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Abstract: The sustainability of agricultural production in the twenty-first century, both in 

industrialized and developing countries, benefits from the integration of farm management 

with information technology such that individual plants, rows, or subfields may be 

endowed with a singular “identity.” This approach approximates the nature of agricultural 

processes to the engineering of industrial processes. In order to cope with the vast variability 

of nature and the uncertainties of agricultural production, the concept of crop biometrics is 

defined as the scientific analysis of agricultural observations confined to spaces of reduced 

dimensions and known position with the purpose of building prediction models. This article 

develops the idea of crop biometrics by setting its principles, discussing the selection and 

quantization of biometric traits, and analyzing the mathematical relationships among measured 

and predicted traits. Crop biometric maps were applied to the case of a wine-production 

vineyard, in which vegetation amount, relative altitude in the field, soil compaction, berry size, 

grape yield, juice pH, and grape sugar content were selected as biometric traits. The enological 

potential of grapes was assessed with a quality-index map defined as a combination of 

titratable acidity, sugar content, and must pH. Prediction models for yield and quality were 

developed for high and low resolution maps, showing the great potential of crop biometric 

maps as a strategic tool for vineyard growers as well as for crop managers in general, due 

to the wide versatility of the methodology proposed. 
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vineyard management; precision viticulture; agricultural robotics; information technology 

 

OPEN ACCESS



Sensors 2013, 13 12699 

 

 

1. Introduction 

Structural crises and widespread problems have historically been creative drivers of technology and 

innovative solutions, some of them ephemeral but very often inducers of philosophical transformations 

and even revolutionary outcomes. In 2006, millions of beehives worldwide emptied out as honeybees 

mysteriously disappeared, putting at risk nearly 100 crops that require pollination [1]. There may be no 

easy remedy to the colony collapse disorder; many suspects so far but no convictions yet, and solutions 

may require taking better care of the environment and making long-term changes to agricultural 

practices. This kind of structural changes in something as old as agriculture will likely require  

the advent of new technology in parallel with optimized data-based decision-making. Climate change, 

population growth, and increasingly scarce resources are putting agriculture under pressure [2]. Numerous 

North American specialty crops (fruits, vegetables, tree nuts, dried fruits, berries, and nursery crops), 

representing fifty percent of the total value of US crop production, are facing growing pressures that 

threaten their long-term viability [3]. Unfortunately, the implementation of technologies based on precision 

agriculture in practical farming has slowed in recent years on global scale compared to the mid- and  

late- 1990s [4]. In fact, until the late-1970s significant sums of money were invested in mechanization, 

robotics, and automation research and development in the US, but since that time, federal support to 

improve farm production through enhanced machine system has greatly declined, and therefore the 

research infrastructure for agricultural automation has deteriorated significantly over the past quarter 

century [3]. The reasons for this decay may rest in the difficulty to quantify benefits [5], the complexity of 

managing large amounts of data, and the intricacies of using advanced technology developed by academic 

or research institutions and hitting the market in an incomplete form [4].  

In 2007, the US Department of Agriculture (USDA), the National Science Foundation (NSF), and 

the National Aeronautics and Space Administration (NASA), jointly sponsored a workshop to find the 

fundamental research and technology needs of specialty crops industries. Precision agriculture 

applications for yield mapping, yield and nutrient prediction, data management, decision support 

systems, and diagnostic tools run high among the key needs identified [3]. As a matter of fact, current 

farmers are fuelling a growing market for imaging systems where photonics is being used to gauge 

plant stress [2], and optics manufacturers confirm the move from descriptive techniques towards 

quantitative imaging, as machine vision facilitates objective measurements [6]. Even something as 

unconventional as space weather forecast for satellite-based applications may soon become common as 

precision agriculture practitioners recount how they depend on reliable access to high-accuracy global 

positioning [7]. Monitoring and mapping crops is, after all, like planetary explorations where truthful 

perception and accurate positioning must be efficiently synchronized, something that NASA’s 

Curiosity rover achieves with no fewer than 17 cameras onboard.  

Mapping for monitoring and decision-making necessarily involves sensing, measuring, processing, 

and real-time positioning. Crop inspection is largely done manually, but humans have a threshold 

beyond which they cannot see, and certain disease conditions are impossible to detect [2]. Thermal 

imaging, for example, has been successfully used to monitor tree canopy in citrus, providing a record 

of the temporal variation of vegetation that allowed the detection of the fruits, and therefore an 

estimation of yield, although the lack of geographical references prevented the general assemblage of 

maps [8]. Gauging crop yield months before the harvest is not easy, thanks to a host of elements that 
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can impact growth and often are out of a farmer’s hands [2]. A reliable and low-cost method of 

generating yield maps of citrus has been by localizing hand-harvested containers of oranges with a 

GPS recorder, acknowledging yield variations within a citrus block, and allowing surface interpolation 

of yield data. This straightforward technique is applicable to other crops with little or no modification, 

although it does not map the yield of individual trees as desired by many growers [9]. In addition to 

yield, there are many other parameters to monitor before harvesting. Field-based, high-throughput 

phenotyping seeks to implement information technologies to characterize the growth response of 

genetically diverse plant populations in the field, which practically hinges on the availability of a 

proximal sensing system [10]. In fact, although remote sensing pioneered many applications of 

precision farming —especially related to hyperspectral vision–, resolution, grower controllability, and 

the need of high update rates practically unbalance the scale in favor of proximal sensing. Citrus 

groves, for instance, are aerially photographed in Florida at least once every two years for taxation 

purposes [9], which obviously is insufficient to monitor crop parameters along the season. Being 

Florida citrus one of the most technology-driven crops in the World, other regions will certainly have a 

much lower update rate, and thus remote sensing cannot offer the degree of flexibility required by most 

of medium and small growers in a global scale. Yet, satellite imagery may result helpful to validate 

ground data, as the weed mapping system developed to measure weed intensity and distribution in a 

cotton field [11]. Ground measurements were carried out with the Weedseeker sensor module in 

combination with a GPS, and later compared to remotely sensed imagery in order to predict crop 

canopy coverage, which eventually was most closely correlated with the Normalized Difference 

Vegetation Index (NDVI) plus weed intensity at a coefficient of variation 0.2 ≤ R2 ≤ 0.53. The majority 

of the estimations, measurements, and predictions made before harvesting are oriented to enhance 

mechanized or robotized harvesting, where expert systems somehow try to emulate and substitute the 

skills of pickers. The European Commission-funded DASH project has developed a working prototype 

of an asparagus-picking robot, currently being readied for market, and imaging systems are being 

introduced in Europe to sort grapes according to the quality of the wine they will produce [2]. Once 

sorted, the grapes may be collected by an autonomous machine such as the Japanese multipurpose 

robot capable of harvesting, berry thinning, spraying, and bagging of the grape bunches [12]. 

The main objective of the research reported in this article is the establishment of a framework to 

take the rich ideas and concepts behind precision agriculture and information technology to the reality 

of orchards, proposing a procedure for handling large amounts of data generated by advanced systems 

but targeted to users with no high-tech education. A step-by-step application of this methodology to 

such a high-value crop as wine-making vineyards illustrates the key stages of the method and 

demonstrates the real potential of crop biometric maps.  

2. Conceptual Foundation of Crop Biometrics (CB)  

The economic and social reality found in industrialized countries, where production costs in 

agriculture keep growing while produce maintain ever-decreasing prizes, benefits from the efficient 

application of information technologies (IT) to agricultural production, in such a way that specific 

information at plant, row, or subplot scale can be attained. This idea approximates the nature  

of agricultural processes to the mechanics of industrial processes in what could be perceived as a 
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naturalization of control system. However, agricultural production processes are further challenged by 

an enormous variability and the uncertainties of working outdoors in uncontrolled environments. The 

scientific and systematic study of agricultural processes is instrumental to increase the quality of 

products, enhance management efficiency, and develop prediction models. Prediction, in particular, is 

crucial for the right management of many crops. With the purpose of setting the ground for prediction 

in agricultural production, the term crop biometrics is defined as the scientific analysis of field 

observations confined to spaces of reduced dimensions and known time-invariant position. The 

practical realization of this idea involves deciding which physiological –or biometric– identifiers must 

be selected for each application, the optimal size of each individual space holding the magnitude of a 

biometric trait, the way to quantize traits and predicted parameters related to yield and quality, the 

mathematical or statistical relationship among traits and predictions, and the scope of predictive 

models based upon the biometry of specific crops.  

The idea of crop biometrics is not far away from the concept of human biometrics, from which it 

gets the inspiration. For the human case, it can be defined as the automated recognition of people via 

distinctive anatomical and behavioral traits [13]. Nevertheless, although both terms focus on biological 

traits, and therefore both need to make decisions on the basis of imperfect measures, the operational 

philosophy is remarkably distinct. The most significant differences are the following: first, the purpose of 

crop biometrics is predicting the outcomes of agricultural processes, assuming that these models make 

predictions according to imperfect measurements; secondly, unlike human biometric traits, crop traits are 

not unique, rather, it will be the opposite as many plants of the same field will share similar or identical 

vegetative vigor, production yield, or quality indices; thirdly, plant biometric traits change with time over 

the season, which is just the opposite to the immutability of, say, fingerprints; fourthly, sensors for crop 

biometrics are not always low cost; and finally, the holistic concept of crop biometrics includes factors that 

affect the plant but are not a part of it, as water availability, sun radiation, or soil resistance found by the 

roots, yet all can be enclosed in the same working site and be statistically related. 

The practical implementation of the concept of crop biometrics requires making important  

technical decisions: 

1. The selection of specific crop biometric traits (CB-traits) depending on each particular 

application, crop, or managerial need. A tabular format for the appropriateness of potential 

traits may be helpful at this stage of the process. The definite set of traits will always remain 

opened to new additions or the removal of poor performance traits. Table 1 provides an 

example of potential CB-traits for vineyards.  

2. The establishment of a protocol for the measurement of traits, specifying the procedure, the 

sensors, and the time and frequency of the estimations. Such issues as the sensitivity of the 

measurements in relation to the size of the cells must be addressed along the process. 

3. The design of the grid, determining mesh resolution and cell size. 

4. The method for analyzing the traits, verifying their statistical significance and establishing 

correlations among traits to propose prediction models with a known level of uncertainty. 

The vineyard case enounced in Table 1 will be further developed to validate the idea of crop 

biometrics. It features a tri-level division of traits given by soil level, plant level, and produce level 

traits. Figure 1 schematically shows the multi-level compatibility of maps that is necessary to establish 
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prediction models. Table 1 lists some of the crop traits of interest for the vineyard application. 

However, not all of them ended up being helpful, and by contrast, future traits not considered here will 

probably play a key role in the definition of future models. Alternative parameters such as soil 

conductivity, nitrogen content in leaf, sun radiation, leaf temperature, canopy density, phenolic status 

of grapes, or even laser-based carbon dioxide absorbed and emitted by foliage in the photosynthesis [14] 

might be instrumental for the efficient management of the vineyard of the future.  

