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Abstract: Monitoring thousands of objects which are deployed over large-hard-to-reach 

areas, is an important application of the wireless sensor networks (WSNs). Such an 

application requires disseminating a large amount of data within the WSN. This data 

includes, but is not limited to, the object’s location and the environment conditions at that 

location. WSNs require efficient data processing and dissemination processes due to the 

limited storage, processing power, and energy available in the WSN nodes. The aim of this 

paper is to propose a data processing technique that can work under constrained storage, 

processing, and energy resource conditions. The proposed technique utilizes the lifting 

procedure in processing the disseminated data. Lifting is usually used in discrete wavelet 

transform (DWT) operations. The proposed technique is referred to as LiftingWiSe, which 

stands for Lifting-based efficient data processing technique for Wireless Sensor Networks. 

LiftingWiSe has been tested and compared to other relevant techniques from the literature. 

The test has been conducted via a simulation of the monitored field and the deployed 

wireless sensor network nodes. The simulation results have been analyzed and discussed. 

Keywords: wireless sensor network (WSN); data dissemination; data compression;  

data aggregation; objects monitoring; internet of things (IoT) 

 

1. Introduction 

The recent rapid advancement in the wireless sensor network field has encouraged researchers to 

work towards building a comprehensive physical world networked with sensors. Such a network is 

referred to as a Wireless Sensor Network (WSN). One of the potential applications of WSNs is the 

real-time monitoring of objects. Each of the monitored objects is associated with a WSN node. This is 
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particularly important if the objects are deployed over large hard-to-reach areas. However, such an 

application requires disseminating real-time data about each node through the WSN in a mesh-networking 

scheme. The data is usually disseminated towards the network sink node. The sink node acts as the 

gateway of the WSN to the backbone data network (e.g., the Internet). Such data dissemination 

processes have to be efficient due to the energy, processing, and memory constraints of the WSN 

nodes. The batteries of WSN nodes are usually small and hard to replace once deployed in the 

monitored field. One way for energy conservation in the WSN is to reduce the amount of data 

transmission and disseminate this data towards the sink using the shortest paths. Generally, radio 

communication among the WSN nodes consumes much more power than data processing within the  

nodes [1]. Reducing data transmission can be achieved through applying efficient data aggregation or 

compression techniques within the WSN nodes [2]. 

In this paper, I discuss the processes of compressing and disseminating data in WSNs. For the 

compression process, I studied three simple compression techniques that compress the disseminated 

data within the WSN. Simplicity of such techniques is needed as this study focuses on monitoring a 

large number of WSN nodes, which are constrained by very limited processing and memory resources. 

The first technique is a compression technique based on calculating the offset of the transmitted data  

(the signal) from a reference value. The second scheme is an algorithm explained in [3], which is based 

on the Huffman coding algorithm [4]. The third scheme is a proposed compression scheme, which is 

based mainly on the discrete wavelet transform (DWT) via a lifting procedure [5,6]. The DWT has been 

applied in many disciplines such as computer science, engineering, and mathematics. Its most important 

applications are in the fields of digital signal processing and data compression (e.g., JPEG 2000) [7]. 

The compression techniques were simulated and tested under different scenarios of data 

dissemination within a WSN. The simulation results show that the proposed lifting-based technique, 

called LiftingWiSe, outperforms the other tested techniques in terms of the compression ratio and the 

needed memory to store the received/processed/transmitted monitoring data within the WSN nodes. 

The rest of the paper is organized as follows: Section 2 presents work related to the proposed 

technique. In Section 3, the compression schemes used in the simulation are described. The methodology 

used in testing the compression techniques is summarized in Section 4. The experimental results and 

analysis are covered in Section 5. Finally, Section 6 concludes the paper. 

2. Related Work 

Both industry and academia have recently focused on projects that utilize WSNs in monitoring 

applications. Such projects include transmission of large amounts of data (e.g., video) that covers 

public or hard-to-reach venues [8,9]. The main challenge in implementing these projects is how to 

meet the service performance and cost requirements that are limited by the energy and processing 

constraints of the WSN nodes. A variety of power management strategies have been proposed to save 

WSN nodes’ energy, such as providing different power modes in the nodes. These include the on, 

ready, doze, sleep, idle, and hibernate modes [8]. Another strategy is to use power-efficient sensors 

and radio hardware. However, radio communication consumes much more power than data processing 

within the nodes [1]. Therefore, strategies are needed for bandwidth efficiency such as modified 

communication protocols and in-network data processing [9]. 
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Semantic clustering is an example of such modified communication protocols for WSNs.  

