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Abstract: The dependence of proposed pedestrian navigation solutions on a dedicated 

infrastructure is a limiting factor to the deployment of location based services. 

Consequently self-contained Pedestrian Dead-Reckoning (PDR) approaches are gaining 

interest for autonomous navigation. Even if the quality of low cost inertial sensors and 

magnetometers has strongly improved, processing noisy sensor signals combined with high 

hand dynamics remains a challenge. Estimating accurate attitude angles for achieving long 

term positioning accuracy is targeted in this work. A new Magnetic, Acceleration fields 

and GYroscope Quaternion (MAGYQ)-based attitude angles estimation filter is proposed 

and demonstrated with handheld sensors. It benefits from a gyroscope signal modelling in 

the quaternion set and two new opportunistic updates: magnetic angular rate update 

(MARU) and acceleration gradient update (AGU). MAGYQ filter performances are 

assessed indoors, outdoors, with dynamic and static motion conditions. The heading error, 

using only the inertial solution, is found to be less than 10° after 1.5 km walking. The 

performance is also evaluated in the positioning domain with trajectories computed 

following a PDR strategy. 

Keywords: indoor navigation; MEMS; quaternion; attitude estimation; Kalman filter; 

magnetic angular rate update; acceleration gradient update; magnetometer 
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1. Introduction 

The advent of new wearable devices has widened the application field of pedestrian navigation 

systems and methods. Among these devices, handheld units remain of prime interest for Location 

Based Services (LBS) [1]. Existing technologies are still lacking in terms of positioning and navigation 

performance. Either they depend on a dedicated infrastructure, which is not continuously available 

during pedestrian journeys introducing coverage gaps, or the accuracy of the position estimate is not 

sufficient for locating the user on the correct street location (sidewalk, stairway, etc.). The future of 

pedestrian navigation solutions certainly relies on combining all existing technologies depending on 

the user’s context. Finding the appropriate criteria for shaping the hybridization filter remains a  

great challenge. 

One option consists in developing self-contained sensor navigation solutions. Still today, the quality 

of inertial sensors embedded in smartphone devices is too low for solving all free-inertial pedestrian 

navigation issues. This statement is true irrespective of the adopted processing strategy [2]: inertial 

strapdown navigation (Figure 1) or pedestrian dead-reckoning (Figure 2). However the latest 

performance improvements of micro-electro-mechanical sensors (MEMS) combined with novel 

algorithms for mitigating the sensor errors using opportunistic signals are pushing the boundaries of 

existing inertial pedestrian navigation solutions. 

Figure 1. Simplified flowchart of strapdown mechanization equations. 

 

Figure 2. Pedestrian Dead Reckoning (PDR) mechanization equations with handheld  

tri-axis inertial sensors and tri-axis magnetometers. 
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Whether using a strapdown inertial navigation method or a pedestrian dead-reckoning one, the 

attitude angles, including the heading, are estimated by integrating the angular rates sensed by a 

gyroscope. With this approach, the gyroscope errors are propagated at a time cubic rate. With low cost 

handheld units, the options for mitigating the sensors drift and noise are limited. Indeed, as compared 

to what would have been applied with foot mounted systems during the stance phases of the walking 

gait, no zero angular rate or zero velocity update can be applied. With respect to magnetic fields, no 

geomagnetic heading update can be easily and frequently applied in urban and indoor spaces because 

the earth magnetic field is strongly perturbed by surrounding artificial fields [3]. 

Another source of error comes from the parameterization of the rotation between the mobile unit 

and the navigation frame. It is known that Euler parameterization in attitude angles estimation filter 

introduces gimbal lock problems. Because the hand performs fast motions in the entire 3D space 

without privileging any direction, frequent occurrence of this issue is observed. With free inertial 

pedestrian navigation based on handheld device comes another problem: the time varying relative 

orientation between the reference frame of the handheld device and the one related to the pedestrian’s 

body. Existing methods [4,5] propose to solve this issue using the accelerations in the navigation 

frame, which reinforces the critical role of accurate attitude angles estimation in the overall PDR 

accuracy budget. All these factors highlight the critical role of heading estimation in the overall 

performance of inertial pedestrian navigation solutions with handheld smartphone. It definitively 

motivates the research work presented in this article. 

In this paper, a novel Magnetic, Acceleration fields and GYroscope Quaternion (MAGYQ)-based 

attitude and heading estimation filter is proposed and demonstrated with handheld sensors. First, the 

filter takes advantages of the four-dimensional quaternion algebra for reducing the errors introduced by 

the mathematical representation of rotations and uses a quaternion based state vector. Second, it 

exploits specific states of the measured magnetic field and acceleration vector combined with some 

hand motions of opportunity for observing the attitude angles and mitigating the sensor errors. 

Section 2 starts with a state-of-the-art on existing attitude estimation solutions and continues with 

the innovations that are proposed in this article. Theoretical aspects of the novel quaternion error-based 

attitude heading estimation method including a new angular rate signal model are detailed in Section 3. 

The algorithms involved in the attitude angle estimation filter MAGYQ are detailed in Sections 4–6. 

MAGYQ headings are combined with step lengths that are computed using a model recalled in  

Section 7. Section 8 is dedicated to the experimental assessment. A performance analysis of the 

attitude angles estimation is first conducted and followed by an evaluation in the positioning domain. 

2. State of the Art 

2.1. Existing Attitude Estimation Approaches 

Existing attitude and heading estimation filters are principally based on the use of Direct Cosine 

Matrix (DCM) parameterized with Euler angles. It describes the transformation between coordinate 

frames that are linked to the handheld unit: the body frame and a local navigation frame. Tri-axis 

gyroscope, tri-axis accelerometer and tri-axis magnetometer are the most common sensors used for 

estimating this rotation. 
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2.1.1. Euler Angles with Direct Cosine Matrix 

Classically small rotation errors are tracked using Euler parameterization for estimating the attitude 

rotation matrix [6]. The inherited algorithms use Euler angles to describe the three dimensional 

rotation and the three successive rotations (yaw ψ, pitch θ, and roll φ). The DCM n
bC  is parameterized 

using Euler angles and defines the rotation between the body frame and the navigation (or local) frame. 