Table 1. Selection of crop biometric traits for wine production vineyards. 

         

Vigor Altitude Soil Res. Yield Acidity Sugar Berry Size pH 

Cost Medium Low Medium High High High High High 

Automation High High Low Low Low Low Low Low 

Reliability Medium High Low High High High High High 

Speed High High Medium Low Low Low Low Low 

Correlation High High Low High High Low Low High 

Interest High Low Low High High High Low High 

Area samp. High High Low H-L Low Low Low Low 

Figure 1. Tri-level division of traits for vineyard management. 

 

3. Selection of CB-Traits 

The goal behind the idea of crop biometrics is to provide an IT-based management tool for modern 

agriculture based on two core principles: the construction of compatible user-friendly crop maps, and 

the representation of key information for the grower through CB-traits. As a result, in order to build 
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useful maps, CB-traits must be carefully chosen according to particular field needs. However, in 

addition to their interest for the grower, there exist other important factors that need to be taken into 

account too, as the list of properties considered in Table 1. The ideal situation occurs when a trait is 

essential for the grower, it can be measured automatically, quickly, at low cost, and is well correlated 

with the parameters being predicted, usually yield and quality. For the particular case of wine grapes, 

the quality of the future wine is even more interesting than the quality of grapes at harvesting time, and 

consequently, the predictive nature behind the concept of crop biometrics results in a strategic tool for 

wine makers. Unfortunately, the majority of CB-traits do not comply with these ideal properties, but 

this should not be a cause for rejection; rather, any CB-trait that adds value to the solution must be 

considered, even if the sensors currently available are overprized or difficult to automate. Forthcoming 

research will eventually palliate these inconveniences and by the time unaffordable sensors become 

accessible, the already existing framework to process their data will result in higher accuracy for the 

models and smoother integration for the sensors. This could be the case, for example, of the 

assessment of soil compaction and the measurement of grape juice acidity in Table 1; thus far, both 

traits are manually sampled, but future scouting robots may be capable of conducting sampling 

missions autonomously, increasing the amount of data while reducing time and cost. Whenever this 

becomes available, the elaboration of these particular maps will be faster and better, but the procedure 

to integrate data in the predictive models will be exactly the same followed with the  

manually-generated maps, as all maps –new and old– are designed to be compatible among them and 

with the rest of the maps included in the model. As a matter of fact, the development of automated 

measuring systems is in continuous expansion, with new solutions for soil sampling and phenolic 

maturity reaching real time performance. 

As shown in Table 1, properties of different nature must be confronted to candidate CB-traits before 

choosing the set of traits associated to a given application, as what is interesting for a crop may not be 

appropriate for others. Vegetative vigor, for example, is known to influence grape yield and wine 

quality, but it will probably result in a poor indicator to predict yield in an orange grove. As a result, 

each particular application requires a customized CB-traits table. In the construction process of a  

trait-property cross table, the following points should be considered: 

1. Cost induced by the trait, including the prize of purchasing the sensor plus the expenditures 

involved in the measuring process. 

2. The more automated a measurement is, the lower reliability it tends to have.  

3. The interest of farmers in tracking certain traits, as it varies with applications and may differ for 

the same crop cultivated in diverse locations. 

4. The strength of correlation among CB-traits establishes the validity of predictive models, and 

typically requires the support of statistics. In that respect, reliability in the measurements must be 

assured before applying statistical methods of analysis. Even so, statistical procedures are not 

intended to replace subject-matter judgments based on theoretical knowledge and field experience.  

4. Measurement and Positioning of CB-traits: Map Construction  

The methodology to process and handle biometric information is as important, or even more, than 

the actual acquisition of data. Some sensors can provide a precise measurement in less than a second 
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but the area per sample is large. Other times, instead of a sampling probe, crop information is gathered 

from digital images. Yield monitors are designed to estimate instantaneous yield on-the-go. How can 

all this information be efficiently combined in a standard map? Two principles account for the 

management of crop biometric information with compatible maps:  

1. The selection of a convenient coordinate system with functional axes guarantees repeatability 

during a season and compatibility over the years. In addition to this, Euclidean geometry facilitates 

the measurement of distances and the calculation of areas, especially if compared to spherical 

(geodetic) coordinates. All these conditions are met by the Local Tangent Plane (LTP) coordinate 

system, as it uses the Cartesian axes north, east, and altitude, and allows the selection of a local 

origin chosen by the user, and set for all the crop maps associated to the field analyzed.  

2. The homogenization of data through regular grids of user-selected resolution, regardless of the 

nature of the sensor implemented, its sampling rate, or the area covered per measurement. 

Given that the origin of coordinates in each field can be fixed by the producer, and the size of 

the grid’s cell is kept constant through time, the resulting crop maps can be easily standardized 

for each given field, resulting in a grid format of determined resolution. This procedure leads to 

important implications, as biometric information and future predictions for a field should be 

freely exchanged over time and space. Local origins and intuitive coordinates help farmers and 

field managers relate map cells with the actual terrain. Even if the resolution of the grid is 

changed by modifying the cell size, crop maps can still be compared zone by zone, and 

therefore compatibility is always granted. Cells without information do not create any problem 

because the global positioning of cells allows the completion of maps in subsequent passes and 

data correlation only occurs among cells storing biometric data. 

The fulfillment of these two principles allows the comparison and correlation of compatible  

maps carrying biometric information. However, several subtleties need to be further discussed before 

assembling the set of crop maps that characterize a field. To begin with, the relationship between cell 

size and the nature of the CB-traits should be investigated in detail. Generally speaking, there will be 

many traits but only one cell size will be adopted for all the maps. Obviously, the measuring technique 

of each trait sets the smallest size under which additional subdivisions are meaningless. For example, if 

soil is sampled every 5 m along a row separated from its neighboring rows by 6 m, square cells of 3 m 

size will result in many empty cells, but expanding the cell size to 6 m, 10 m , or 15 m will lead to 

alternative maps representing equivalent biometric information at different resolution. When several 

measurements fall inside the same cell, the magnitude of the traits is averaged to provide the mean 

value of the trait corresponding to that cell. Naturally, the bigger the cell the less accuracy will have 

the model, as specific crop information is lost through the averaging process. Some applications, 

however, may require labeling the cells with the top values rather than the averages. In any case, map 

variability will increase as cell size diminishes. As a result, the biometric parameters represented in a 

map possess certain sensitivity to the actual size of the cells (map resolution), mainly given by the 

equilibrium between sampling rate and sampling spatial range. Therefore, the right trade-off must be 

established in such a way that the information carried by each particular cell is meaningful by itself 

and in relation with the rest of the crop map. 
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This section provides the framework to build crop biometric maps in general terms, but the specific 

equations and detailed algorithms to assemble them fall outside the scope of this paper. The following 

references may help to apply these ideas to particular cases. The transformation from geodetic 

coordinates to the local tangent plane is explained step-by-step in ([15], Chapter 3, pp. 68–71). The 

construction of regular grids with global references given in the LTP coordinate system is described  

in [16]. The implementation of conditioning filters to enhance the robustness of GPS data can be checked 

in [17], and finally, the estimation of spatial variation of vine vegetation with machine vision has been 

reported in [18]. Section 6 applies this methodology to the particular case of vineyards, presenting more 

insights and practical solutions on the proposed philosophy.  

5. Mathematical Analysis of CB-Traits  

In the methodology proposed, the working unit is the cell of a CB map, and consequently 

everything happens at cell level. This implies that there will be a set Z of n biometric traits  

Z = {T1, T2, …, Tn} representing diverse crop-related properties, and a set of cells forming a map 

where the elements of Z are represented, so that the total number of maps related to a field will be greater 

or equal than n. As a result, CB maps may be correlated at cell level–i.e., cell by cell for equivalent 

positions– and checked for statistical significance among traits in such a way that prediction models may 

be enounced for a certain subset of Z. Predicted traits must be eventually evaluated according to their 

proximity to the actual measurements determined by the “ground-truth” verification conducted in the field 

under study. Again, this evaluation must take place at cell level. Every CB map will have a horizontal 

resolution of h cells and a vertical resolution of v cells, summing up a total of hv cells. Map cells can be 

identified using the standard matrix notation Tk (i, j) where i = {1, 2, …, v}, j = {1, 2, …, h}, and  

k = {1, 2, …, n}. 

The predictive models inferred from correlating a selected number of traits will always be statistical 

models rather than mathematical models, as they cannot represent precise relationships free of error 

but approximate relations deduced from data prone to experimental errors. The statistical analysis of 

CB-traits proceeds according to the following actuation protocol.  

5.1. Statistical Nature of Selected CB-Traits  

Before making any attempt of establishing statistical correlations among different traits, it is 

important to analyze the statistical nature of the selected traits. In particular, if they represent stochastic 

(or random) variables and how they behave in terms of basic statistics. These properties are key  

to explain variability within the field, the foundational concept behind precision agriculture. A random 

variable usually takes on a set of possible values, each with an associated probability, which 

conceptually may represent the subjective randomness (crop variability) resulting from incomplete 

knowledge on the biological processes behind crop production. From that standpoint, crop traits can be 

considered random variables, even though their values are not intrinsically random, because 

measurement errors tend to follow a random distribution. In fact, normally distributed errors are 

assumed for regression models, F-tests, and ANOVA [19]; therefore, the assumption of normality 

should be checked for the set of traits proposed in the study of a field, and if data behaves approximately 

normal, the set of conventional statistical tools can be used to generate predictive models. The normal 
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quantile-quantile plot provides a direct evaluation of the assumption of normality, where approximate 

linearity indicates normally distributed errors. 

Once the assumption of normality has been verified, inferences on means and standard deviations 

may be properly interpreted. At this point, especial attention must be paid to the appearance of outliers, 

i.e., extreme values with respect to other observations made under the same conditions. When sensors 

and other electronic devices are set to gather data for long periods of time under tough environmental 

conditions, noise is prone to appear, and predictive models based on regression may result extremely 

affected by uncontrolled outliers. Therefore, provisions should be made to deal with unrealistic data 

before composing the CB maps. In general, two approaches can be followed with regards to outliers: 

identification, determining what observations are outliers for their removal; and accommodation, 

mitigating their effects within the map. If the presence of outliers becomes an operative problem, the 

technique of studentized deleted residuals can be used for outlier-detection statistics.  

5.2. Coherence between Equivalent or Related Biometric Traits  

As electronic and information technologies rapidly evolve, more and new measurement techniques 

for crop traits will become available. Under these circumstances, it will not be uncommon to end up 

collecting different maps of the same or closely related traits, as the alternative vegetation coverage 

estimated in Section 6 from digital images taken with two different fields of view. As several CB maps 

model the behavior of a unique trait, the information reported, while different, must be equivalent. This 

fact must be verified by establishing correlation models among equivalent quantifications of the same 

trait. In fact, predictive models will mostly need the participation of only one type of measurement per 

significant trait, and thus the best correlated parameters should be identified before determining the 

definitive predictor variables of the model.  