In semantic clustering the WSN is divided into a number of clusters (group of nodes) formed by 

semantically related nodes. At least one node in each cluster is elected to be the semantic collector. 

The semantic collector acts as a bridge between the cluster internal nodes and the WSN sink node.  

In recent research studies, semantic clustering models based on fuzzy inference have been  

proposed [10,11]. In [11] the proposed algorithm elects the semantic collectors based on the nodes’ 

residual energy level and their received signal strength indicator to the sink.  

Data aggregation, compression, and prediction are examples of the in-network data processing 

approaches to handle the limited resources in the WSN nodes [12]. They have received significant 

attention from the researchers within the WSN field [2,13]. The main goal of the proposed  

techniques in the literature is to reduce the size of the transmitted packets in the WSN and hence 

increase the lifetime of the network. Another goal is to reduce the memory needed to store the 

received/processed/transmitted data within the WSN nodes. Some techniques are based on simple 

aggregation functions such as average, minimum, and maximum [14,15]. Other techniques are based 

on spatial or temporal correlation to predict some data without the need to propagate this data all the 

way to the sink [16]. These techniques are not appropriate for the monitoring problem presented in this 

paper. Monitoring objects requires collecting data about each of the monitored objects such as their 

locations. Such data can neither be aggregated nor be predicted to avoid loss or inaccuracy of data. 

Therefore, the suitable option for the monitoring problem is to compress the transmitted data. 

However, not all compression techniques are feasible for WSNs [12]. This is due to the limited 

processing capability and memory space in the WSN nodes. In the remainder of this section, I will 

summarize some studied compression techniques that are suitable for WSN applications. 

Different data compression techniques that are suitable for WSN have been surveyed [13,17]. Kimura 

and Latifi [13] presented four categories of those compression techniques: coding by ordering, pipelined 

in-network compression, low-complexity video compression, and distributed compression. Coding by 

order is utilized within the data funneling routing technique proposed in [18]. In that routing technique, 

some of the sensor nodes work as a data aggregation node. The pipelined in-network compression 

technique trades high data transmission latency for low transmission energy consumption [19]. 

Aggregation nodes collect sensor data in their buffers for a certain amount of time. During that time, 

data packets are combined into one packet after removing any redundancies in the collected packets. 

The low complexity video compression scheme is based on block changing detection algorithm and 

JPEG data compression [20]. The distributed compression technique utilizes side information to 

encode correlated source information [21]. The rationale behind this technique is that WSN nodes  

are usually densely populated in the deployment field and hence such correlation conditions can be 

easily satisfied. 

In a more recent survey, Razzaque et al. [17] presented a logical classification of existing WSN data 

compression approaches. They indicated that each WSN data compression technique belongs to  

one of the following categories: aggregation, text-based compression, distributed source coding,  

transform-based compression, compressive sensing, or predictive coding. Analysis of the performance 

and efficiency of each approach was presented in the survey. They showed that the aggregation 

technique is easy to deploy, but it has limited applications because the original data cannot be 

reproduced at the sink node. Predictive coding has a high compression ratio. However, it has a 
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significant overhead of learning data statistics. Distributed source coding has the overhead of obtaining 

the correlation knowledge, which makes this technique suffer in dynamic WSN environments. 

Transform-based compression and compressive sensing both do not require learning of correlation 

statistics and hence they are effective in dynamic WSN environments. Transform-based compression 

techniques are useful for multimedia communications over WSNs. The study in [17] concluded that 

still more issues need to be resolved in the research field of data compression in WSNs. These 

unresolved issues include the scalability and reliability of the proposed compression techniques. 

Sadler and Martonosi [22] proposed a data compression algorithm for energy-constrained devices. 

It is a dictionary-based lossless compression algorithm. They call their algorithm S-LZW, which stands 

for a sensor version of the LZW algorithm [23,24]. They tailored the algorithm to meet the energy and 

memory constraints of sensor nodes. 

