermore, the system can be completely parallelized, and the

maximum amount of resources entail minimum delay. The level of parallelization chosen depends on

the maximum delay allowed and the hardware resources available for the design. For high sample rates

the fully parallelized architecture must be used for reducing the response time.

The TDNN was designed in fixed point format twos complement for an FPGA using the Xilinx

System Generator. The Simulink block diagram of the TDNN is shown in Figure 16. From left to right

and top to bottom, the figure shows: the FPGA input port, the nine delay elements, the System

Generator block, the Resource Estimator block, the first neuron and its transfer function, the second

neuron and its transfer function, and the FPGA output port.

Figure 16. System Generator block diagram of the TDNN.

Henceforth, the System Generator blocks used are described. Gateway In block is the input bus to

the FPGA, the signals would come from an Analog to Digital Converter. If the noise power was zero,

the signal would be 0 or +1 and it would be enough an unsigned bit for the representation; in that case,

an equalizer would not be necessary. The noisy signal is bipolar and needs a sign bit. The range of the

input signal must be covered for the worst case of −5 dB of input SNR. In that situation the noise

power (2) is 1.58, and the noise typical deviation is = 1.26. The values n in a Gaussian probability

density function are in 99.7% within three typical deviations from the mean (Equation (1)):

Pr (– 3 ≤ n ≤ + 3) = 0.997 (1)

Sensors 2013, 13 16843

Then the samples are found with a probability greater than 99.7% between the limits given by

Equation (2), and the input signal must be representable in the interval [−3.78, +4.78]:

Lower limit = 0 – 3 = −3.78;

Upper limit = 1 + 3 = +4.78
(2)

To set the number of decimal bits (ndb), the quantization interval () was set as a fraction (p) of the

peak to peak value of the input signal (Equation (3)), where A is equal to +1 and the maximum

quantization error is nq = /2. The quantization interval () was set as a fraction (p) of the peak to

peak value of the input signal to set the number of decimal bits (ndb). This is given by Equation (3),

where A is equal to +1 and the maximum quantization error is /2. For example, the p value is 0.01

then the number of decimal bits is 7:

 = 2−ndb ≤ p·(A – 0) (3)

Nine delay cells are used, each of them delay a clock cycle, the frequency of this clock is the

sampling frequency. The 10 samples of the input signal are grouped together using a Bus Creator

Simulink block which facilitates the connection to the next stage. Afterwards, Goto and From

Simulink blocks are used for wiring. This technique is useful in complex systems with many neurons,

where there are many electrical connections.

The hidden layer is formed by a single neuron. In the first stage the delay cells outputs are

multiplied by weights and the bias value is added. The second stage is the transfer function. Figure 17

shows the first stage. In constant multipliers blocks (Cmult) are specified: the value of the constant, the

number of bits for its representation, the binary point position, and the type of output precision.

Latency can also be fixed, that is, the number of clock cycles for the multiplication. For increasing the

speed this value is set to zero, so the constant multipliers are fully combinational.

Figure 17. First stage of the hidden layer.

Sensors 2013, 13 16844

Coefficient values are given from a Matlab array in floating point format, these values come from

the training process. The number of bits and binary point position are set for covering the range and for

representing the value with a maximum error. Initially, the output precision for the constant multipliers

was set as full. In the same way, the adders are configured with zero latency and full output resolution.

Finally, the bias is added, this value is stored in a Constant block and configured similarly to the

constant multiplier block.

The transfer function for this neuron is the identity function (Linear Transfer Function in Matlab). It

could be avoided joining the blocks with a connection. A block with an internal connection is used to

remember that in other cases it must be inserted a block that performs the transfer function. Obviously,

this does not penalize in area, power consumption or delay time.

The output of the hidden layer is connected to the output layer, which has only one neuron. The first

stage in Figure 18a is similar to the neuron in the hidden layer, the blocks are configured in the same

way. The transfer function is the Satlin Matlab type. It was designed mainly with two comparators and

a multiplexer as shown in Figure 18b.