5.3. Enunciation of CB Prediction Models  

A CB prediction model is the regression-based estimation of a quantitative variable related to 

produce yield or quality given as a function of one or several predictor crop traits, establishing a 

statistical correlation among traits with a solid foundation for dealing with observational data. 

However, when analyzing data in which most of the variables are not controlled, extreme care must be 

taken to ensure that proper inferences are drawn when statistically significant results are obtained [19]. 

Confounding is especially important as the effect of traits may not be uniquely ascribed to the subset  

of traits considered as predictor variables. Since the evolution of traits in the field runs mostly 

uncontrolled, confounding is likely to occur, and modesty should always be present in the claims made 

about predictive models. 

The regression models deduced for making CB predictions are mathematically based on  

least-squares estimates, and initially may be linear, multivariate, or polynomial. For least-squares 

predictions of the simplest linear type, the slope is related to the Pearson’s product-moment correlation 

coefficient r in such a way that both are equal when the standard deviation of both variables (predictor 

and predicted) is the same [19]. In such case the absolute value of the slope necessarily has to be less 

or equal to one because |r| ≤ 1. As a result, slope values under 1 cannot be interpreted as a lower 

response because this effect is expected if the variability of involved variables is similar. Consequently, 
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the standard deviation of all traits employed to compose CB maps must be carefully examined before 

drawing conclusions on linear models. For traits having analogous variability, not rare if the same trait 

has been studied through alternative measurements as mentioned above in Section 5.2, this possibility, 

formally known as the regression fallacy, needs to be verified. Nevertheless, predictions will generally 

require the combination of various crop traits, and multiple linear regression provides an upgrade of 

linear regression where the magnitudes of least-squares coefficients measure the change in the 

prediction due to a unit change in one trait while all remaining predictor traits are held constant. However, 

this is not always so straightforward due to potential interrelationships among traits which may result in 

drastic changes in predictions when a trait is added or deleted. In fact, given that traits are typically 

measured on different units, it is inappropriate to compare the model’s coefficients directly. As a general 

rule, a predictive model should not routinely insert products of all the traits initially considered as 

significant, as doing so will likely create unnecessary complexities in the analysis and interpretation of the 

predicted trait due to collinearities among predictor traits. Crop biometric models are not known before the 

analysis of the data. The underlying mechanisms that correlate traits are not well understood due to the 

inherent complexity of the problem and the lack of sufficient theory. This lack of deterministic 

information opens the solution to any kind of functional relationship, being polynomials and 

logarithms good candidates in which satisfactory approximations can be found. The final selection of 

the model type, however, must be done with prudence, starting with the simplest model suggested by 

scatter plots of the traits and the biological mechanism under study. In that respect, linear models will 

usually comprise the initial steps, moving to nonlinear models when there exists a clear advantage. In 

either case, the region of prediction must be well defined such that extrapolation never occurs, as the 

validity of the predictive model cannot be guaranteed outside the working interval.  

The measure of goodness of a fit is crucial to select a CB prediction model. Several indicators may 

be helpful to make an educated decision on which model will yield the most reliable prediction for the 

established working interval. In particular, the following checks may contribute to add relevant 

insights to the evaluation of candidate models: F-statistics and p-values from ANOVA tables; analysis 

of t-statistics for assessing collinearity effects among traits; empirical judgment and theoretical 

considerations on the crop; stepwise selection of traits, either adding or backward suppressing; and 

calculation of the sample Pearson’s correlation coefficient r or the coefficient of determination R2. 

Overall, caution should be used in relying on a single measure of the fit, such as r and R2 values. As a 

matter of fact, there is an extended tendency to over rely on R2 (= r2) because of its straightforward 

interpretation. To begin with, the use of Pearson’s r is appropriate only when the variates are stochastic 

variables. It can be calculated when some of the variables are not random but the calculated value of r 

is simply a measure of the degree of least-squares balance between the error sum of squares and the 

total sum of squares. Kvålseth [20] affirms that the coefficient of determination R2 is widely misused, 

and special care should be taken when comparing fits between models with and without an intercept 

term, linear and nonlinear regression models, and models in which the response variable is not in 

exactly the same functional form. Out of the eight alternative expressions of R2 analyzed by Kvålseth [20], 

the recommended choice of R2 statistic for linear models with or without intercepts, for nonlinear models 

that are intrinsically linear, when linear least squares regression is used, and even for models that are 

intrinsically nonlinear and fitted by nonlinear methods is shown in Equation (1), where yi are the field 

measurements of the trait Tk that is being predicted with the model, ŷi denotes the predicted values for 
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trait Tk, and ݕത denotes the arithmetic mean of yi. The potential limitation of Equation (1) to assess the 

goodness of predictive models is the lack of resistance to extreme values, as this calculation of R2 has a 

relatively low degree of resistance to outliers. At the high variability and dispersion of field measurements, 

it would be desirable to use an R2 statistic with certain resistance to marginal estimations. Such a statistic 

ܴ௦
ଶ  may be derived by simply replacing the arithmetic means of Equation (1) by sample medians, as 

illustrated in Equation (2) [20]: 

ܴଶ ൌ 1 െ
∑ሺݕ െ ොሻଶݕ

∑ሺݕ െ തሻଶݕ  (1) 

ܴ௦
ଶ ൌ 1 െ ቆ

ݕ|ሼ݊ܽ݅݀݁ܯ െ ො|ሽݕ

ݕ|ሼ݊ܽ݅݀݁ܯ െ ത|ሽݕ
ቇ

ଶ

 (2) 

6. Results and Discussion: Vineyard Biometrics 

The main advantage of crop biometric maps is their practical applicability to any kind of crop and 

any size of field. The general principles of this methodology have been described above, but the 

specific adaptation to a particular case requires the selection of predicted traits, predictor traits, grid 

resolution, and local origin of coordinates. In addition, right after choosing the principal traits to be 

monitored on a crop, a thorough description of the procedure to measure the traits must follow. The 

particularities of trait measurements will eventually suggest the most appropriate cell size, and hence 

the grid resolution for all CB maps. This section provides a detailed study case where the CB 

methodology has been applied to a wine-producing vineyard with the purpose of predicting grape yield 

and the site-specific quality of the future wine.  

6.1. Construction of Vineyard Biometric Maps  

The crop biometric maps envisioned to establish a predictive framework on yield and quality were 

developed for the ten rows of grapevines highlighted in the top view of Figure 2a. The field is located 

in Requena (Valencia, Spain), and consists of 20-year-old Cabernet-Sauvignon vines along trellised 

rows spaced 3 m and 130 m long with a 3% average slope, as shown in Figure 2. The approximate 

placement of the local origin of coordinates is marked in Figure 2a by a dot, set at the highest elevation 

point of row 1 from where the image of Figure 2b was taken. The cell size established for all the crop 

maps was 4 m (square cells) leading to a working area unit of 16 m2. The following traits were initially 

selected to construct predictive models for grape yield and quality: 

1. Average soil resistance to root growth estimated by 218 standard penetration tests. 

2. Maximum soil resistance to root growth estimated by 218 standard penetration tests. 

3. Water content in soil indirectly estimated by partial elevation above lowest field point. 

4. Relative vegetative vigor assessed with images automatically taken with an 8 mm lens. 

5. Relative vegetative vigor assessed with images automatically taken with a 12 mm lens. 

6. Grape yield manually weighted at 219 sampling points in the field. 

7. Sugar content measured in degrees Baumé from 219 grape samples. 

8. Must acidity. 
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9. Must pH. 

10. Weight of 10 berries. 

11. Average diameter of berries. 

12. Average berry density.  

Figure 2. (a) Top view of experimental field: row selection; (b) Vine status at testing 

period between véraison and grape harvesting. 

(a) (b) 

The soil resistance to root growth, both average and maximum, was measured in MPa by standard 

penetration tests conducted with the handheld penetrometer of Figure 3a (Eijkelkamp Agrisearch 

Equipment, Giesbeek, The Netherlands). Global references for the sampled points were acquired with 

a portable GPS antenna-receiver (Leica Geosystems, Heerbrugg, Switzerland). The vineyard is planted 

in sloping terrain, and although irrigation can be controlled by the producer, water tends to accumulate 

in the lowest section of the field at the eastern side. The content of water in the soil was assumed to be 

inversely proportional to the relative elevation of the sampled cell over the lowest headland in the field 

(marked in Figure 2a). Elevation data was automatically registered in cm by a tractor equipped with a 

GPS receiver (StarFire iTC, Deere & Co, Moline, IL, USA) providing NMEA messages at 5 Hz and 

conditioned by the algorithms of [17]. The spatial variability of vegetation was quantified from 

zenithal images taken with a monochrome camera (JAI CM-140GE-UV, Copenhagen, Denmark) 

centered in the near infrared (NIR) band. Two assessments of vegetation were conducted according to 

the field of view of the camera: wide view with 8 mm focal length (Figure 3b); and narrow view with 

12 mm focal length (Figure 3c). NIR-filtered images enhance vegetation from the background, and  

a customized dynamic segmentation algorithm [18] was developed to quantize the variation of the 

amount of leaves along the rows. The camera was mounted on a side bar attached to the tractor’s cabin, and 

the vehicle’s GPS provided its instantaneous position associated to each image automatically taken, 

following the architectural principles set in [21]. Relative vegetation was expressed in percentage, 

representing the number of pixels belonging to vegetation from the total number of pixels in the images of 

resolution 696 × 520. According to this definition, higher values of relative vegetation are expected for 

the images taken with the 12 mm lens, as the background representing soil or vehicle parts will be less 

apparent in the narrow-view images. The assessment of grape yield is crucial for this application, as it 

is a trait that involves predictions as well as measurements. The yield map was constructed from 
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weighting the grapes harvested along the rows with a digital dynamometer (Mecmesin, West Sussex, 

UK) for each interval of 4–5 m, totaling 219 measurements evenly distributed over the 10 rows 

mapped. The coordinates of the center points of the virtual areas from which grapes were manually 

harvested were recorded with the hand-held portable GPS. When the grid was formed, those cells 

including a yield measurement were labeled with the corresponding yield measured in kg; cells with 

more than one sample averaged the yield measurements, and empty cells remained with no data. At the 

time yield was being estimated by intervals, a representative sample containing various grape clusters 

was extracted from each interval and taken to the laboratory for its further analysis. In the laboratory, 

the sugar content of the must was measured in degrees Brix (Balling) with a digital refractometer 

(DR101Comecta S.A., Barcelona, Spain), the total acidity and pH of the must was measured with the 

semi-automatic tritator and ph-meter of Figure 3d (PH-Burette 24 Crison Instruments S.A., Alella, 

Spain). Berry weight was measured with a precision scale and the average diameter of the grapes was 

estimated with a digital caliper (Harbor Freight Tools, Camarillo, CA, USA).  