Marcelloni and Vecchio [3] presented a simple WSN compression algorithm. This algorithm 

follows a scheme similar to the one used by the baseline JPEG algorithm. The algorithm was compared 

with the S-LZW algorithm [22]. The results showed that the presented simple algorithm outperforms 

S-LZW in terms of compression ratio. The algorithm utilized by [3] was the Huffman’s coding. 

Pudlewski et al. [25] introduced a wireless video transmission system based on compressed sensing. 

They applied the compressed sensing (CS) theory for the compression component of the system. The 

simulation results showed that the system is suitable for wireless multimedia sensor networks 

(WMSN). WMSNs are used to acquire, process, correlate, and fuse multimedia streams in a 

distributive and real-time fashion. WMSNs are suitable for applications such as video surveillance and 

objects locator services. 

The DWT proved remarkably successful in data compression (e.g., JPEG 2000) [5,6]. Recent 

research efforts have studied different approaches of utilizing wavelet transforms in WSNs’ data 

dissemination. A tutorial in [26] presented DWT-based techniques for in-network compression that can 

be used in WSN nodes with very small random access memory (RAM). The focus is on image 

processing where a small camera is directly connected to the microcontroller of the sensor nodes.  

In the tutorial the authors underlined that even though the presented techniques are not lossless, the 

evaluations illustrated that the loss is typically not visible.  

Ciancio and Ortega [27] proposed a distributed compression algorithm for multi-hop sensor 

networks based on the lifting factorization of the wavelet transform. The proposed algorithm utilizes 

the data flow direction in the network to perform partial wavelet coefficients computations at each 

sensor node. The algorithm was tested on small networks (10–100 nodes) with a pre-organized 

distribution of the sensor nodes that are placed linearly in 1-D (one-dimensional) paths. Simulation 

results showed that the transmission cost depends on the network configuration. Ciancio et al. [28] 

proposed an extension to their work by considering 2-D (two-dimensional) network, which they 

treated as a combination of multiple 1-D paths. They incorporated routing algorithms with their data 

compression algorithm. Based on the network topology, each sensor node is allowed to select the 

coding method that suitable for it. The authors compared multiple routing techniques to identify the 

most efficient one for the topology at hand. The analysis was limited to predefined routing topologies 

on a small network of 100 nodes. 
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A DWT-based energy-efficient audio compression scheme for wireless multimedia sensor network 

(WMSN) was proposed in [29]. The authors considered the WSN nodes were deployed uniformly in a 

2-D grid with a fixed distance between any two adjacent nodes. The sink node was placed in the center 

of the grid. They used DWT to capture spatial and temporal correlation among the disseminated data in 

the WSN. The proposed scheme was tested on a simulation of 256 nodes.  

Wagner et al. [30] studied the application of DWT for a 2-D irregular sensor node placement. By 

irregular placement, they mean a non-grid placement of the nodes. Each node needs to determine its 

location in the deployment field through a proposed distributed triangulation algorithm. The proposed 

technique requires the construction of a distributed mesh among the nodes in the network. A significant 

communication overhead is needed to maintain that mesh. The proposed technique was tested by 

creating 300 sample points from uniformly distributed random node locations. Wagner et al. [31] 

extended the work in [30] by proposing a meshless solution to the problem. The techniques proposed 

in [30,31] require backward data transmissions that flow away from the sink, which adds a 

communication overhead. 

In this paper, the focus is on a WSN model where thousands of objects need to be monitored. Both 

random and grid deployment of the sensor nodes were simulated. A modified version of the lifting 

factorization of the wavelet transform is proposed. Nodes in the deployment field do not need to know 

their location in the deployment field. Each node needs to communicate with its neighbors over an 

arbitrary routing tree. Specifically, a node communicates with the nodes that are closer to the sink 

(root) node of the routing tree. The proposed technique performs the wavelet transform as data flows 

towards the sink. There is no need for backward data transmission from the sink. According to the 

classifications of the WSN compression techniques presented in [17], the proposed technique can be 

classified as data, communication, scalable, real-time, and on-route compression. The performance of 

the proposed technique, LiftingWiSe, is compared with the algorithm presented in [3]. 