Unfortunately, DCM parameterized with Euler angles presents singularities, which are known as the 

“Gimbal lock” problem. If the pitch angle equals π/2, several pairs of yaw and roll angles can achieve 

the same rotation. Furthermore this parameterization is highly non-linear since the DCM is composed 

of sums of products of sine and cosine functions. Therefore proposing an attitude angles estimator that 

remains in the quaternion set is of interest to overcome these limitations. 

2.1.2. Coupling of Magnetic Field and Inertial Measurements 

Many filters have been proposed for improving the attitude estimation using magnetic field 

measurement. They are based on hybridization techniques that use either a priori knowledge of the  

local magnetic field or at least its properties. Irrespective of the chosen approach, they all require a 

magnetometer calibration for removing the magnetic field induced by the platform [7] in order to 

measure only the surrounding magnetic field. Four different main magnetic field based methods, which 

have been proposed in the literature, are now recalled: 

• Searching for the geomagnetic earth field 

• Fingerprinting with magnetic anomalies 

• Sensing the velocity with a magnetometer array 

• Magnetic angular rate update with DCM 

Let Bn be the known local magnetic field in the navigation frame. This field is related to the 

magnetic field Bb expressed in the body frame by the DCM with: 

n n b
b=B C B  (1)

Searching for the Geomagnetic Earth Field 

The first method tries to remove all artificial sources of magnetic field that are perturbing the known 

Earth magnetic field [8]. This approach involves geomagnetic field detectors that often fail to correctly 

discriminate magnetic perturbations from the geomagnetic field. This is especially the case in indoor 

spaces, where many artificial magnetic field sources modify the Earth field [3]. This method is often 

combined with pitch and roll angles estimation using accelerations that are measured during static 

phase of the inertial mobile unit (IMU). During these periods, the accelerometer measures the Earth 

gravity directly. Combining the measurement of these two fields, it becomes possible to rebuild the 

complete orientation following for example the QUEST [9] or MARG [10,11] algorithms. 
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Fingerprinting with Magnetic Anomalies 

A more recent method, which is growing in popularity, consists in navigating using only measured 

magnetic fields. At first, the indoor (even outdoor) magnetic fields are mapped during a calibration  

phase [12,13]. Following Wi-Fi receiver signal strength based fingerprinting techniques, the user’s 

location is extracted from the database of magnetic anomalies. This method benefits from the 

singularities in the local magnetic field anomalies, but it is non-ergonomic and laborious. Up to now, 

its limitations have hardly been investigated. One limitation among others is the influence of soft-iron 

effects in a crowded environment, which has not yet been assessed. 

Sensing the Velocity with a Magnetometer Array 

Another approach, frequently applied to robotics, uses array of magnetometers for measuring the 

magnetic field gradient and deducting the velocity vector [14]. No a priori knowledge about the local 

magnetic field is required for this approach where the magnetic field space gradient (ΔBb/Δx) and the 

derivate of the position in the body frame (Δx/Δt) are related to the magnetic field temporal derivate 

(ΔBb/Δt) by: 

b b

t t

Δ Δ Δ=
Δ Δ Δ
B x B

x  
(2)

The biggest challenge of this method comes from the individual calibration of all magnetometers 

since the precision of the measured gradient directly impacts the estimated velocity. This estimation 

becomes really difficult with varying fields on the hosting platform. Finally, the distance between each 

magnetometer strongly impacts the good approximation of the space gradient, which might be a 

limiting factor for handheld sensors. 

Magnetic Angular Rate Update with DCM 

The last technique exploits Quasi-Static magnetic Field (QSF) in the navigation frame for mitigating 

gyroscope error. This approach works even if the sensed field differs from the earth geomagnetic  

field [15]. An important feature of this method is its immunity to local magnetic field disturbances, as 

long as they are globally constant in the local frame. If this hypothesis holds, the magnetic field 

temporal gradient gives a direct observation of the body frame angular rate (ω): 

b
bd

dt
= − ∧B

ω B
 

(3)

˄ is the cross product of two vectors. The novel MAGYQ filter proposed in this paper is based on this 

approach. Let us note that unlike previous magnetometer array-based algorithms, it uses only one  

tri-axis magnetometer. 

2.2. Innovation of the Proposed Method 

The first innovation is that the Magnetic, Acceleration fields and GYroscope Quaternion 

(MAGYQ)-based attitude and heading estimation filter uses quaternions to parameterize the state 
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vector and the angular rates measurements. Instead of using Euler angle errors or its quaternion form, 

MAGYQ filter estimates an additive quaternion error. A new gyroscope signal model in the quaternion 

set is also proposed and a gyroscope quaternion bias is introduced. The filtering strategy is based on an 

Extended Kalman Filter (EKF) whose aim is to estimate the attitude of the body frame of a handheld 

device with respect to a local frame. In Section 3, this novel approach of angular rate modelling in the 

quaternion set is detailed and justified for the Kalman Filter underlying hypothesis. 

The second innovation comes from the update steps. Observation equations are proposed using the 

magnetic field angular rate (MARU) in the quaternion set and using the acceleration gradient update 

(AGU). The benefit of MARU is that it can frequently be applied for bounding the gyroscope errors 

even in indoor spaces where the Earth magnetic field is disturbed. The accelerometer gradient update 

reduces the error propagation and estimates the accelerometer bias components. In the literature, the 

Earth gravity field is used as a local reference field during static periods. It is here proposed to go 

beyond this approach. Similarly to MARU, the rotation of the IMU is observable using the 

accelerometer signal gradient if no lever arm between the triads of gyroscopes and the accelerometers 

exists. AGU takes advantage of opportune hand motions for mitigating the accelerometer errors but 

also observing the gyroscope bias. 

3. Gyroscope Quaternion Modelling 

The proposed attitude estimation algorithm is based on angular rates and accelerations sensed with a 

handheld low cost inertial mobile unit. Contrary to existing solutions, however, the gyroscope error 

modeling is not performed in the signal domain but in the quaternion set. This approach should 

improve the accuracy of the estimated angles thanks to reduced linearization steps and ambiguity 

issues. Prior to presenting the quaternion based error modeling, main properties of the quaternion set 

used for expressing the rotations are recalled. 