Figure 3. (a) Measurement of soil compactness; (b) Relative vegetation images with the 8 mm 

lens; (c) Relative vegetation images with the 12 mm lens; (d) Acidity and pH measurements. 

(a) (b) (c) (d) 

Figure 4. CB map of average soil resistance (MPa). 
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The 12 traits listed above were represented in compatible CB maps, where every cell is uniquely 

identified and physically related to an area in the field, as conceptually represented in Figure 1. As a 

result, crop traits may be compared cell-wise as long as there is information available for the chosen 

cells. A given cell may contain biometric information relative to certain traits out of the 12 initially 

considered; therefore, statistical correlation will be available among data-carrying cells. Figure 4 

represents the CB map for the average soil resistance in MPa whereas Figure 5 provides the maximum 

soil resistance. Notice that both maps share the same resistance scale, and comparisons are possible in 

a cell to cell basis. Figure 6 is the elevation map of the ten rows analyzed in the field, and permits an 

indirect assessment of the water stored in the soil throughout the season, being lower elevation cells 

(mapped in dark blue) an indicator of higher moisture in the soil. Figures 7 and 8 map the spatial 

variation of vegetation between véraison and harvesting estimated with machine vision, the former 

with an 8 mm lens featuring a wider field of view, and the latter with a 12 mm lens sensing a narrower 

field of view. As both maps share the same scale, it is clear that higher indices are obtained for the 

narrow field of view, as expected from the images (Figure 3), but the trend in vegetation growth along 

the rows is quite similar, similarity that will be statistically determined in Section 6.3. Elevation 

(Figure 6) and vegetation (Figures 7 and 8) maps, unlike the rest, were automatically generated from 

the vehicle with no manual intervention, resulting in more data, less subjectivity, and much faster 

acquisition of key information. For these reasons, automatic perception will always be preferred to 

manual sampling, and the ideal situation will be when all the traits can be measured robotically from 

an intelligent sensing unit. So far, many traits require human intercession but the concept of crop 

biometric maps accepts both data sourcing, permitting its current use in manual mode and its future 

modernization toward all-automatic perception.  

Figure 5. CB map of maximum soil resistance (MPa). 

 

The compendium of maps enclosed in Figures 4 to 8 constitutes the quantization of traits at soil and 

plant level, as schematized in Figure 1. The rest of the maps belong to the produce level, as they directly 

relate to the grapes and their juice, technically known as the must. Figure 9 represents the actual yield 

measured at harvesting time for discrete sections of trellised vine corresponding to the approximate area of 
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a cell (16 m2), which in practical terms resulted in 219 measurements distributed along the ten rows. Even 

though grape production was manually weighted, there exist commercial yield monitors that may be 

integrated in grape harvesters for the instantaneous estimation of yield, and as a result this trait will likely 

be measured automatically in the near future. Yield is a principal trait because it is usually both predicted 

and measured, given its importance for growers and winery managers. Figure 10 provides the sugar 

content of the must measured in degrees Baumé. The acidity of the must was quantitatively determined 

through the pH (Figure 11) and with a semi-automatic tritator in g/L according to the distribution of 

Figure 12. Several physical parameters of the berries were also estimated from the samples taken 

during harvesting time. Figure 13 maps the distribution of 10-berry weights along the rows, and Figure 14 

depicts the average diameter of the sample assigned to each cell. As Cabernet-Sauvignon grapes are quite 

spherical in shape, their diameter provides a good estimate of their volume, whose relation with weight 

leads to the indirect estimation of density (Figure 15), easily calculated cell by cell.  

Figure 6. CB map of field relative elevation (cm). 

 

Figure 7. CB map of relative vine vigor estimated with an 8 mm lens: V-8 (%). 
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Figure 8. CB map of relative vine vigor estimated with a 12 mm lens: V-12 (%). 

 

Figure 9. CB map of grape yield (kg of grapes/16 m2). 

 

Figure 10. CB map of sugar content in must (º Baumé). 
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Figure 11. CB map of must pH. 

 

Figure 12. CB map of must acidity (g/L). 

 

Figure 13. CB map of 10-berry weight (g). 
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Figure 14. CB map of berry average diameter (mm). 

 

Figure 15. CB map of average berry density (g/cm3). 

 

6.2. Statistical Nature of Selected CB-Traits  

Before conducting inferences on means and standard deviations for the 12 biometric traits 

considered in the vineyard study, and mapped in Figures 4–15, the assumption of normality must be 

verified. To do so, the normal quantile-quantile plots offer an excellent tool to quantify the statistical 

validity of the conclusions later drawn from correlation and regression analyses. Figure 16 depicts the 

quantile plots for the soil resistance to root growth, either average (a) or maximum (b). Similarly, 

Figure 17 evaluates the normal behavior for the relative vigor, either estimated with an 8 mm lens (a) 

or through the 12 mm lens (b). Figure 18a depicts the quantile plot for field elevation, and the behavior 

of yield is examined in Figure 18b. The acidity of the must is checked in Figure 19, directly in g/L (a) 

and also through the pH (b). The pattern followed by the distribution of sugar content within the field 

is shown in Figure 20a. The statistical nature of berry physical parameters was studied by analyzing 
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the normality of the distribution of weight (Figure 20b), average diameter (Figure 21a), and berry 

density (Figure 21b). Table 2 summarizes the main statistical variables for the 12 traits initially 

considered in the Cabernet-Sauvignon vineyard of Figure 2. The table shows that there are no 

significant outliers in the data, and the stochasticity of traits is excellent except for the terrain elevation 

(Figure 18a), which obviously cannot follow a random pattern as it actually represents the profile of 

the terrain where the vines are planted. This fact must be taken into account if the elevation trait 

contributes to predictive models.  

Figure 16. Normal quantile-quantile plots for soil resistance (MPa): (a) Average values; 

(b) Maximum values. 

 
(a) 

 
(b) 
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Figure 17. Normal quantile-quantile plots for relative vigor of vines (%): (a) V-8;  

(b) V-12. 

(a) 

(b) 
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Figure 18. Normal quantile-quantile plots: (a) Terrain relative elevation (cm); (b) Grape 

yield (kg/16 m2). 

(a) 

(b) 
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Figure 19. Normal quantile-quantile plots for must acidity: (a) Total acidity (g/L); (b) pH. 

(a) 

(b) 
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Figure 20. Normal quantile-quantile plots: (a) Sugar content in must (º Baumé);  

(b) 10-berry weight (g). 

(a) 

(b) 
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Figure 21. Normal quantile-quantile plots: (a) Berry average diameter (mm); (b) Berry 

density (g/cm3). 

(a) 

(b) 

6.3. Coherence between Equivalent or Related Biometric Traits  

In the automatic assessment of vine vigor, and from a physical standpoint, the perception of vines 

with a 12 mm lens (V-12) necessarily fills the image better than its equivalent image taken with the 8 mm 

lens (V-8), as the former provides a closer look that avoids peripheral distractions such as soil, trellis 

frames, or vehicle parts. However, the goal of vigor maps is the acknowledgement of the spatial variation 
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of vegetation, and a priori, both estimations (8 mm and 12 mm lenses) should lead to similar 

conclusions with independence of the measuring scale used. A close look at their variances (Table 2) 

yields 219%2 for the 8-mm assessment and 276%2 for the 12-mm estimation, which are diverse enough 

not to consider the regression fallacy issue explained in Section 5.3.  

Table 2. Inference statistics for vineyard biometric traits. 

Crop Parameter Tracked n Max Min Average Median St. Dev. Normality 

Average soil resistance (MPa) 218 5 1.6 2.74 2.63 0.68 Strong 
Maximum soil resistance (MPa) 218 8.5 2.3 4.8 4.5 1.4 Strong 
Elevation (cm) 273 321 1 85.3 31 97.3 Weak 
Vine vigor with 8 mm lens (%) 274 69 1 39.5 41 14.8 Strong 
Vine vigor with 12 mm lens (%) 276 88 13 47.6 43 16.6 Strong 
Grape yield (Kg/16 m2) 219 8.4 0.7 4.1 4 1.84 Very strong 
Sugar content in juice  
(º Baumé) 

219 15.1 10.1 13.1 13.2 0.62 Strong 

Total acidity (g/L) 219 13 2.8 7.5 7.1 1.8 Very strong 
Must pH 219 4.3 2.8 3.3 3.3 0.2 Very strong 
Weight of 10 berries (g) 219 13.4 4.8 9.4 9.5 1.61 Very strong 
Diameter of berries (mm) 219 12.9 8.9 11 11.1 0.74 Very strong 
Berry density (g/cm3) 219 1.9 0.9 1.36 1.3 0.17 Strong 

Figure 22. Correlation between alternative vegetation indices V-8 and V-12. 

 

If both variables provide equivalent information on vegetation variability, there must be a 

conversion equation that translates any given level of foliar coverage to either V-8 or V-12; in other 

words, there should be a significant correlation between both variables when a regression fit between 

them is obtained. Due to the high variability found in the field with biometric traits, the resistant 

coefficient of determination given in Equation 2 results helpful to select the best fit between V-8 and 

V-12. Figure 22 depicts the scatter plot of V-12 vs. V-8 superposed with the linear, quadratic, and 

cubic fits specified in Table 3.  
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Table 3. Regression analysis between vegetation indices V-8 and V-12. 

Model R2 ࢙ࢋ࢘ࡾ
  

଼ܸ ൌ 12.679  0.548 · ଵܸଶ 0.384 0.677 

଼ܸ ൌ  െ15.5477  1.7631 · ଵܸଶ െ 0.0117 · ଵܸଶ
ଶ 0.429 0.687 

଼ܸ ൌ  െ33.1902  2.9274 · ଵܸଶ െ  0.0353 · ଵܸଶ
ଶ  0.0001 · ଵܸଶ

ଷ  0.432 0.695 

In addition to featuring the lowest R2 and ܴ௦
ଶ  values (Table 3), the linear fit produces values of  

V-8 higher than V-12 for small vegetation coverage, which is incorrect from a physical point of view. 

The quadratic and cubic regression both offer a more realistic model, and although the small 

improvement obtained with the cubic version in terms of coefficients of variation may not justify such 

degree of complexity, the behavior of the cubic model for values of V-12 greater than 70% is clearly 

superior, as this model always keeps V-12 > V-8, which is what happens in reality due to the 

morphology of the images.  

Figure 23. Correlation between average and maximum soil resistance. 