3. Compression Schemes 

Three compression schemes are compared in this study. These compression schemes are the Offset, 

Marcelloni, and the proposed LiftingWiSe technique. The tested schemes have a common feature of 

being simple to process within a WSN node. This is an essential feature as the focus in this study is on 

WSNs with large numbers of nodes and with very limited processing capability and memory space. In 

this paper, compression is applied on each sequence of related data individually. Throughout the rest of 

this paper, I will refer to the “sequence of related data” as a signal.  

In the monitoring system at hand, each sensor node handles three signals: the first one carries the 

stimulus value at the location of the sensor node. The location is represented by the second and third 

signals, which carry the sensor nodes’ X and Y coordinates. The stimulus represents any environmental 

condition such as the temperature, the humidity, or the pressure. Compression schemes can be 

classified as lossless or lossy compression. A lossless compression scheme compresses a signal of data 

but never discards any details in the original signal. It allows the exact original data to be reconstructed 

from the compressed data. A lossy compression scheme compresses a signal of data by discarding 

(losing) some tiny details in the original signal with the goal of increasing the compression percentage. 

The location coordinates and stimulus values can be compressed using either lossy or lossless schemes 
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as they afford a slight change in their disseminated values. In the following subsections, I will explain 

how the Offset, Marcelloni, and the proposed LiftingWiSe compression schemes are implemented. 

3.1. Offset Compression 

The minimum absolute value in the signal is used as a “reference”. Each value in the signal is 

replaced by the difference between the value and the reference. The node disseminates the compressed 

signal that contains the differences along with the reference value. The idea of the Offset scheme is to 

have a signal with small numbers, which require fewer bits to encode and transmit. 

3.2. Marcelloni Compression 

The Marcelloni compression scheme is based upon the algorithm proposed in [3]. The algorithm is 

based on Huffman's coding. Huffman coding maps a sequence of symbols to bits of variable sizes, so 

that symbols appear more frequently are represented by a smaller number of bits than those that  

occur rarely.  

The Marcelloni algorithm replaces each entry in the signal, ri, with the difference di, where di = ri − ri−1. 

Each di is encoded using two parts si|ai. Given ni as the number of bits needed to encode di then si is 

the Huffman coding of ni. Therefore, si is a variable-length binary code generated by using Huffman 

coding on ni. Finally, ai is the binary representation of di. Special cases of the entries in the generated 

signal are explained by Marcelloni and Vecchio [3]. In these special cases the variable-length integer 

code part of the bit sequence, ai, is represented based on the value of di. Different representation are 

used for the following ranges of di: di > 0, di < 0, and di = 0. The presented Marcelloni compression 

technique is lossless. It was tested by [13] on temperature and relative humidity signals. 

3.3. LiftingWiSe 

The proposed compression technique is an arbitrary length compression scheme that is based 

mainly on the DWT via lifting procedure [5,6]. The lifting procedure can be applied on a signal Sj of 

length 2j, where j is a positive integer. Each lifting round consists of three steps [5,32]: 

(1) Split: The signal Sj is transformed into two sequences, the odd sequence dj−1 and the even 

sequence sj−1, each of length 2j−1. Note: in the implementation of this step, the split is done 

logically on the same physical array of the original signal. 

(2) Prediction: It represents the correlation between an entry in the signal and its nearest neighbors. 

In this paper, the difference between the odd indexed entries in the signal and its preceding 

even indexed entries is used for the prediction step. Jensen and la Cour-Harbo [32] used the 

prediction step to calculate the entries of the dj−1 sequence as in Equation (1): 

dj-1[k] = sj[2k + 1] − sj[2k],   where 1 < k < 2j−1 (1) 

(3) Update: Here the even entries of the signal (i.e., sj−1) is replaced with the average of the 

original even and odd entries as in Equation (2): 

sj-1[k] = sj[2k] − dj−1[k]/2, where 1 < k < 2j−1 (2) 
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The proposed LiftingWiSe technique is a modified version of the original lifting procedure. It can 

be applied on a signal with an arbitrary length. This has been achieved by first dividing the signal S of 

any positive-integer length L into two parts. The first part, Sn, contains the first 2n entries in S, where  

n = ݈݃ہଶۂܮ. The second part, Sr, contains the remaining entries in S. The lifting algorithm shown in 

Figure 1 is applied on Sn. 