Figure 18. (a) First stage of the output layer; (b) Transfer function in the output layer.

(a) (b)

The output precision is set by the multiplexer. Initially, it was set to full resolution. The input from

the previous stage is signed; for this reason, the multiplexer has a signed output. Actually, Satlin

function output is unsigned, between 0 and +1, it could be eliminated the bit sign, this adjustment was

done later.

Under these conditions, the coefficients (weights and bias) are represented with a maximum error of

1%. The peak to peak value (p) was set at 1% for the error in the input signal representation. The

output was left in full resolution. The TDNN trained with +7 dB for the SNR was simulated on the

FPGA with +7 dB testing input SNR. The Simulink simulation is shown in Figure 19.

Finally, the testing SNR was varied from −5 dB to +25 dB in 1 dB increments, for each testing SNR

1,000 random bits were simulated. Figure 20 shows the output SNR versus input SNR for the TDNN

in floating point format and the TDNN on FPGA in fixed point format. At this point, the functionality

of the equalizer on the FPGA has been fully verified.

Sensors 2013, 13 16845

Figure 19. Simulink simulation of the TDNN: (a) original data, (b) data with noise, (c) the

output of the FPGA, (d) the error signal in the FPGA and (e) the output of the TDNN in

floating point format.

Figure 20. Output SNR versus input SNR for the TDNN in floating point format and fixed

point format (FPGA).

The number of bits can be reduced for the representation of weights, bias and input samples; this

implies saving area, power and less delay time. Decreasing the number of bits produces growth in the

representation error and the performance of the system gets worse. In other words, the reduction of

number of bits causes degradation of output SNR versus input SNR curve. The Table 1 shows the

results for 0.1%, 1% and 2% errors. It also shows the optimized model for 1%, which will be explained

later. The TDNN in floating point format was trained with +7 dB of SNR, this model for +7 dB of

testing SNR causes +14.52 dB for output SNR.

The maximum error must be set through some criterion. For example, that the curve of fixed point

model must deviate less than 1 dB respect to the curve of floating point model. With this criterion, the

maximum error was set to 1%. In this case, the input signal format has 11 bits: a bit for the sign, three

integer bits and seven decimal bits. With full resolution in all operators the output of the TDNN in the

FPGA has 40 bits, including 25 decimal bits and a sign bit. Then some adjustments are possible in the

output format—this corresponds to the optimized model. First, the sign bit can be removed in the

output. Moreover, the number of decimal bits can be reduced to seven without degrading the SNR

curve, this can be checked experimentally. Finally, one bit for the integer part is used, so +1 can be

-5 0 5 10 15 20
0

10

20

30

40

50

60

SNRe (dB)

S
N

R
s

(d
B

)

(a)

(b)

(c)

(d)

(e)

Floating point model o
Fixed point model *

Sensors 2013, 13 16846

represented without error. Given this reduction in the number of bits in the output signal, the number

of bits of different stages is reduced in the system from the output to the input.

Table 1. Effect of the errors on the system.

Error
SNRoutput

(SNRinput = +7dB)