 

The compactness of soil may complicate the proper development of vine roots, and in consequence 

limit the optimum growth of plants and fruits. As happened with the assessment of vegetation, soil 

resistance was also estimated through two alternative measurements: average resistance and maximum 

resistance. From the physical standpoint, which must be always in sight, there must be a significant 

correlation between both traits. In fact, it is reasonable to think that only one of them will suffice to 

build prediction models if soil resistance turns out to be determinant in the prediction of yield or 

quality, as both indicators supply equivalent information. A priori, no preference can be established 

between average or top values until the enunciation and detailed analysis of predictive models. The 

comparison of variances (Table 2), however, yields a superiority of average values (σ2 = 0.46) in 

comparison with maximum values (σ2 = 1.96). As variances are notably different, the regression 
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fallacy is not a problem in the construction of regression models. Figure 23 plots the average soil 

resistance versus the maximum soil resistance.  

This time there is no benefit in using a quadratic fit, as linear regression is equally good and clearly 

simpler. The dispersion of data is milder than in Figure 22, and consequently the differences between 

R2 and ܴ௦
ଶ  (Table 4) are much smaller for both fits. Should outliers have appeared in the data, the 

latter would have provided a better assessment of the fitting quality.  

Table 4. Regression analysis between average and maximum soil resistance. 

Model R2 ࢙ࢋ࢘ࡾ
  

ܴܵ௫ ൌ 0.2773  1.6472 · ܴܵ௩ ܴܵ௩  1 ܽܲܯ 0.632 0.695 

ܴܵ௫ ൌ  െ1.1854  2.6863 · ܴܵ௩ െ 0.1738 · ܴܵ௩
ଶ ܴܵ௩  1 ܽܲܯ 0.638 0.693 

6.4. Prediction Models for Grape Yield  

Yield is one of the capital traits measured and studied in the biometry of vineyards, as it facilitates 

the construction of predictive models on future production from other traits involved in the process and 

considered predictor traits. From a physical perspective, field experience in agronomy has shown that 

high soil resistance to root penetration is not favorable to the development of roots, which in turns can 

limit the production of leaves, flowers, and fruits, although vines have traditionally endured poor 

terrains; the accumulation of water in the soil is positive for the development of the canopy, inducing 

higher yields; and the direct assessment of foliage in grapevines has been traditionally related to grape 

yield. In most cases, the soil and plant-level biometric traits, which can be measured way ahead 

harvesting time, possess the capacity to contribute in the prediction of upcoming yields. However, the 

following intricacies appear with the biometric traits considered in this study: 

1. Two different optical architectures have been implemented to quantize plant vigor, namely V-8 

and V-12. As expected, both estimations are related, but nonlinearly according to Figure 22  

and Table 3. Fortunately, both behave as normal variables although their variances are 

significantly different (Table 2). Statistical evidences will be necessary before determining 

which variable—or even both–should be included in the final predictive model. 

2. Likewise, the soil resistance to root development has been estimated from average and 

maximum measurements of standard penetration tests, which are linearly related according to 

Table 4. Figure 16 shows that the assumption of normality is met for both measurements, but 

further statistics are needed for their potential consideration as predictors. 

3. The water content in the soil was not directly measured; instead, it was indirectly assessed by 

the relative elevation of the plants with respect to the lowest zone of the field, where water 

accumulates as a consequence of runoff. As a result, the highest areas of the field are generally 

drier than the lowest headlands of the field, as indicated in Figure 6. This variable, in addition, 

behaves non-linearly and does not follow a normal distribution according to Figure 18a, thus 

special caution must be taken when using it with conventional statistics such as least squares 

estimators of regression models. 
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Table 5. Summary table for yield prediction models. 

Model R2 ࢙ࢋ࢘ࡾ
  F-Stat t-Stat Non-Signif. 

1Y 
ܻ ൌ 2.382  0.028 · ଵܺ  0.017 · ܺଶ െ 0.007 · ܺଷ

 0.22 · ܺସ െ 0.041 · ܺହ

0.42 0.38 20.59 ܺଶ ; ܺସ ; ܺହ 

2Y ܻ ൌ 3.146  0.034 · ଵܺ െ 0.008 · ܺଷ  0.093 · ܺସ 0.41 0.42 33.01 ܺସ 

3Y ܻ ൌ 3.366  0.035 · ଵܺ െ 0.008 · ܺଷ 0.41 0.41 49.62  

4Y ܻ ൌ 1.228  0.07 · ଵܺ  0.046 · ܺସ 0.34 0.46 37.86 ܺସ

5Y ܻ ൌ 1.389  0.066 · ଵܺ െ 0.016 · ܺସ  0.002 · ଵܺ · ܺସ 0.34 0.45 25.07 X4 ; ଵܺܺସ 

6Y 
ܻ ൌ 3.364  0.035 · ଵܺ െ 0.008 · ܺଷ െ 1.1569 · 10ି

· ଵܺ · ܺଷ 
0.41 0.41 32.85 ଵܺܺଷ

† 

7Y 
ܻ ൌ 0.204  0.072 · ଵܺ  0.037 · ܺଶ െ 3.5294 · 10ିସ

· ଵܺ · ܺଶ 
0.37 0.37 28.15 Constant; ܺଶ ; ଵܺܺଶ  

8Y ܻ ൌ 1.346  0.07 · ଵܺ 0.34 0.47 76.15  

9Y ܻ ൌ 5.063 െ 0.013 · ܺଷ 0.37 0.41 86.34  

10Y ܻ ൌ 1.423 െ 0.057 · ܺଶ 0.22 0.23 42.16  

11Y ܻ ൌ 0.3676  0.1367 · ଵܺ െ 0.0009 · ଵܺ
ଶ 0.36 0.49 40.61 Constant; ଵܺ

ଶ 

12Y ܻ ൌ 5.4519 െ 0.0281 · ܺଷ  0.0001 · ܺଷ
ଶ 0.41 0.36 50.58  

13Y 
ܻ ൌ 1.359 െ 0.0053 · ଵܺ  0.0041 · ଵܺ

ଶ െ 4.96 · 10ିହ

· ଵܺ
ଷ

0.37 0.49 80.15  

14Y ܻ ൌ െ1.5745  1.5970 · ln ଵܺ 0.3 0.43 62.60  

15Y ࢅ ൌ . ૠ · ࢄ
 . 0.37 0.50 87.55  

16Y ܻ ൌ 4.3144 െ
5.9086

ଵܺ
 0.09 0.08 14.81  

17Y ܻ ൌ 3.975 െ 1.242 · ܼଷ 0.37 0.41 86.34  

18Y 
ܻ ൌ 2.67  0.034 · ଵܺ െ 0.791 · ܼଷ െ 1.126 · 10ିସ

· ଵܺ · ܼଷ 
0.41 0.41 32.85 ଵܺ · ܼଷ

† 

19Y ܻ ൌ 2.67  0.035 · ଵܺ െ 0.794 · ܼଷ 0.41 0.41 49.62  
† Possible collinearity. 

Once the statistical nature of potential traits has been determined and special situations such as 

violations of the normality assumption or the presence of alternative measurements have been 

considered, predictive models may be enounced, compared, and scored. The selection of the best 

model is subjected to the following criteria: the largest coefficients of variation R2 and ܴ௦
ଶ  as defined 

in Equations (1) and (2); the largest F-statistics from the ANOVA table of multiple regression 

analysis; the lowest p-value from ANOVA; and the analysis of t-statistics for collinearity and 

individual trait significance. In the comparison of models, the coefficients of variation should be 

adjusted because not all the models include the same number of predictor variables. However, Table 2 

shows that the number of measurements above 200 is large enough to palliate negative effects, and in 

addition, the implementation of a resistant coefficient ܴ௦
ଶ  adds robustness to the model selection. All 

the calculations carried out in this article have been performed with a 95% confidence interval, which 

is quite high for the actual variability found in the field. The composition of predictive models for 

grape yield proceeds from the combination of the following principles: the empirical judgment and 
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theoretical considerations on the vineyard crop; the stepwise selection of predictor traits, either adding 

or backward suppressing; and the assessment of collinearity effects. Table 5 provides the key details of 

the 19 models proposed for yield prediction, where X1 represents the vigor V-8 (%), X2 the vigor V-12 (%), 

X3 the elevation at which the plant is located (cm), X4 the average soil resistance (MPa), X5 the maximum 

soil resistance (MPa), y the yield predicted by the model (Kg/16 m2), and Z3 the standardization of X3 with 

Equation (3) and the data of Table 2: 

 ܼଷ ൌ  
ܺଷ െ തܺଷ

ߪ
ൌ

ܺଷ െ 85.3
97.3

 (3) 

As all traits at soil and plant level (Figures 4–8) may potentially affect the upcoming yield, the first 

attempt constructing the yield model considers all predictors from X1 to X5. Model 1Y in Table 5 

represents this option. The results of the ANOVA for Model 1Y are printed in Table 6. In addition to 

the second lowest F-stat, the t-statistics for predictor variables indicate that X2, X4, and X5 do not add 

significant value to the model, and therefore may be excluded. 

The results of Table 6 imply that soil measurements are not helpful in the prediction of yield. 

However, the effect of the soil might be masked by the interference of the rest of predictor traits 

considered in Model 1Y. In order to clarify it, Model 5Y (Table 5) was proposed with the purpose of 

analyzing the effect of the average soil resistance (X4) and its interference with the relative vegetation 

assessed with X1, which is significant in Models 1Y to 4Y. Table 7 shows the results of the ANOVA 

for Model 5Y, where the lack of significance for the soil resistance and its possible interference with 

vegetation is evidenced again. The F-statistics of Model 5Y shows poor results as well, confirming the 

exclusion of soil resistance traits from the definite model. 

Table 6. ANOVA results for Model 1Y of Table 5.  

ࢅ ൌ . ૡ  . ૡ · ࢄ  . ૠ · ࢄ െ . ૠ · ࢄ  .  · ࢄ െ .  ·  ࢄ

R2 0.420            

ܴ୰ୣୱ
ଶ  0.379     

Model 1 Y     

Regression ANOVA 

Source Df Sum Sq MeanSq F-stat P-value 

Regression 5.00 202.8338 40.5668 20.5863 0.00 

Error 142.00 279.8210 1.9706   

Total 147.00 482.6548    

t-Statistics for Predictor Variables 

Variable Estimate St. error t-value P-value 

Constant 2.3820 0.8547 2.7869 0.0060 

ଵܺ 0.0277 0.0125 2.2048 0.0291 

ܺଶ 0.0171 0.0099 1.7248 0.0867 

ܺଷ −0.0073 0.0021 −3.4388 0.0008 

ܺସ 0.2197 0.2909 0.7553 0.4513 

ܺହ −0.0410 0.1351 −0.3038 0.7617 
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Even though the elevation (X3) seems to be well correlated with yield, as indicated by the F-stat and 

ܴ௦
ଶ  of Models 9Y and 13Y, the strong rejection of the term X1X3 given by the t-stat of Model 6Y suggests 

that both variables might be collinear. In order to investigate a potential source of collinearity between 

these predictors, and knowing that X3 does not behave as a normal distribution, X3 was standardized 

through Equation (3) and incorporated as Z3 into Model 18Y of Table 5. Nevertheless, the standardization 

of X3 did not result in any benefit for the model, and the only trait, out of the set measured in this 

application, that seems to correlate well with grape yield was X1. The choice finally selected was 

Model 15Y, with the ANOVA results of Table 8. The main reasons for this preference are:  

1. Highest ܴ௦
ଶ . 

2. Highest F-stat. 

3. All terms in the model are 95% significant according to the t-stat of Table 8. 

4. Simplicity and easiness of use, as shown in the model definition of Table 5. 

5. The model is valid in the entire domain of variable X1 (V-8 vigor), which ranges from 0% (no 

vegetation) to 100% (full coverage). It makes (physical) sense for no vegetation, as y(0) = 0, 

meaning that if there is no vegetation, there is no yield. However, the model underestimates 

yield for high vigor because y(100) = 6.3 kg/16 m2, and there are cells up to 8.4 kg/16 m2 

(Figure 9), accounting for an error of 25%.  