3.1. Quaternion Algebra 

This part recalls some quaternion properties and the different notations used in this paper. 

Quaternions are used as parameters for estimating the orientation of a rigid body [9,16]. 

3.1.1. General Content 

The set of quaternion real numbers, noted   in tribute to the mathematician William Rowan 

Hamilton, is a fourth dimensional non-commutative algebra including specific composition laws [17]. 
An element ∈q   is defined with a real-quadruplet ( )1 2 3 4, , ,q q q q . Each quaternion q can be expressed 

as a unique pair ( )1,q qu  in which 1q  is the scalar part and ( )2 3 4
T q q q=qu  is the vector or 

imaginary part. In this paper, the quaternion multiplication is noted ⊗ . In the scalar-vector form, the 
product of two quaternions x and y, noted ⊗x y , is: 

1 1 11

1 1

,y x yx

x y

−      
⊗ =     + + ∧     

x y

y y x x yx

u u

u u u u uu (4)
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with ^ the cross product and ,   the classic scalar product in 3 . A second form to represent the 

quaternion multiplication is to use the matrix product: 

1 2 3 4 1

2 1 4 3 2

3 4 1 2 3

4 3 2 1 4

( )

x x x x y

x x x x y

x x x x y

x x x x y

⊗ =
− − −  

  −  =
  −
  −   

x y M x y

 or 

1 2 3 4 1

2 1 4 3 2

3 4 1 2 3

4 3 2 1 4

y y y y x

y y y y x

y y y y x

y y y y x

⊗ =
− − −  

  −  =
  −
  −   

x y C(y)x

 

(5)

Other properties such as conjugation and norm are defined in the quaternion set. For each 
quaternion q, there exists a unique conjugate noted q  and a norm q  defined by: 

1

22 2 2 2 2
1 2 3 4 1

q

q q q q q

  
=   − 


= + + + = +

q

q

q
u

q u
 

(6)

For a vector 3∈x  , a unique quaternion form is defined and links the quaternion set to the three 

dimensional space by:  

( ) 0 
=  
 q

x
x  

(7)

3.1.2. Quaternion and Rotation 

A unit quaternion q  can be rewritten with a pair ( )θ,u  with u  a unit vector and ] ]θ π,π∈ − : 

cosθ

sinθ

 
=  
 

q
u  

(8)

The quaternion defined in Equation (8) describes a rotation [18] in the three dimensional space. u  is 

the rotation axis and θ the rotation angle. By specifying the direction axes, there exists a unique unit 

quaternion noted b
aq  that represents the rotation from frame a to frame b. The vector x expressed in 

frame a, can be computed in frame b with: 

( ) ( )b b a b
a a= ⊗ ⊗

q q
x q x q

 (9)

Similarly to the rotational matrix b
aC , expressed with Euler angles roll-pitch-yaw ( )φ,θ,ψ  

sequences, quaternion offers another parameterization of a rotation. Quaternion differential equation 

can also be used for expressing the evolution of the rotation between the two frames a and b. The 

rotational quaternion derivative noted b
aq  is given by: 

( )1

2
b b a
a a ba= ⊗

q
q q ω

 
(10)

where a
baω is the angular rate of frame b with respect to frame a, expressed in the frame a. 
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3.2. Sensor Signal Modelling 

Because the sensors are of MEMS quality, signal models are proposed for each sensor: tri-axis 

magnetometer, tri-axis accelerometer and tri-axis gyroscope. All sensor frames are assumed to be 

orthogonal, co-aligned with the same origin. Consequently, a unique sensor frame for all sensors is 

defined and labelled body frame with the symbol b. This part presents the error model chosen for each 

sensor: at first the magnetometer, then the accelerometer and finally the gyroscope. 

3.2.1. Magnetometer 

The magnetometer measures the local magnetic field in the body frame. In order to remove all 

sensor perturbation sources: scale factor, non-orthogonally, bias and magnetic deviation due to the 

hosting platform, a calibration phase is first realized [19]. Only white noise remains: 

b b
m m= +y m n  (11)

where my  is the magnetometer signal, bm  is the local magnetic field expressed in the body frame.  

It includes the earth magnetic field and the local disturbances. The zero mean Gaussian white noise 

process is noted mn  and characterized by a standard deviation σm . 

3.2.2. Accelerometer 

The sensor axis is non-orthogonally calibrated using a dedicated platform for aligning each axis 

with the gravity field and applying a least squares based estimation. An Allan variance study [20] is 

applied to the accelerometer signal, which was acquired during a static phase, for inferring the noise 

characteristics. Figure 3 shows the Allan variance results plotted for one of the sensor axes. 

Figure 3. Allan variance of the second component of the accelerometer. 

 

Three main noise components are identified: an angular random walk, given by the −½ slope part, 

the bias instability, given by the 0 slope curve part and the beginning of a ½ slope curve at high 

average time. Consequently, the accelerometer signal is modelled by: 
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b
a ib a ay = f +b +n  (12)

where the three dimensional sensor signal ay  is composed by: 
b
ibf  the specific force of the body frame with respect to the inertial frame, expressed in the  

body frame; 

ab  is the bias of the accelerometer and; 

an  is a zero-mean Gaussian white noise with a standard deviation noted aσ . 

The bias ab  is assumed to follow a Gauss-Markov model whose parameters are determined with the 

Allan variance study. The bias is mathematically expressed by: 

aa a + bb = βb n
 (13)

where ab  is the acceleration bias derivative, β is a constant and 
abn  is zero-mean Gaussian white noise 

with a standard deviation noted 
abσ . The values of the accelerometer noise components are given in 

Table 1. 

Table 1. Accelerometer noise parameters. 