SNRoutput versus

SNRinput

Floating point: o

Fixed point: *

Difference between

Fixed Point and

Floating Point

Models

AREA
Input

Format

Output

Format

0.1% 14,47 dB

Worst case: −0.7 dB

Slices: 1026

FFs: 126

BRAMs: 0

LUT: 1869

IOBs: 64

Mults/DSP48s: 0

TBUFs: 0

Signed

Number

of bis: 14

Binary

point: 10

Signed

Number of

bis: 50

Binary

point: 35

1%

14,47 dB

Worst case: −0.7 dB

Slices: 693

FFs: 99

BRAMs: 0

LUT: 1238

IOBs: 51

Mults/DSP48s: 0

TBUFs: 0

Signed

Number

of bis: 11

Binary

point: 7

Signed

Number of

bis: 40

Binary

point: 25

1%

(optimized)
14,46 dB

Worst case: −0.5 dB

Slices: 678

FFs: 99

BRAMs: 0

LUT: 1203

IOBs: 19

Mults/DSP48s: 0

TBUFs: 0

Signed

Number

of bis: 11

Binary

point: 7

Unsigned

Number of

bis: 8

Binary

point: 7

2% 14,46 dB

Worst case: −1.5 dB

Slices: 623

FFs: 90

BRAMs: 0

LUT: 1106

IOBs: 47

Mults/DSP48s: 0

TBUFs: 0

Signed

Number

of bis: 10

Binary

point: 6

Signed

Number of

bis: 37

Binary

point: 22

5. Obtaining the Physical Performance with Integrated System Environment

At this point the model and the architecture of the system have been fixed; besides, the full

functionality has been checked. Then the design is compiled with System Generator. For the

compilation process the FPGA device must be chosen, in this case the Xilinx Spartan-3E family,

-5 0 5 10 15 20
0

10

20

30

40

50

60

SNR e (dB)

S
NR

s (
dB

)

-5 0 5 10 15 20
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

SNRe (dB)

S
N

R
s(

F
P

G
A

)-
S

N
R

s(
P

un
to

 F
lo

ta
nt

e)
 (

dB
)

-5 0 5 10 15 20
0

10

20

30

40

50

60

SNRe (dB)

S
N

R
s

(d
B

)

-5 0 5 10 15 20
-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

SNRe (dB)

S
N

R
s(

F
P

G
A

)-
S

N
R

s(
P

un
to

 F
lo

ta
nt

e)
 (

dB
)

-5 0 5 10 15 20
0

10

20

30

40

50

60

SNRe (dB)

S
N

R
s

(d
B

)

-5 0 5 10 15 20
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

SNRe (dB)

S
N

R
s(

F
P

G
A

)-
S

N
R

s(
P

un
to

 F
lo

ta
nt

e)
 (

dB
)

-5 0 5 10 15 20
0

10

20

30

40

50

60

SNRe (dB)

S
N

R
s

(d
B

)

-5 0 5 10 15 20
-1.5

-1

-0.5

0

SNRe (dB)

S
N

R
s(

F
P

G
A

)-
S

N
R

s(
P

un
to

 F
lo

ta
nt

e)
 (

dB
)

Sensors 2013, 13 16847

device xc3s500e, package fg320, and −5 for speed grade was used. Besides, for System Generator

compilation a standard Hardware Description Language (HDL) must be chosen, these languages are

Verilog and Very High Speed Integrated Circuit Hardware Description Language (VHDL) [21,22].

After the compilation a project is generated for the Xilinx Integrated System Environment (ISE),

which includes the HDL files for the structural description of the system.

The ISE software is the Xilinx standard tool for FPGA design. The syntax of the HDL files can be

checked, and synthesis and behavioral simulation of the TDNN can be executed. After that, the design

implementation permits the timing simulation of the system. The simulation for 1 kbit/s is illustrated in

Figure 21a. Finally, the programming file is generated for the chosen device.

Xilinx ISE software manages FPGA circuits with a high level of detail. For this reason, the physical

performances can be determined more accurately. Table 2 shows these results in area, power and

maximum clock frequency for both hardware description languages. The program can even estimate

the operating temperature of the circuit. Slight differences were obtained between the standard

languages. According to the maximum clock frequency, with this device it would be possible to reach

up to 27.6167 Megabits per second, this simulation is in Figure 21b.

It should be emphasized that ISE simulator uses FPGA circuits with high level detail, this makes

simulations more accurate, but much slower. Only short duration signals can be simulated, in

opposition to System Generator simulations. In this environment the full functionality of the system

cannot be tested, but timing details can be analysed.

Table 2. Results in area, power and maximum clock frequency for both HDL.