6. The residuals, plotted in Figure 24b, behave quite normally. 

Table 7. ANOVA results for Model 5Y of Table 5.  

ࢅ ൌ . ૡૢ  .  · ࢄ െ .  · ࢄ  .  · ࢄ ·  ࢄ

R2 0.343            

ܴ୰ୣୱ
ଶ  0.455     

Model 5 Y     

Regression ANOVA 

Source Df Sum Sq MeanSq F-stat P-value 

Regression 3.00 165.6109 55.2036 25.0733 0.00 

Error 144.00 317.0439 2.2017   

Total 147.00 482.6548    

t-Statistics for Predictor Variables 

Variable Estimate St. error t-value P-value 

Constant 1.3889 1.4688 0.9456 0.3459 

ଵܺ 0.0661 0.0344 1.9189 0.0570 

ܺସ −0.0155 0.5482 −0.0283 0.9775 

ଵܺ · ܺସ 0.0015 0.0127 0.1196 0.9050 

The quadratic and cubic models involving X1, as well as the logarithmic fit, do not bring advantages 

that justify their selection. The linear fit, in addition, does not provide reasonable results for X1 = 0. 

The alternative fits for yield prediction involving X1, namely Models 8Y, 11Y, and 14Y, are 

represented in Figure 24a.  

Overall, the best fit given by the power function of Model 15Y yields an ܴ௦
ଶ  of 0.5, which in 

general terms cannot be considered strong, as it only explains 50% of variability. Yet, these results are 

expected from biological systems due to their high variability, as shown in the scatter plot of  
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Figure 24a. It is expected that better measurements of traits and more replications conducted in the 

same field year after year will eventually lead to model fits significantly better.  

Table 8. ANOVA results for Model 15Y of Table 5.  

ܻ ൌ 0.5724 · ଵܺ
.ହଶଵଶ 

R2 0.375            
R୰ୣୱ

ଶ  0.503     
Model 15 Y     

Regression ANOVA 
Source Df Sum Sq MeanSq F-stat P-value 

Regression 1.00 15.4286 15.4286 87.5534 0.00 
Error 146.00 25.7281 0.1762   
Total 147.00 41.1567    

t-statistics for predictor variables 
Variable Estimate St. error t-value P-value 
Constant −0.5580 0.1995 −2.796

4 
0.0059 

ଵܺ 0.5212 0.0557 9.3570 0.0000 

Figure 24. (a) Prediction models for yield as a function of V-8 relative vigor; (b) Residuals 

for predictive Model 15Y (power function).  

 
(a) 

 
(b) 
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6.5. Prediction Models for Grape Quality and Enological Potential: Quality Potential Index (QPI)  

Unlike yield, which is a trait easy to measure, there is no such trait called grape quality. Yet quality is a 

key factor, if not the most determinant nowadays for winemakers, because a reduction on yield can be 

counterweighted by an excellent quality, but it never works the other way around, as a drop in quality 

affects the reputation of the brand and may have negative consequences for many years regardless of yield. 

The key question is how to define the term quality with regards to grapes, and consequently to prospective 

wine. As a matter of fact, it seems more reasonable to speak of potential quality, as the developed models 

try to predict the quality of the future wine based upon data recorded in the field from plants and grapes in 

growing stages ranging from véraison to harvesting time. Roger Pellenc, the French manufacturer of grape 

harvesters, states [22] that the base characteristics of the vine are essentially the quantity of grapes 

harvested, the sugar of the grapes, their acidity, and the health status of the plant, which is understood as 

the growth of vine shoots during the vegetative period.  

Before defining an index for quality potential as a function of the traits and measurements available 

from the CB maps developed, it is necessary to find out what viticulturists and winemakers consider it to be 

the ideal balance for grapes at the time of harvesting, that is, determining the perfect ripeness for obtaining 

the best possible wine. The frequent update and tracking of certain maps may lead to associate certain 

tastes with certain changes in measured factors. According to Cox [23], the factors to be measured are 

degrees Brix, titratable acidity in g/100 mL (TA), and pH, with target readings for perfect red grapes of 22 

Brix, 0.75 acid, and a pH about 3.4. Brix degrees provide the percentage of sugar in the grape juice, 

whereas acids give crispness, brightness, and thirst-quenching qualities to wines, being essential 

components of the balance in a fine wine. On the other hand, pH is related to TA but differs from it and 

may or may not be correlated with the amount of tartaric acid of grape juice. The ideal value of pH is 3.4 

for red wine, but it may be higher even when TA is within the optimum range.  

The ratio of Brix to TA is a better indicator of ripeness and quality than sweetness or tartness alone. 

Researchers at the University of California at Davis [23] have found that wines are properly balanced 

when Brix:TA is between 30 and 35, and preferably 30. An even more accurate measure for quality 

sets the optimal situation when Brix times pH2 approaches 260 for red wines or 200 for white wines. 

The list of traits measured from the grapes and represented in the crop maps of Figures 10–12 allow 

for the implementation of these quality indicators in the quest of a general quality index that can take 

part in predictive models within the scope of crop biometrics. In particular, let X6 be the sugar content 

measured in degrees Baumé (Figure 10), X7 the total acidity in g/L (Figure 11), and X8 the must pH 

(Figure 12), the sugar content in degrees Brix (X9) and the titratable acidity in g/100 mL (X10) can be 

easily calculated with Equations 4 and 5: 

ܺଽ ൌ 1.8 · ܺ (4) 

ଵܺ ൌ 0.1 · ܺ (5) 

Taking the nomenclature used for the CB traits measured in the vineyard to the recommendations 

given above by Cox and the University of California [23], the expressions given in Equations (6) and 

(7) must hold for the optimum quality of Cabernet-Sauvignon grapes: 
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ܺଽ

30 · ଵܺ
ൎ 1 (6) 

ܺଽ · ଼ܺ
ଶ

260
ൎ 1 (7) 

The multiplication of Equations (6) and (7) leads to the expression of Equation (8), that permits the 

evaluation of quality from the predictor traits estimated in the field and mapped in Figures 10–12. 

ܺଽ

30 · ଵܺ
·

ܺଽ · ଼ܺ
ଶ

260
ൌ

ሺ଼ܺ · ܺଽሻଶ

7800 · ଵܺ
ൎ 1 (8) 

The expression deduced in Equation (8) is the basis for measuring the quality potential in a new CB 

map. However, pivoting around 1 as the ideal quality is not convenient because values will grow 

unevenly according to whether they are above or below 1. In order to circumvent this issue and 

establish a more symmetrical distribution around zero (maximum quality), the Quality Potential Index 

(QPI) was defined by taking common logarithms to Equation (8), as shown in Equation (9): 

ܫܲܳ ؝ logଵ
ሺ଼ܺ · ܺଽሻଶ

7800 · ଵܺ
ൌ 2 · logଵሺ଼ܺ · ܺଽሻ െ logଵሺ7800 · ଵܺሻ (9) 

The application of the natural logarithm to Equation (8) would have expanded the scale, but with 

the use of common logarithms in base 10, the working scale for quality potential is practically limited 

to the interval [−1,1], which facilitates the use and interpretation of QPI maps, the CB map version of 

grape quality. Given that total acidity was mapped in g/L in Figure 11, and represented by X7, the final 

expression for QPI should use X7 rather than X10, which can be easily performed by introducing 

Equation (5) into Equation (9). The final expression for the QPI is given in Equation (10), where X8 is 

the must pH, X7 is total acidity in g/L, and X9 is the sugar content in degrees Brix. The best quality will 

be obtained for QPI values around zero (logଵ 1 ൌ 0), moving further away as quality decreases; so, 

for the optimal situation recommended by Cox of X7 = 7.5 g/L, X8 = 3.4, and X9 = 22, the QPI is 0.019, 

which in practical terms can be considered as 0: 

ܫܲܳ ؝  2 · logଵሺ଼ܺ · ܺଽሻ െ logଵሺ780 · ܺሻ (9) 

The QPI map resultant from applying Equations (4) and (9) to the CB maps of Figures 10–12 is 

plotted below in Figure 25. Inference statistics for a total number of 219 cells lead to a maximum QPI 

of 0.796 and a minimum of −0.416, both in the range [−1,1] as normally expected. The average is 

0.031 and the median 0.051, with a standard deviation of 0.1698. 

The QPI values assigned to the cells forming the vineyard rows highlight the optimum quality for 

magnitudes around zero, represented in the map by red cells. As values move further away from zero, 

either positive or negative, the quality of grapes determined at harvesting time decreases. The 

maximum value of QPI in the map is about 0.8, so, for convenience, a value of 1 was assigned to cells 

without information in order to ease the interpretation of the QPI map. All the variables (predictor 

traits X7, X8, and X9) used in the definition of QPI (Equation (9)) are normally distributed according to 

Figures 19 and 20a, but due to the fact that this definition involves the product of variables and the use 

of logarithms, the normality assumption for QPI must be carefully checked. Fortunately, the  

quantile-quantile plot of Figure 26 proves that QPI behaves as a normal distribution with an excellent 
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match to standard normal quantiles. Once the QPI has been defined as the systematic procedure to 

quantify quality potential for the future wine, expressed as a combination of objective measurements 

available from CB maps, the next stage consists of predicting QPI from crop traits available before or 

at harvesting time. As occurred for the prediction of yield, multiple models need to be evaluated, each 

one featuring diverse traits, in order to select the most appropriate model to estimate spatial variations 

of grape quality in the field. The previous experience with yield predictive models and some 

preliminary tentative trials suggest not to consider vigor V-12 (X2), soil properties (X4 and X5), and 

elevation (X3) due to their poor contribution to the prediction of grape production. 

Figure 25. CB map for the Quality Potential Index QPI. 

 

Figure 26. Normal quantile-quantile plot for the Quality Potential Index QPI. 