Velocity Random Walk Bias Instability Correlated Noise 

Allan Deviation (ܢ۶√/ܕ) Correlated Time (s) 

Axis X 0.0650 0.1223 0.1484 18.16 
Axis Y 0.0717 0.0326 0.0373 48.05 
Axis Z 0.0639 0.0626 0.0881 197.2 

3.2.3. Gyroscope 

Similarly to the accelerometer signal, the gyroscope signal is studied over a long static phase and its 

Allan variance or spectral density is extracted. The angular rate is modeled by the following 

expression: 
b

g ib ω ωy =ω + b + n
 (14)

where: 

gy , the three-dimension signal of the gyroscope, is composed with b
ibω  the angular rate of the body 

with respect to the inertial frame; 

ωb  is the gyroscope bias equivalent to an angular drift and; 

ωn  is a zero-mean Gaussian white noise with a standard deviation noted ωσ . 

The gyroscope bias is modelled as a random walk: 

ωω bb = n
 (15)

where ω
b  is the gyroscope bias derivative and 

ωbn  is a zero-mean Gaussian white noise with standard 

deviation bω
σ . All deviations are extracted from the Allan variance plotted in Figure 4. 
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Figure 4. Allan variance of gyroscope signal third component. 

 

The angular rate b
ibω  can be decomposed in two parts Equation (16) by introducing the navigation 

frame, which is the plane locally tangent to the Earth. The angular rate of the body frame with respect 

to the navigation frame b
nbω  is given by: 

b b b
ib in nb= +ω ω ω  (16)

In the context of pedestrian navigation, the rotation of the navigation frame with respect to the inertial 

frame b
inω  is rather small, as compared to the body dynamic expressed with b

nbω . So b
inω  is assumed to be 

a residual part embedded in the gyroscope bias ωb . The noise component values are given in Table 2. 

Table 2. Gyroscope noise parameters. 

Angular Random Walk Bias Instability Rate Random Walk 

Allan Deviation (ܢ۶√/ܛ/܌܉ܚ) 

Axis X 0.00413 0.00117 0.00158 
Axis Y 0.00445 0.00121 0.00142 
Axis Z 0.00442 0.00105 0.00157 

3.3. Gyroscope Quaternion 

3.3.1. Design of the Gyroscope Quaternion Model 

Instead of using directly the gyroscope model, the gyroscope signal is interpreted as a rotation 

between two successive epochs. A mathematical model of this rotation, named the quaternion 

gyroscope, is proposed and demonstrated. This new model results from the integration of  

Equation (10) using the navigation and body frames: 

( )( ) ( )n n
b s bt T t t+ = ⊗ ωq q q

 (17)

where: 

ωq  is the rotational quaternion between the two epochs t  and st T+  defined in (18);  

sT  is the sampling period and; 
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b
nbω  is the angular rate of the body frame with respect to the navigation frame. The latter is assumed 

to be constant over the period t  to st T+ . 

cos
2

( )

sin
2

b
nb

s

b
nb

b b
nb nb

s b
nb

T

f

T

  
  

   = =  
  
      

ω

ω

q ω
ω ω

ω

 (18)

The gyroscope quaternion is constructed similarly to Equation (18), but instead of being composed 
of b

nbω , the quaternion gyroscope (noted 
gyq ) is composed of the gyroscope measurement (noted gy ): 

( )
g gf=yq y

 (19)

The quaternion 
gyq  is a rotational quaternion representing an approximation of ωq , which is the 

rotation between two successive epochs. Following previous sensor error modelling, an Allan variance 
study of 

gyq , which has been created using all angular rates recorded during the static period,  

is conducted in order to assess the noise components of 
gyq . The same trend is observed for all four 

components. The low average time part corresponds to white noise. Figure 5 shows also a bias 

instability and a correlated or a rate random walk. 

Figure 5. Allan variance of the fourth dimension quaternion gyroscope. 

 

Instead of modeling the gyroscope errors in the signal domain, it is performed in the quaternion set: 

g ω ωω= + +y q qq q b n
 (20)

where 
ωqn  is a zero-mean Gaussian white noise with standard deviation 

ωqσ . The stochastic process 

chosen to model the gyroscope quaternion bias 
ωqb  is a random walk: 

ω ω
=

qq bb n  (21)

where 
ωqb  is the gyroscope quaternion bias derivative and 

ωqbn  is a zero-mean Gaussian white noise 

with a standard deviation noted 
ωqbσ . 
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In order to a better understand the meaning of 
ωqb , let us analyze the gyroscope quaternion 

gyq . 

This quaternion corresponds to a rotation that approximates the true rotation ωq  between two 

successive epochs. As a consequence, 
ωqb  appears to be the difference between both rotations. When 

it is small, it links the rotation ωq  to 
gyq  by: 

( )
g

I= + ⊗
ωy ω ω qq q q b

 (22)

where ( )I + ⊗
ωω qq b  represents an infinitesimal rotation linking the ωq  to 

gyq . 

3.3.2. Analysis of the Gyroscope Quaternion Bias 

MAGYQ attitude angles estimation filter is based on an Extended Kalman Filter (EKF) whose 

working hypothesis (H) is that only white noise components are not modeled in the state vector. 

Because the proposed angular rate modeling in the quaternion set is new, previous EKF working 

hypothesis is now demonstrated for the Model (20). Two approaches are followed for the 

demonstration. The first analysis studies the physical meaning of the quaternion bias term when the 

latter is small. The second approach exploits simulated angular rates transformed into the quaternion 

set for analyzing the distribution of the noise terms. 

Mathematical Derivation of the Gyroscope Quaternion 

Assuming that the angular rates and the gyroscope measurements are small (<10 rad/s), in terms of 

amplitude over the sampling period Ts, it is possible to re-write the expressions of the rotational 
quaternion ωq  and the gyroscope quaternion 

gyq : 

( )

( )

0

0

2

2

g

s

s

s
q g s

Tq

bs
q nb s

Tq

T
T

T
Tω

ο

ο

→

→

 = + + 
 

 = + + 
 

yq I y

q I ω

 (23)

where qI  is the identity quaternion. ( )
0s

s
T

Tο
→

 is a function that can be neglected when Ts tends to zero. 