HDL Area Power (W) Maximum Clock Frequency

VHDL

Number of Slices: 602
out of 4656: 12%

Number of Slice Flip Flops: 100
out of 9312: 1%

Number of 4 input LUTs: 961
out of 9312: 10%

Number of IOs: 21
Number of bonded IOBs: 20

out of 232: 8%
Number of GCLKs: 1

out of 24: 4%

Quiescent: 0.085
Dynamic: 0.292

Total: 0.377
276.167 MHz

Verilo
g

Number of Slices: 602
out of 4656: 12%

Number of Slice Flip Flops: 100
out of 9312: 1%

Number of 4 input LUTs: 963
out of 9312: 10%

Number of IOs: 21
Number of bonded IOBs: 20

out of 232: 8%
Number of GCLKs: 1

out of 24: 4%

Quiescent: 0.085
Dynamic: 0.292

Total: 0.377
273.523 MHz

Sensors 2013, 13 16848

Figure 21. Xilinx ISE timing simulations: (a) 1 kbit/s and 10 ksamples/s,

(b) 27.6167 Mbit/s and 276.167 Msamples/s.

(a)

(b)

6. Conclusions and Future Lines of Research

A design methodology of an equalizer is presented using a neural network on a FPGA. Three

phases can be differentiated in the design, the first two phases are supported by Matlab. In the first

stage the Matlab Neural Network Toolbox is used for fixing the floating point architecture, parameters

and the performance of the neural network, the information obtained can be called the “golden rule”.

In the second stage the Xilinx System Generator is used, which operates on Matlab Simulink. In

this phase the system is designed in fixed point format according to the golden rule. In System

Generator the circuits are handled with low level of detail, for this reason the simulations are very fast

and the functionality of the system can checked completely. During this stage a poor estimation of the

area is calculated, and nor power consumption nor speed of the circuit are evaluated. Moreover, the

effect of the number of bits in different parts of the design can be tested. The fixed point format has

implications on the functionality of the system and the hardware resources occupied.

In the third step, the system description obtained with System Generator is used by the Xilinx

Integrated System Environment. This design tool uses a high level of circuit details, and this allows

estimation of physical performances: hardware resources, power consumption and maximum

clock frequency.

It should be noted that the description of the system obtained by System Generator is not portable to

other manufacturers. The reason is that System Generator calls primitives and specific blocks of

Xilinx. The design could have been done for Altera, the second FPGA manufacturer in importance.

Altera offers DSP Builder, which is a similar tool over Simulink. In the same way these designs are

only valid for Altera FPGAs. As a future line of investigation, Matlab HDL Coder could be used,

whose files are portable to all manufacturers. The HDL Coder designs can be compared with the

designs obtained with the FPGA manufacturers’ tools. The results will depend on the compilers.

Provide the portability using a hand coded hardware description language is not a good alternative.

The design of complex systems directly in a hardware description language is long and tedious, and

not flexible for changes.

Obviously, increasing the sampling frequency can improve the system performance, but this may be

a design restriction or be limited by the technology. In other words, given the sampling frequency it is

possible to improve the system by varying other parameters of the neural network.

The output SNR curve obtained is not rigid, and among other parameters it depends on the

architecture and training SNR. The neural network can be trained for other scenarios, for instance if

Sensors 2013, 13 16849

the signal suffers from distortion or other noise model. Another advantage is that the architecture and

parameters can be changed to fit the new channel. Other neural network architectures are available,

even some of them with feedback signals.

The same error was assumed in the representation of the input and coefficients in the two layers. In

general the effect of different errors should be analysed for input and each layer coefficients. The

conclusions should focus on the functionality and physical performance of the system. This study

should be automated with a Matlab program for executing the models designed with System

Generator. In this case, given the shape of the transfer functions its effect is not considered. That is,

these functions do not produce approximation errors between input and output. In general, with

other nonlinear functions it is necessary to consider the approximation error introduced by

the implementation.

During system design it is convenient to maintain full the resolution of the operators. Reducing the

number of bits sometimes is possible in the final output. In this case it is possible to decrease the

binary representation toward the circuit inputs. This process could also be automated with a

Matlab program. The low rates used in the initial simulations do not affect the method or the

conclusions, being generalizable to higher frequencies, as high as allowed by the available technology.

References

1. Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification, 2nd ed.; Wiley-Interscience: Danvers,

MA, USA, 2001.