  

Table 9 summarizes the statistical evaluation of the 13 models proposed to predict quality in QPI 

format, where X1 is vigor V-8 (%), Xy is the actual yield (kg/16 m2), X11 is the weight of 10 random berries 

(g), X12 is the average diameter of the berries (mm), and X13 is the average berry density (g/cm3).  

According to Table 9, the goodness of the 13 fits proposed for quality predictions is, generally 

speaking, weaker than for yield predictions; yet interesting conclusions can be withdrawn from their 

analysis. The statistical examination of the models clearly indicates that the quality of grapes, 

understood as the optimal balance between acidity and sugar content at harvesting time, is independent 
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of the size, weight, and density of the berries. Furthermore, based on these results, it does not depend 

on the yield but can be correlated to vine vigor in such a way that optimal quality occurs with a 

moderate vegetative development of the vines, as shown in Figure 27a. In fact, excessive foliar growth 

has a negative influence, numerically set by the QPI, on grape quality, something that was already 

known in broad terms by viticulturists and growers, but that can be mathematically determined through 

this method. The main conclusion of the QPI prediction model is that berry quality mostly depends on 

the relative vigor of the plants, and even though the variability in the field is very high, an improved 

assessment of vine foliar growth will surely lead to more precise predictions of quality before 

harvesting. The multivariate analysis summarized in Table 9 consistently rejects all the variables 

(predictor traits) different from X1 as influencing the quality potential index QPI. In coincidence with 

the yield predictor model selected (15Y), the spatial variability of vegetation growth is, by far, the 

most influential parameter to track in the management of vineyards, especially when it is performed on 

a strong technological basis. 

Table 9. Summary table for QPI prediction models. 

Model R2 ࢙ࢋ࢘ࡾ
  F-Stat t-Stat Non-Signif. 

1Q 
ܫܲܳ ൌ െ0.846 െ 0.006 · ଵܺ െ 0.057 · ଵܺଵ  0.122 · ଵܺଶ

 0.216 · ଵܺଷ  0.002 · ܺ௬ 
0.32 0.23 18.13 

Constant; 

ଵܺଵ;  ଵܺଶ; ଵܺଷ; ܺ௬ 

2Q ܳܲܫ ൌ 0.407 െ 0.006 · ଵܺ െ 0.096 · ଵܺଷ  0.002 · ܺ௬ 0.31 0.17 29.31 ଵܺଷ; ܺ௬ 

3Q ࡵࡼࡽ ൌ . ૡૢ െ . ૠ · ࢄ 0.31 0.24 85.33  

4Q ܳܲܫ ൌ 0.331 െ 0.221 · ଵܺଷ 0.05 0.17 9.34  

5Q ܳܲܫ ൌ 0.146 െ 0.028 · ܺ௬ 0.09 0.01 18.7  

6Q ܳܲܫ ൌ 0.372 െ 0.036 · ଵܺଵ 0.11 0.16 24.02  

7Q ܳܲܫ ൌ 0.434 െ 0.037 · ଵܺଶ 0.02 0.06 4.54  

8Q ܳܲܫ ൌ 0.338 െ 0.008 · ଵܺ െ 0.015 · ܺ௬  4.2 · 10ିସ · ଵܺ · ܺ௬ 0.31 0.29 28.64 ܺ௬; ଵܺ · ܺ௬ 

9Q ܳܲܫ ൌ 0.286 െ 0.007 · ଵܺ  0.002 · ܺ௬ 0.31 0.29 42.52 ܺ௬ 

10Q ܳܲܫ ൌ 0.2561 െ 0.0044 · ଵܺ െ 0.00003 · ଵܺ
ଶ 0.31 0.32 42.78 ଵܺ; ଵܺ

ଶ

11Q ܳܲܫ ൌ 0.5451 െ 0.1444 · ln ଵܺ 0.24 0.12 60.06  

12Q ܳܲܫ ൌ െ0.2562 · ଵܺ
ି.ଷଷହ 0.27 0.01 25.61  

13Q ܳܲܫ ൌ 0.0101 
0.5248

ଵܺ
 0.06 0 * 12.83 Constant 

* Negative value. 

The statistical indicators of Table 9 point to the conclusion that the best way of predicting quality is 

from the relative vigor V-8 estimated with X1, although this relationship can be linear or nonlinear. 

Figure 27a shows that there is no much difference between the linear, quadratic, and logarithmic fits. 

However, in addition to the highest F-stat and coefficient of determination, the linear model is always 

easier to use for its simplicity, and therefore Model 3Q will be the selected choice. The residuals of the 

data after applying Model 3Q behave quite close to a normal distribution, as plotted in Figure 27b. 

This model yields a QPI of 0.289 for no vegetation (X1 = 0%), which indicates low quality; but also 

produces a QPI of -0.41 for full coverage (X1 = 100%), which represents very poor quality. Model 3Q 

allows, too, the calculation of the relative vegetation X1 that leads to the maximum quality QPI = 0. 
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This value corresponds to 41%, foliar coverage that can be taken to the V-8 map of Figure 7 to 

discover that these cells correspond to the west side of the field, with higher elevation, less vegetation, 

less yield, and less water content in the soil.  

Figure 27. (a) Prediction models for QPI as a function of V-8 relative vigor; (b) Residuals 

for predictive Model 3Q (linear fit).  

 
(a) 

 
(b) 

6.6. Impact of Crop Biometric Maps Resolution on Predictive Models  

One of the advantages that make global grids and CB maps powerful is the capability to adjust the 

resolution of the maps to the needs of the user. However, the invariance of prediction models for 

diverse resolutions cannot be taken for granted unless there is a proof of the model’s validity for 

alternative sizes of the cells. As a result, it is important to determine to what extent predictive models 

change when resolution varies. To do so, the default cells of 4 m × 4 m were doubled in both 

dimensions to increase the working area fourfold and become square cells of dimension 8 m × 8 m. 

Figure 28 shows the relative vegetative vigor V-8 (%) with the new resolution, and Figure 29 

represents the low resolution version of the yield map. As the working area has augmented four times, 
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several field measurements coincide in each cell to be averaged, and as a result there are no gaps 

indicating cells without field data as occurred in Figures 7 and 9, which represent the same data at 

higher resolution. Table 10 specifies the same 19 yield prediction models formulated in Table 5 but 

adapted to the new resolution, where the meaning of the variables Xi is the same defined for Table 5 

but relative to the low resolution maps. Note that in spite of increasing the working area fourfold, yield 

measurements are kept in kg per 16 m2 to ease the comparison between maps of different cell size.  

Figure 28. Low resolution CB map of relative vine vigor estimated with an 8 mm lens:  

V-8 (%). 

 

Figure 29. Low resolution CB map of grape yield (kg of grapes/16 m2). 

 

The immediate apparent fact of downgrading CB map resolution has been a significant increase of 

the ܴ௦
ଶ , as evidenced by Table 10. The significant reduction in the amount of data has resulted in the 

reduction of variability, which in turns has led to a slightly better fit with elevation X3. Yet, the 

correlation of yield with relative vigor X1 is equally good, and taking into account the significance of 

traits (predictor variables) in the real field, the best alternative seems to model yield predictions from 

vegetation (X1). Additionally, the assumption of normality cannot be assumed for X3 and there are 

collinearity issues between X1 and X3 (proved by t-stat in Models Y3§, Y6§, and Y18§). As a result, a 

fitting equation with X1 as predictor has to be found and compared to Model 15Y. As occurred with 
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high resolution maps and Figure 24a, Figure 30a shows tiny differences between the five models 

applied; yet, the best performance belongs to the power function of Model 15Y§, as it possesses the 

highest F-stat and is coherent with nature for X1 = 0. Notice, however, that the magnitudes of the 

parameters in the equation have changed with respect to Model 15Y. The new model predicts a yield 

of 5.6 kg/16 m2 for full coverage X1 = 100, which is slightly lower than the 6.3 kg found for high 

resolution maps. The residuals of applying Model 15Y§, plotted in Figure 30b, also follow a normal 

distribution shape. In addition to alternative fits, Figure 30a provides a graphical comparison between 

the power functions of Models 15Y and 15Y§. Both functions trace close paths, with larger 

discrepancies below X1 = 30%.  

Table 10. Summary table for yield prediction models adapted to low resolution maps. 

Low Resolution Model R2 ࢙ࢋ࢘ࡾ
  F-Stat T-Stat Non-Signif. 

1Y§ 
ܻ ൌ 8.404 െ 0.028 · ଵܺ  0.012 · ܺଶ െ 0.007 · ܺଷ

 1.227 · ܺସ െ 1.328 · ܺହ

0.53 0.60 12.9 ଵܺ ; ܺଶ  

2Y§ ܻ ൌ 6.392  0.007 · ଵܺ െ 0.009 · ܺଷ െ 0.641 · ܺସ 0.37 0.66 11.4 ଵܺ ; ܺସ 

3Y§ ܻ ൌ 4.145  0.019 · ଵܺ െ 0.009 · ܺଷ 0.33 0.55 15.0 ଵܺ

4Y§ ܻ ൌ 4.317  0.045 · ଵܺ െ 0.68 · ܺସ 0.28 0.49 11.7 ܺସ

5Y§ ܻ ൌ 4.546  0.039 · ଵܺ െ 0.755 · ܺସ  0.002 · ଵܺ · ܺସ 0.28 0.48 7.6 
Constant; ଵܺ ; X4 ; 

ଵܺܺସ

6Y§ 
ܻ ൌ 4.143  0.019 · ଵܺ െ 0.009 · ܺଷ െ 5.46 · 10ି

· ଵܺ · ܺଷ 
0.33 0.54 9.8 ଵܺ ;  ܺଷ ; ଵܺܺଷ

† 

7Y§ 
ܻ ൌ 0.917  0.066 · ଵܺ  0.026 · ܺଶ െ 2.55 · 10ିସ

· ଵܺ · ܺଶ 
0.26 0.62 6.9 All  

8Y§ ܻ ൌ 1.88  0.059 · ଵܺ 0.24 0.55 19.4  

9Y§ ܻ ൌ 5.093 െ 0.011 · ܺଷ 0.32 0.54 28.9†  

10Y§ ܻ ൌ 2.786  0.033 · ܺଶ 0.08 0.5 5.6  

11Y§ ܻ ൌ 1.1457  0.1060 · ଵܺ െ 0.0006 · ଵܺ
ଶ 0.25 0.56 10.1 Constant; ଵܺ

ଶ 

12Y§ ܻ ൌ 5.3189 െ 0.0206 · ܺଷ  3.53 · 10ିହ · ܺଷ
ଶ 0.34 0.59 15.2 ܺଷ

ଶ

13Y§ 
ܻ ൌ 1.7993 െ 0.0048 · ଵܺ  0.0033 · ଵܺ

ଶ െ 3.91

· 10ିହ · ଵܺ
ଷ 

0.27 0.67 7.2  

14Y§ ܻ ൌ 0.1393  1.152 · ln ଵܺ 0.21 0.41 16 Constant 

15Y§ ࢅ ൌ .  · ࢄ
 . 0.3 0.5 26.3 Constant 

16Y§ ܻ ൌ 4.4538 െ
4.0956

ଵܺ
 0.10 0.17 7  

17Y§ ܻ ൌ 4.119 െ 1.111 · ܼଷ 0.32 0.54 28.9†  

18Y§ 
ܻ ൌ 3.374  0.019 · ଵܺ െ 0.878 · ܼଷ െ 5.31 · 10ିହ

· ଵܺ · ܼଷ 
0.33 0.54 9.8 ଵܺ;  ܼଷ; ଵܺ · ܼଷ

† 

19Y§ ܻ ൌ 3.374  0.019 · ଵܺ െ 0.879 · ܼଷ 0.33 0.55 15 ଵܺ
† 

† Possible collinearity. 
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The possible variations of the predictive model for QPI (3Q in Table 9) when map resolution is 

lowered from 35 × 12 cells to 17 × 5 cells were studied following the same procedure outlined for the 

prediction of yield. Figure 31 shows the low resolution map for the quality potential index QPI, and 

Table 11 lists the 13 new models for predicting QPI that result from increasing the cell size to 8 m × 8 m. 