Grouping both expressions in the gyroscope model Equation (14), the gyroscope quaternion  

gyq becomes: 

( )
02 2g

s

s s
s

Tq q

T T
Tω ω ω ο
→

   = + + +   
   

yq q b n  (24)

with a first order approximation of Equation (24), only a random walk and a zero-mean white Gaussian 
noise terms remain in the last three components of 

gyq . Indeed the noise of the first quaternion 

component equals zero and is removed in the MAGYQ filter. This observation is confirmed by the 

small value that is observed in the Allan Variance plot (Figure 5). This mathematical derivation ends 

the first demonstration and proves that hypothesis H is verified at the first order. 
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Validation of the Gyroscope Quaternion Modeling by Simulation 

Angular rates are simulated in order to demonstrate the validity of the gyroscope quaternion model 
proposed in Equations (20) and (21). The signal gy  is simulated for a static phase. Consequently it is 

only composed of a zero-mean white noise and a random walk. Using the simulated gyroscope signal 
and Equation (19), it is possible to construct the corresponding gyroscope quaternion 

gyq  . A first 

comparison of the simulated angular rates and the gyroscope quaternions is performed in the frequency 

domain for assessing the similarities. 

The spectral density, computed with Fast Fourier Transform [21,22], is used to analyze the noise 
terms embedded in 

gyq  . Figures 6 and 7 show respectively the spectral density of gy  and 
gyq  . The 

same trend is observed in both cases. At low frequency, a curve with a slope of −20 db/decade, which 

is characteristic of a random walk, is visible. At high frequency, a flat curve slope characterizing a  

white noise is also visible. These similarities validate the correctness of the proposed gyroscope 

quaternion modelling. 

Figure 6. Spectral density of the simulated gyroscope signal gy . 

 

Figure 7. Spectral density of gyroscope quaternion 
gyq  . 

 

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

-200

-180

-160

-140

-120

-100

-80

-60

Frequency (Hz)

In
te

ns
ity

 (
dB

)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

-240

-220

-200

-180

-160

-140

-120

-100

Frequency (Hz)

In
te

ns
ity

 (
dB

)



Sensors 2014, 14 22877 

 

 

In order to test if hypothesis H is verified with the proposed model, a Kolmogorov-Smirnov  

test [23] is conducted to evaluate the distance between two cumulative distribution functions (CDF). 
The first CDF is computed with 

gyq   over 100,000 samples. The second CDF is computed with the 

simulated gyroscope quaternions 
gyq  using the Model (20) over the same time interval. The white 

noise and random walk stochastic processes parameters are extracted from the Allan Variance analysis 

previously detailed. 

The hypothesis H0 under test is that “the two signals are following the same distribution law”. In 

order to be unaffected by the choice of stochastic parameters, the distributions are centered and 

normalized. The Kolmogorov-Smirnov test is performed considering a 5% risk of wrongly rejecting 

the hypothesis: 

( ) ( )( )1 2

1.36
sup

k samples

T proba D k D k
N

 
 = − ≥
 
   

(25)

H0 is verified with a probability greater than 80% for the second, third and fourth quaternion 

elements. Only the first component of the quaternion slightly fails the hypothesis H0. However the very 

low noise level of this term justifies the chosen model, i.e., white noise and random walk. 

From this analysis, it can be concluded that the proposed quaternion based error model is correctly 

capturing non-stationary noises and only white noise remains. Consequently, designing an EKF for 

estimating the orientation of the body frame with respect to navigation frame using the proposed novel 

quaternion based angular rates model is justified. 

4. Dynamic State Propagation 

MAGYQ, the attitude and heading estimation filter, is now described. The state vector is first 

presented and followed by the initialization process. Finally, the mathematical expression of the state 

propagation is described. 

4.1. State Vector 

The complete state vector includes the quaternion form n
bq  of the rotation between the body and the 

navigation frame, but also all sensor error sources: the gyroscope quaternion bias 
ωqb  and the 

accelerometer bias ab . The state vector x is: 

T nT T T
b aω

 =  qx q b b
 (26)

4.2. Initialization 

The initial rotation is computed using the accelerometer and magnetometer measurements during  

a static phase without magnetic disturbances. During the initialization, it is expected that the sensors 

are directly measuring the gravity and the Earth magnetic fields. 
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4.3. Error State Propagation Model 

The additive error state vector δx  links the estimated state vector noted x̂  to the true state vector 

noted x , defined in Equation (26), by: 

ˆ δ= +x x x  (27)

The evolution laws of the acceleration and gyroscope quaternion biases are those of the random 

walk stochastic process. The discrete equations with a first order approximation are: 

( )
( ) ( ) ( )

( ) 1 ( ) ( )
a

s s

a s s a s

t T t T t

t T T t T t

ω ω ω
+ = +


+ = − +

qq q b

b

b b n

b β b n
 (28)

The propagation of the rotation n
bq  is given by the integration of Equation (10): 

( )( ) ( )n n
b s bt T t t+ = ⊗ ωq q q  (29)

The quaternion ωq  is unknown, only an approximation noted ωq̂  is accessible through the 

gyroscope quaternion and the estimated bias: 

ωω
ˆˆ

g
= −y qq q b

 (30)

The estimated rotation ˆ n
bq  is propagated using the estimated rotation between two successive  

epochs ωq̂ : 

( )ˆ ˆ ˆ( ) ( )n n
b s bt T t t+ = ⊗ ωq q q

 (31)

In this step, ˆ n
bq  and ˆ

ωq  are assumed to be rotational quaternions, so they must satisfy
ˆ ˆ 1n

b = =ωq q  A normalization step is applied. In the remaining equations, all quaternion components 

( )q are normalized to comply with the rotation subset of the quaternion set. With a first order 

development of Equations (28) and (29), the state error model becomes: 

( )
( )

ˆ ˆ ˆ ( )

( ) ( )

( )

n n
b b

s s

s s a

t

t T t T t

T T t

ω ω

ω
δ δ

− −    
    

+ = +    
       −     

q

q q q q

b

C M 0 M 0 0 n

x 0 I 0 x 0 I 0 n

0 0 I β 0 0 I n

 (32)

Given that the first component of the state vector is the orientation of the body frame with respect to 

the navigation frame and that the second component is the gyroscope quaternion bias, Equation (32) 

shows the correlation between these two components. It indicates that the error in the orientation 

comes from the precedent error combined with the rotation error between two successive epochs. 