2. Sklar, B. Digital Communications. Fundamentals and Applications, 1st ed.; Prentice-Hall: Upper

Saddle River, NJ, USA, 1998.

3. Matlab. Available online: http://www.mathworks.com/products/ (accessed on 20 October 2013).

4. Hauck, S.; DeHon, A. Reconfigurable Computing, 1st ed.; Elsevier: Amsterdam,

The Netherlands, 2008.

5. System Generator. Available online: http://www.xilinx.com/tools/sysgen.htm (accessed on

20 October 2013).

6. Simulink. Available online: http://www.mathworks.com/help/simulink/ (accessed on

20 October 2013).

7. Integrated System Environment. Available online: http://www.xilinx.com/products/design-tools/

ise-design-suite/index.htm (accessed on 20 October 2013).

8. Watterson, J.W. An optimum multilayer perceptron neural receiver for signal detection. IEEE

Trans. Neural Netw. 1990, 1, 298–300.

9. Feng, J.; Tse, C.K.; Lau, F.C.M. A neural-network-based channel-equalization strategy for

chaos-based communication systems. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2003,

50, 954–957.

10. Graham, W. Developments in Non-Linear Equalization. Ph.D. Thesis, Department of Systems

Engineering, Research School of Physical Sciences and Engineering: Australian National

University, Canberra, Australia, 1992.

11. Patra, J.C.; Pal, R.N.; Baliarsingh, R; Panda, G. Nonlinear channel equalization for QAM signal

constellation using artificial neural networks. IEEE Trans. Syst. Man Cybrn. 1999, 29, 262–271.

Sensors 2013, 13 16850

12. Aravindan, M.; Kingsley, S.R. Recognition of Modulation Using Multilayer Perceptron in Digital

Communication. In Proceedings of IEEE Recent Advances in Intelligent Computational Systems

(RAICS), Trivandrum, India, 22–24 September 2011; pp. 264–268.

13. Al-Hinai, A.; Ibnkahla, M. Neural Network Nonlinear MIMO Channel Identification and

Receiver Design. In Proceedings of IEEE International Conference on Communications (ICC),

Beijing, China, 19–23 May 2008; pp. 835–839.

14. Bruyne, P.; Kjelsen, O.; Sacroug, O. Spread Spectrum Digital Signal Synchronization Using

Neural Networks. In Proceedings of IEEE International Carnahan Conference on Security

Technology, Atlanta, GA, USA, 14–19 October 1992, pp. 225–237.

15. Chow, T.; Feng, J.C.; Ng, K.T. An adaptive demodulator for the chaotic modulation

communication system with RBF neural network. IEEE Trans. Syst. Man Cybrn. 2000, 47,

902–999.

16. Dickenson, R.J.; Ghassemlooy, Z. BER performance of 166 Mbit/s OOK diffuse indoor IR link

employing wavelets and neural networks. Electron. Lett. 2004, 40, 753–755.

17. Yen, C.T.; Weng, W.; Lin, Y.T. FPGA Realization of a neural-network-based nonlinear channel

equalizer. IEEE Trans. Ind. Electron. 2004, 51, 472–479.

18. Ortiz-Fuentes, J.D.; Forcada, M.L. A Comparison between Recurrent Neural Network

Architectures for Digital Equalization. In Proceedings of IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), Munich, Germany, 21–24 April 1997;

pp. 3281–3284.

19. Yogi, S.; Subhashini, K.R.; Satapathy, J.K. A PSO Based Functional Link Artificial Neural

Network Training Algorithm for Equalization of Digital Communication Channels. In

Proceedings of International Conference on Industrial and Information Systems (ICIIS),

Mangalore, India, 29 July–1 August 2010; pp. 107–112.

20. Neural Network Toolbox. Available online: http://www.mathworks.com/products/neural-network

(accessed on 20 October 2013).

21. Palnitkar, S. Verilog HDL, 2nd ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2003.

22. Pedroni, V.A. Circuit Design with VHDL, 1st ed.; The MIT Press: Cambridge, MA, USA, 2004.

© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/3.0/).