Figure 1. The Lifting compression algorithm. 

 

In the shown lifting algorithm, the code in line 8 represents the “prediction” procedure while the 

code in line 9 represents the “update” procedure. The same procedures, prediction and update, are 

repeated on the generated updated signal recursively until the generated signal has only one entry.  

The final resulted signal combines all the signals generated from the prediction procedures. It contains 

values with smaller dynamic range than the original signal. This potentially leads to a better 

compression. One more thing to note is that the first entry in the resulted signal is actually the mean 

value of all entries in the original signal [7].  

Figure 2 shows the pseudo code of the proposed LiftingWiSe compression technique where the 

above lifting algorithm is applied on Sn. The first entry in the result, the mean value, is subtracted from 

all entries in Sr. This way; the proposed technique can be applied on signals with an arbitrary length. 

The LiftingWiSe technique is not lossless due to the division by 2 operation in step 9 of Figure 2. The 

result of that operation has to be rounded as the signal contents are restricted to be integers. However, 

the rounding operation usually compensates the loss at one stage with a gain in a following stage and 

vice versa. The results show that the loss in the signals is negligible. Generally, the low-memory wavelet 

transform techniques are not lossless. However, studies illustrated that the loss is typically not visible [26]. 

Figure 2. The Proposed Compression Technique. 
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Figure 3 shows the LiftingWiSe signal processing chart where the above algorithms are applied on 

signal S to produce the processed signal S′. An important benefit of the presented process is that 

throughout the process, the operations are performed in place. This means the entries in the signal are 

replaced with the predicted, updated, and difference entries without the need for extra temporary 

storage to carry out those operations. This is especially important for the wireless sensor nodes where 

memory space is limited. 

Figure 3. LiftingWiSe signal processing chart. 

 

During the encoding stage, the entries of the processed signal, S′, are converted into binary words. 

To avoid the effect of noises, two word sizes are used to encode S′. Equation (3) shows the calculations 
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of the word sizes, W, used to encode the entries in S′. The smaller word size fits s0 (i.e., S′[0]), and 

hence it is used to encode the entries in S′ that are smaller than or equal s0. Recall that s0 is the mean 

value of the entries in Sn. The larger word is used to encode the entries larger than s0 as it fits the entry 

with the largest absolute value in S′:  

ܹ(ܵᇱ[݅]) = 	൞ logଶڿ ܵᇱ[0]ۀ ܵᇱ[݅] ≤ ܵᇱ[0]ቒlogଶ maxஸழ ܵᇱ[݇])ቓ ܵᇱ[݅] > ܵᇱ[0]  (3) 

To distinguish between these two sizes, a prefix bit is added before each code. A value “0” of this 

bit indicates the small word size, and “1” for the large word size. Another prefix bit is added for the 

number’s sign.  

4. Testing Methodology 

The three compression schemes explained in the previous section were incorporated in a simulation 

of a WSN monitoring environment. The monitoring environment contains a set of objects distributed 

over the simulated monitored area. These objects are monitored through their IDs (unique numbers that 

identify the monitored objects) and their locations (denoted by using a pair of coordinates X and Y). 

The objects’ monitoring data is collected through a ubiquitous WSN node attached to the object.  

In addition to the above data, each WSN node reports a stimulus value measured at the object location. 

That can be any stimulus of interest such as temperature, pressure, or humidity. 

The simulation was implemented using Visual C# on an Intel-based PC. The monitoring 

environment is defined by the following: 

• The map of the monitored field (currently defined as a rectangular area). 

• The number of monitored objects within the field, which is also the number of WSN nodes 

(assuming each object is associated with a WSN node). 

• The radio range of each WSN node. 

• Deployment method of the monitored objects (grid or random deployment). 

• The number of areas affected by the stimulus. The simulation allows the stimulus to be 

allocated randomly or manually by double-clicking on different spots on the field. 

• The coverage radius of the stimulus. 

• The compression method to be tested (none, Offset, Marcelloni, and LiftingWiSe). 

• The dissemination interval after which each WSN node disseminates its collected data to its 

parent node. 