5. Static Period Detection Threshold 

All updates are based on a priori knowledge of opportune local fields in the navigation frame. As it 

will be explained in next part, static acceleration or magnetic field in the navigation frame informs 

about the attitude angles and can be used to correct the state parameters. But the challenge is that the 

data are only available in the body frame. A reference field must be found for inferring the presence of 

a static field period in the navigation frame using the measurements in the body frame. 
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By definition, the vector norm is invariant through isometric transformation. Consequently, the 

static period detection process is primarily based on the study of the norm. It consists in a statistical 

test of the field time derivative, such as likelihood ratio test (LTR) [24]. It performs a comparison with 

a predetermined threshold [16] and rejects the static hypothesis if the innovation is too large. Last 

approach is known as adaptive Kalman Filtering with Fault Detection and Exclusion (FDE) technique. 

In all cases, the goal is to identify if at current epoch, the acceleration or magnetic field in the 

navigation frame is constant. 

At epoch t, the static field detector is based on the study of the variance of the field of interest and a 

comparison with an initially fixed threshold: 

( )2

1

1
( ) ξ γ

1

s

s

t T
b

ref
k t NT

k
N

+

= −

− <
+  field

 
(33)

where field refers to the acceleration or magnetic field. N is the length of the static period. ξref  is the 

reference norm for the current static period and γ1 is a threshold. 

The reference norm is defined at the beginning of the static period as the mean of the Nfirst first 

values of the static period. The threshold γ1 is defined as the deviation of the field during a static and 

undisturbed period. This first detector compares a global deviation with a threshold. In this approach, 

each sample data must be close to the reference norm, which is a limiting factor. Consequently a 

variant is introduced: 

2( ) ξ γb
refk − ≤field  (34)

where 2γ  is a threshold different from γ1 but also fixed during a static and undisturbed period. This 

threshold is used to reject outliers. It completes the first detector dedicated to the global study of 

deviation over the current static period. 

6. Magnetometer and Accelerometer-Based Heading and Bias Correction 

The use of accelerometers and magnetometers can assist the heading estimation problem. In the 

literature, it is well known that if known static fields are sensed, e.g., Earth magnetic field or Earth 

gravity field, a direct observation of the angles is possible. The situation is more challenging if the 

measured fields are unknown. Even in this case, it is still possible to extract heading information by 

correcting the angular drift modelled in the gyroscope quaternion bias. This is now explained. 

6.1. Quasi-Static Field (QSF) Error Model 

Two similar Quasi-Static Field (QSF) error models are proposed for the magnetic field and the 

acceleration field. They translate novel observations to correct the state vector when conditions (33) 

and (34) are verified, i.e., the acceleration or magnetic field is assumed to be constant in the navigation 

frame. The two possible QSF updates are now explained, starting with the quasi-static magnetic field 

error model and continuing with the quasi-static acceleration field. 
Let us consider the k-th quasi-static period of the magnetic field with a reference field noted 

k

n
refm . 

At each epoch of the present static period, the sensed magnetic field my  is transformed into the 
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navigation frame using the estimated rotation ˆ n
bq  and compared to the reference field. The innovation 

mδz  obtained by this correction is: 

( ) ( ) ˆ ˆδ ( )
k

n n b n
m ref b m b= − ⊗ ⊗qq q

z m q y q
 

(35)

For the acceleration field, the principle is the same, but the accelerometer measures ay  and gives a 

biased estimation of the acceleration field, so the acceleration bias must be removed. Let 
k

n
reff  be the 

reference specific force at the k-th quasi-static period. This period is not necessarily the same as the  
quasi-static magnetic field period. The innovation noted δ az  is: 

( ) ( ) ˆˆ ˆδ ( )
k

n n b n
a ref b a a b= − ⊗ − ⊗qq q

z f q y b q
 

(36)

One of the difficulties is to determine the reference field. In the first case, the norm of the field 

equals the norm of the Earth gravity field or the Earth magnetic field. In this case, there is a global 

correction of the orientation. But in indoor environments, perturbed by magnetic disturbances, only 

few such cases occur. The second case uses any quasi-static field as long as the Earth magnetic field 

disturbances are evaluated as constant. The reference field is then computed as the mean of the Nfirst 

values of the field of interest. The QSF error models are derived with a first order development of 

Equations (35) and (36): 

( ) ( )
( ) ( ) ( )

1 2

1 2 2

ˆ ˆδ , δ

ˆ ˆ ˆδ , δ

k

k

n b n
m b ref b m

n b n n
a b ref b b a

h h

h h h

  = −  


 = − −  

z q m 0 0 x q n

z q a 0 q x q n
 

(37)

The functions 1h  and 2h  are defined by: 

( ) ( ) ( )
( )

3
1 1 3 3 1

22
2 1 3 3 1

: , , 2 ,

: 2 2

q q q

T
q q q q

h q q

h q q

×

×

     ∈ + ×   − + × ×     

 ∈ − + ⋅ + × 

q x x u x u x I x u x

q u I u u u

 






 

(38)

6.2. Magnetic Angular Rate and Acceleration Gradient Updates 

Magnetic angular rate update (MARU) or acceleration gradient update (AGU) are applied during 

QSF periods. When the field is constant in the navigation frame, its variation between two successive 

epochs in the body frame is only due to the body frame rotation with respect to the navigation frame: 

( ) ( ) ( )( ) ( )( )b b
sq q

t t t T t= ⊗ + ⊗ω ωfield q field q
 (39)

where ωq  is defined in Equation (18). 