The meaning of the predictor variables featured in the models coincides with that of Table 9.  

Figure 30. (a) Prediction models for low resolution CB maps of yield as a function of V-8 

relative vigor; (b) Residuals for predictive Model 15Y§ (power function, Table 10).  

 
(a) 

 
(b) 

As happened with yield prediction, results do not change significantly with the modification of the 

map resolution. Again, there is an improvement of R2 and ܴ௦
ଶ  induced by the reduction of the dataset, 

but the linear model 3Q§ still represents the best fit and highest F-stat. In the same fashion, yield and 

berry density are always rejected from the models by the statistics given in Table 11. Figure 32a 

confirms that the new linear fit (Model 3Q§) is in reality very close to the high-resolution fit  
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(Model 3Q) and not too far from the quadratic fit (Model 10Q§). Overall, the principal conclusions 

remain and the optimum quality (QPI  [−0.1,0.1]) occurs with a medium vigor index X1 between 30% 

and 60%, decreasing in (QPI) quality for vegetation indices above 60%. According to linear Model 

3Q§, the best quality (QPI = 0) is found for relative vegetation X1 = 43%, which is very close to the 

high-resolution value of 41%. The distribution of residuals depicted in Figure 32b reasonably 

reproduces a normal distribution profile. 

Figure 31. Low resolution CB map for the Quality Potential Index QPI. 

 

Table 11. Summary table for QPI prediction models adapted to low resolution maps. 

Low Resolution Model R2 ࢙ࢋ࢘ࡾ
  F-Stat T-Stat Non-Signif. 

1Q§ 
ܫܲܳ ൌ െ1.96 െ 0.005 · ଵܺ െ 0.123 · ଵܺଵ  0.249 · ଵܺଶ

 0.437 · ଵܺଷ െ 0.001 · ܺ௬ 
0.48 0.44 11.4 Constant; ଵܺଶ; ଵܺଷ; ܺ௬ 

2Q§ ܳܲܫ ൌ 0.403 െ 0.006 · ଵܺ െ 0.105 · ଵܺଷ െ 0.002 · ܺ௬ 0.42 0.39 15.3 ଵܺଷ; ܺ௬ 

3Q§ ࡵࡼࡽ ൌ .  െ .  · ࢄ 0.41 0.39 45.9  

4Q§ ܳܲܫ ൌ 0.41 െ 0.292 · ଵܺଷ 0.05 0.02 3.6 Constant; ଵܺଷ 

5Q§ ܳܲܫ ൌ 0.133 െ 0.027 · ܺ௬ 0.11 0* 8.2  

6Q§ ܳܲܫ ൌ 0.473 െ 0.049 · ଵܺଵ 0.26 0.13 23.3  

7Q§ ܳܲܫ ൌ 0.916 െ 0.081 · ଵܺଶ 0.14 0 * 11  

8Q§ ܳܲܫ ൌ 0.338 െ 0.008 · ଵܺ െ 0.024 · ܺ௬  10ିଷ · ଵܺ · ܺ௬ 0.42 0.41 15.3 ܺ௬; ଵܺ · ܺ௬ 

9Q§ ܳܲܫ ൌ 0.269 െ 0.006 · ଵܺ െ 0.002 · ܺ௬ 0.41 0.40 22.6 ܺ௬ 

10Q§ ܳܲܫ ൌ 0.197 െ 0.0016 · ଵܺ െ 0.000062 · ଵܺ
ଶ 0.42 0.51 24 ଵܺ;  ଵܺ

ଶ

11Q§ ܳܲܫ ൌ 0.4144 െ 0.1112 · ln ଵܺ 0.29 0.13 26.5  

12Q§ ܳܲܫ ൌ 0.0888 · ଵܺ
ି.ଶହଽ 0.12 0.2 6.1 Constant 

13Q§ ܳܲܫ ൌ 4.7 · 10ିହ 
0.3864

ଵܺ
 0.13 0.1 9.6 Constant 

* Negative value. 
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Figure 32. (a) Prediction models for low resolution CB maps of QPI as a function of V-8 

relative vigor; (b) Residuals for predictive Model 3Q§ (linear fit, Table 11). 

 
(a) 

 
(b) 

6.7. Growers Expectancy based on Crop Biometric Models  

The standard language of crop biometrics consists of maps, thus all predictions formulated within 

this framework have to be delivered in such format for producers to share, use, and make strategic 

decisions. As a result, the mathematical body developed hitherto must be integrated in compatible 

maps. Based on the results found and available field data on vineyard biometrics, and inspired in 

MIMO control systems, a Control Biosystem may be defined such that the input to the system is the 

relative vegetative vigor estimated with the 8 mm lens (X1) between véraison and harvesting, and the 

output comprises the prediction maps of yield and quality standardized by QPI. This biosystem can be 

applied to either high or low resolution maps as schematized in Figure 33.  
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Figure 33. Concept of Control Biosystems for vineyards based on Crop Biometric Maps. 

 

Figure 33 provides a practical example of how to apply the idea of crop biometrics to vineyard 

production with the final goal of building a control biosystem. As new data from forthcoming seasons 

becomes available, the predictive models will gain in precision and consistency, quantitatively 

determined by their statistical significance. Other crops will certainly require different input maps, and 

new traits or better assessment of current ones will eventually expand the set of input maps for 

vineyard production. The application of Model 15Y to the input map of Figure 7 resulted in the 

prediction yield of Figure 34, whereas the application of Model 3Q to the same input map led to the 

QPI predictions of Figure 35. Likewise, the application of Model 15Y§ to the input map of Figure 28 

produced the low resolution prediction map of Figure 36, and Model 3Q§ on the same input map gave 

the QPI distribution of Figure 37. The benefits of improving the measurement of traits will be twofold; 

on one hand, input maps will be more truthful in representing the physical reality of the field; and on 

the other, predictive models will be more accurate in relating input and output maps. Regarding the 

prediction of yield, the measurements of Figure 9 can be compared to the predictions of Figure 34, and 

similarly for low resolution, Figure 29 should be compared to Figure 36. Overall, east-west trends 

coincide in predictions and measurements, but the former show a more uniform yield than the actual ones 

and smaller values in the east side. Quality predictions estimated by means of the QPI allow the 

comparison of measurements in Figure 25 with the predictions of Figure 35, and the corresponding contrast 

for low resolution between Figure 31 and Figure 37. Predicted quality tends to be higher (more cells with 

QPI ≈ 0) than measured quality but both predictions (low and high resolution) conserve the same lack of 

east-west spatial dominance that was found in the measurements of Figures 25 and 31.  
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Figure 34. Yield predicted with CB models for high resolution maps. 

 

Figure 35. Quality Potential Index QPI predicted with CB models for high resolution maps. 

 

Figure 36. Yield predicted with CB models for low resolution maps. 
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Figure 37. Quality Potential Index QPI predicted with CB models for low resolution maps. 

 

7. Conclusions and Future Work 

The methodology of Crop Biometric Maps establishes a general framework to manage PA-based 

IT-oriented field data. The proposed format for the CB maps fosters the compatibility among years, 

diverse technologies, and variables (traits) of any nature, which is essential for the universal 

dissemination of precision agriculture. The fact that users themselves can decide key features on field 

information, such as map resolution, coordinates of local origins, and crop traits, facilitates the 

seamless welding of emergent technologies with the reality of agricultural production, reducing the 

vast gap between theoretical academics and field implementation by average growers rather than IT 

experts. CB maps, in addition, allow the easy display of information supported by a strong 

mathematical background; users do not need to dive into the statistical generation of models, they just 

need to interpret the maps and make managerial decisions accordingly. The own nature of the system 

includes the capacity of improving the prediction models continuously as data can be permanently 

being input to the system. The framework envisioned along this paper has a broad spectrum as it 

represents one philosophy for many crops and production systems. 

The particular application of CB maps to vineyards showed the advantages of the method and led to 

motivating conclusions. Important practices traditionally justified by conventional wisdom were 

quantified and statistically analyzed. In particular, grape yield was predicted from an automatic 

assessment of vegetation growth along ten rows of vines. A normalized quality index, the QPI, was 

defined, computed, and also correlated with the spatial variability of vine vigor. Soil properties did not 

contribute to the early estimation of yield, and neither yield nor berry size and density did affect the 

prediction of grape quality. The longstanding direct relation between vigor and yield, and quality drops 

for exuberant foliage and plentiful water were corroborated and numerically assessed in either low 

resolution or high resolution maps. The versatility of CB maps was demonstrated by arriving at the 

same conclusions for both map resolutions, and by proving that manual sampling and automatically 

acquired data all merge smoothly into standard maps.  

Despite all the advantages found in CB maps, or perhaps because of them, the ultimate benefits of 

this method are still to come. In relation to vineyards and winemaking, progress will lead to the best 

measurement of traits, as most of the key parameters are already known to viticulturists. In particular, 

grape yield needs to be mapped from on-the-harvester yield monitors, and a better assessment of the 
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spatial distribution of vine vigor is crucial to define more robust predictive models. All properties 

related to the berries, typically sugar content, acidity, or concentration of polyphenols, are currently 

measured invasively and manually. Any advance towards automating these estimations will definitely 

have a great impact on the modernization of vineyard management, and of course, will ease and 

enhance the construction of CB maps. The application of crop biometric maps to vineyards served as a 

concept-proof case study, but the ultimate objective is their generalized use in many other crops. Each 

crop will usually involve specific production requirements and that will steer the selection of particular 

traits for each case, but the ideal situation to be expected in the upcoming years would lead to the 

development of innovative biometric maps for key specialty crops such as citrus, persimmon, kiwi, 

nuts, cherries, olives, apples, and many more.  
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