Similarly to the precedent part on QSF, two applications of this update are possible. The first is the 

magnetic angular rate update and the second is the acceleration gradient update. 
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6.2.1. Magnetic Angular Rate Model 

The evolution law of the magnetic field, expressed in body frame, during a quasi-static magnetic 

field period k, is derived from Equation (39). The magnetic field m̂  at epoch t + Ts is estimated from 
the magnetic field sensed at epoch t  and the estimated rotation ˆωq  between the epochs t and t + Ts: 

( ) ( ) ( )( ) ( )ˆ ˆ ˆ( )b b
s mq q

t T t t t+ = ⊗ ⊗ω ωm q y q
 (40)

This estimated value is compared to the magnetometer data at epoch t + Ts, which gives the 
magnetic angular rate innovationδ MARUz : 

( ) ˆδ ( )b b
MARU m s st T t T= + − +z y m

 (41)

A first order development of Equation (41) gives: 

( ) ( ) ( )
( )3 ω 3 3 2 ωˆ ˆ, ( ) δ m sb

MARU
m

t T
h t h

t×

+   = − + −       

n
z 0 q m 0 x I q

n
δ

 
(42)

where the function 2h  is defined in Equation (38) and the function 3h  is given by 

( ) ( ) ( )3
3 1 3 3 1: , , 2 ,q q qh q q×

     ∈ − ×   + − × ×     
q x x u x u x I x u x   (43)

This update enables to correct the angular drift modelled in the gyroscope quaternion bias. 

6.2.2. Acceleration Gradient Model 

Similarly to the magnetic angular rate update, the acceleration gradient update is based on identified 

QSF. During a static phase of the acceleration field, its evolution at epoch t + Ts is predictable using 

the rotation between two epochs and the acceleration field at epoch t . Following this approach, the 

acceleration field is estimated by: 

( ) ( ) ( ) ( )( ) ( )ˆ ˆˆ ˆ( )b b
s a a

qq
t T t t t t+ = ⊗ − ⊗ω ωf q y b q

 
(44)

The acceleration gradient innovation δ AGUz  is finally computed by  

( ) ( ) ( )( )ˆ ˆδ ( )b b
AGU a s s s at T t T T t= + − + + −z y f I β b

 (45)

In Equation (45), the acceleration bias term ( )ˆ
a tb  is added to the specific force ˆbf  for providing a 

comparison with the acceleration b
ay . With a first order development, the acceleration gradient  

model becomes: 

( ) ( )( ) ( )( ) ( ) ( )
( )3 ω 2 ω 3 3 2 ω

ˆˆ ˆ ˆδ , δ a sb
AGU a a s

a

t T
h t t T h h

t×

+    = − − − + + −      

n
z 0 q y b I β q x I q

n
 (46)

where the functions 2h  and 3h  are defined in Equations (38) and (43). This update offers very 

interesting observations since it involves both the accelerometer and gyroscope quaternion biases. 
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7. Step Length Estimation 

Following a PDR approach, step lengths and headings are merged for recursively propagating the 

pedestrian’s position at epoch t + ΔT from the one at epoch t. Whereas the headings are computed 

using MAGYQ, the step lengths are computed following a three steps process [25]. First, the motion 
mode, the handheld device carrying mode and the step frequency stepf  are estimated based on a 

decision tree and several features extracted from time and frequency domain analyses of the 

accelerations and angular rates. Step events are estimated in a separated independent process that is 

adaptive to the pedestrian walking pace. Finally, the step lengths are estimated with the  

following model: 

( )steps h af b c= + +
 (47)

The step length s is a function of the step frequency stepf , the user’s height h and three parameters 

{a,b,c}. These parameters are estimated using a least square method based on known users’ walking 

speed that is determined with an accurate differential GPS positioning technique. This satellites signal 

based solution is also the reference for the experimental tests that are now presented. 

8. Experimental Validation 

Experimental tests are conducted for evaluating the performances of the MAGYQ attitude 

estimation filter. After a description of the experimental protocol, the filter outcomes are assessed in 

terms of orientation and position. 

8.1. Description of the Experiment 

The IMU used for the experiment is the ADIS 16488 [26]. This inertial and magnetic unit is 

composed by a tri-axis magnetometer, a tri-axis accelerometer and a tri-axis gyroscope. All sensors are 

co-aligned and their measurements are expressed in a unique common frame: the body frame. The 

IMU is connected to an acquisition device that registers the sensor data at 100 Hz for an  

offline processing.  

Three people, whose age is between 25 and 56 years and height varied between 1.62 and 1.84 m, 

were equipped with this hardware. During the data acquisition, they kept the body frame roughly fixed 

with respect to it. This means that the sensor pointing direction is approximately the same as the 

walking direction and no misalignment is considered in this paper. The three test subjects are labelled 

M1, M2 and W1 (where M is for man and W for woman), in the following figures. The total walking 

path length was about 1.5 km including successive periods in outdoor and indoor environments. The 

experiment starts outdoors with the magnetometer calibration and the initialization phase. This 

initialization must be performed in surroundings without magnetic disturbances where only the earth 

magnetic field is measured. The people continued the tests walking successively in the parking lot and 

inside a building. 
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Figure 8. Experimental test equipment. 

  

To evaluate the performances of the present algorithm, a reference system is needed. In outdoor 

spaces, where Global Navigation Satellite Signals (GNSS) are available, a post-processed differential 

trajectory was calculated using GrafNav software from NovAtel [27]. The 5 cm accurate reference 

solution is post-processed at 5 Hz for the GNSS antenna attached on the pedestrian’s cap, as shown in 

Figure 8. The GNSS reference trajectory is only available in outdoor spaces. Inside the building, the 

main corridor directions are used. Let us notice that the width of these corridors is small and the 

subjects walked along these directions. The latter are extracted from an accurate office map. The 

performances are analyzed with the different footpaths overlayed on the building background map. It is 

important to recall that even outside, the results are only computed using the handheld MEMS signals 

and the proposed MAGYQ filter. The same MEMS signals are used for all tests. 

8.2. Performance Assessment of Estimated Angles 

Prior to assessing MAGYQ performances combined with step lengths in the positioning domain,  

the attitude angles estimation is evaluated with two different tests: 

• Indoor data collection with static IMU. 

• Dynamic outdoor data collection. 

8.2.1. Indoor Static Test 

For the static test, 5000 seconds of static IMU data were collected in an indoor space, where the 

local magnetic field is constant but different from the earth magnetic field. Three attitude estimators 

are applied to the recorded data. Two of them are state of the art estimators. All angle outcomes are 

shown in Figure 9. 
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Figure 9. Static test. 

 

The angles in blue are estimated with the GyInt approach, for Gyroscope Integration. This state of 

the art estimator corresponds to a nominal gyroscope bias corrected integration only. In this strategy, 

gyroscope measurements are corrected with the nominal angular rate bias, extracted from the Allan 

Variance analysis, and then propagated in time. It can be observed that GyInt attitude estimator 

presents a large angular random walk drift. 

The second estimator, shown in green, corresponds to the well-known QUEST estimator. 

Corrections are issued from the detection of the earth gravity or earth magnetic field. In this indoor 

configuration, only the earth gravity measurement hypothesis is verified. Consequently, only roll and 

pitch angles are corrected. The yaw angle is not observable and becomes badly corrected. A norm, 

close to the geomagnetic field, is detected and biases the solution. 

The last estimator, shown in red, is the MAGYQ filter. Contrary to the previous two estimators,  

it can be observed that the attitude is continuously corrected even if the sensed magnetic field is not the 

earth magnetic field. As expected, MAGYQ is able to absorb the angular drift into the quaternion 

gyroscope bias even with “perturbed magnetic field” as long as they are constant. The attitude is found 

to be stable over the 1 h and 23 min period. 

8.2.2. Dynamic Outdoor Data Collection 

The test consists in an outdoor walk without changing misalignment between the walking direction 

and the sensor pointing direction. The aim of this test is to verify if MAGYQ filter corrects the initial 
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gyroscope bias, even if the latter is wrongly calibrated. The reference heading, shown in green in  

Figure 10, is post-processed using the Differential GPS (DGPS) solution.  

Figure 10. Static test. 

 

It is important to mention that some outliers are present in the GPS positions, leading to some 

inaccurate heading estimates. These outliers are principally due to satellite signals multi-path and 

fading effects induced by the surrounding vegetation and buildings. Globally, the DGPS solution 

provides an accurate estimation of the heading at a lower rate than the IMU one. GyInt estimator is 

also applied but the initial bias used to correct the angular rates is slightly exaggerated in order to 

better observe the performance of MAGYQ filter. This is the reason why it is labelled GyInt Biased 

and depicted in blue in the same figure. 

An important time drift of the yaw angle is observed with this approach. On the contrary, MAGYQ 

filter, depicted in red, provides an important correction of the gyroscope quaternion bias, which deletes 

the angular drift. Because MAGYQ filter takes advantages of accelerometer and magnetometer signals 

for correcting the gyroscope and accelerometer drifts in much more situations than the other filters, the 

observed angle estimation performances are better. The heading is continuously readjusted and its 

estimation error remains below 10° over the 1.5 km walk. This is computed using the DGPS heading 

during the 15 min period. 

8.3. Performance Assessment of Estimated Pedestrian Trajectory 

After verifying the filter behavior, the MAGYQ based heading is mixed with step length for 

estimating the PDR footpath. Figures 11–13 show the three trajectories corresponding to the test 

described in Section 8.1. The outdoor reference is given by the DGPS solution and is plotted in green. 
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Figure 11. Walking paths of M1. 

 

Figure 12. Walking paths of W1. 
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Figure 13. Walking paths of M2. 

 

The GyInt and MAGYQ inertial trajectories are estimated using the same step length calculated 

with the Model (47) and individually calibrated {a,b,c} parameters. The trajectory estimation only 

differs in the heading process. The GyInt estimation (blue) is performed by integrating the angular 

rates, knowing the nominal gyroscope bias. The red trajectory corresponds to the positions estimated 

using the heading from MAGYQ outcomes. A matching point is applied to initialize the free-inertial 

footpath using the DGPS position calculated at the entrance of the building. This enables to assess the 

heading estimation quality inside the buildings using the main corridor directions. 

In Figure 11, the gyroscope propagation (GyInt) solution is quite accurate and there is no significant 

difference with MAGYQ estimation. In this case, the gyroscope quaternion bias remains relatively 

stable. But in Figures 12 and 13, GyInt solution is drifting over the entire walking path, whereas 

MAGYQ algorithm is able to correct a substantial part of the drift. It is observed that the step length 

errors are dominating the positioning error budget. 

9. Conclusions/Outlook 

A novel Magnetic, Acceleration fields and GYroscope Quaternion (MAGYQ) based attitude and 

heading estimation filter is proposed and demonstrated with handheld sensors. This filter parameterizes 

the state vector directly in the quaternion set in order to reduce the filter error propagation and some of 

the linearization issues following an Extended Kalman Filter approach. Instead of using a gyroscope 

signal modeling at the signal level, a new quaternion based model is proposed introducing the 

gyroscope quaternion bias term. The compatibility of this new angular rate modeling with the 
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Extended Kalman Filter underlying assumptions is demonstrated at the theoretical level and with  

a simulation. 

Among the novel aspects are the introduction of new observation equations that enable to correct 

the drifting part of the acceleration and gyroscope data using the gradient of the observed fields. A new 

quaternion set based magnetic angular rate (MARU) update is proposed. It is applied whenever the 

local magnetic field, perturbed or not, is identified as constant over a sliding window. This update is 

frequently applied along the pedestrian’s route and is found to be very powerful for estimating the 

gyroscope drift even inside buildings. Whenever the acceleration is found to be steady over a time 

interval, a new quaternion based acceleration gradient update (AGU) is also proposed. Through this 

update, not only is the acceleration bias observed but also the gyroscope quaternion bias. 

Outcomes of the experimental tests assess the good performance of MAGYQ in correctly estimating 

the attitude angles as compared to a differential GPS solution. The evaluation is also performed during 

static acquisition conditions. A heading error below 10° over a 1.5 km walk is observed for two man 

and one woman test subjects. The results are also compared with the well-known QUEST algorithm 

and the GyInt algorithm, i.e., a gyroscope integration scheme with initial bias correction. MAGYQ is 

found to provide better results than the other approaches, especially in indoor space where the earth 

magnetic field is disturbed and the other strategy fail to mitigate the drifting noise components. The 

heading estimated with MAGYQ is also combined with step lengths estimated with an individually 

calibrated model for observing the performance in the positioning domain. Direct comparison with 

background building map is finally proposed. It is observed that step length errors are dominating the 

positioning error. No misalignment between the pedestrian walking direction and the handheld device 

pointing direction is considered in this research, this aspect belongs to future research perspectives. 
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