Figure 4 shows the simulated monitored field with a grid deployment of 56 WSN nodes. Figure 5 

shows the same but with randomly deployed 56 WSN nodes. Both figures show the radio range  

(a circle) of one of the nodes as well as three areas affected by the stimulus (the darker the red color, 

the higher the stimulus value).  

Definition 1: The sink node is the node where all disseminated data sent (directly or indirectly) by all 

nodes in the field are collected. It appears on the top-left corner in the following figures.  
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Definition 2: The neighbors of any node A are those nodes within the radio range of A (appear as 

blue dots within the circle in the following figures). 

Definition 3: A parent node is assigned to a set of nodes, the parent’s children. A parent is assigned 

to a child if it is the closest node to the sink from among all the child’s neighbors. 

Definition 4: The basket is the collection of data representing the status of a set of sensor nodes.  

In the current implementation, the status of a node includes the sensor ID, the sensor 

location (X and Y coordinates), and the stimulus value at that location. 

Figure 4. The monitored field with grid-deployed nodes. 

 

Figure 5. The monitored field with randomly deployed nodes. 

 

Each node collects the baskets received from its children, if it has any children, and decompresses 

them. The decompression process is the reverse process used in the corresponding compression 

scheme. The node then combines the decompressed baskets in one basket. Note that for the 

LiftingWiSe scheme, decompression is like compression in terms of all processing steps are done in 

place (no need for temporary storage for processing). The next step is for the node to add its own status 
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record to the resulted basket (or create a new basket if it does not have one). Finally, the node 

compresses the content of the resulted basket and disseminates it to its parent. The sink is a special 

case where it only decompresses the baskets it receives and combines them in one basket. This basket 

includes the current status records of all sensors in the field. The collected records are eventually 

forwarded to a server to be analyzed by the field administrator.  

The lines connecting the nodes in Figures 4 and 5 are virtual lines representing the dissemination 

tree. The root of that tree is the sink node. The remaining sensor nodes are represented as vertices of 

that tree. Each node eventually disseminates its basket to the sink node through its parent in the tree. 

Definition 5: Overall disseminated bits are the total number of bits in the status baskets disseminated 

by all nodes to their parents until all the data are propagated all the way to the sink. 

The implemented simulation has been verified and validated to make sure that it is accurate and 

credible [33]. 

4.1. Verification 

The verification of the simulation is concerned with making sure that the implementation of the 

model is correct. A dynamic verification was done through testing each function in the simulation with 

variety of settings of its input parameters. The overall performance of the simulation was stressed 

tested with WSN fields that have from 100 to 1200 nodes. The nodes were deployed both randomly 

and as a grid. Stimulus values were randomly allocated on the WSN field. A static verification was 

achieved through making sure that there are neither inconsistent object declarations nor memory 

corruptions or leaks. 

4.2. Validation 

The validation of the simulation is concerned with making sure that the implemented model 

accurately represents the real system. Validation of the simulation’s three modules (compression, 

decompression, and dissemination processes) was achieved through comparing the collected data in 

the sink node with the given parameters of the deployed nodes. Two fields were graphically drawn on 

the screen. The first field has all nodes, and stimulus distributed based on the given parameters.  

The second field contains all nodes, and stimulus displayed based on the collected data at the sink after 

applying the above three processes. Analyzing both fields under different scenarios validated that the 

implemented model accurately represents the real system. 

5. Experimental Results and Analysis 

The simulator has been used to test the following compression techniques: Offset, Marcelloni, and 

the proposed LiftingWiSe technique. One more run of the simulator was carried out for no 

compression (None) where sensors’ raw data is disseminated without any compression. The overall 

disseminated bits for each run are recorded and compared. The above compression techniques were 

tested with 1200 nodes. Both random-deployed nodes (Figure 6) and grid-deployed nodes (Figure 7) 

were tested. 
  



Sensors 2014, 14 14578 

 

Figure 6. Randomly deployed 1200 nodes. 

 

Figure 7. Grid deployment of 1200 nodes. 

 

Figures 8 and 9 compare the performance of the discussed compression techniques. The compression 

techniques were compared based upon the number of bits disseminated throughout the network until 

all data is collected at the sink node. Figure 8 shows the comparison for the random deployment while 

Figure 9 shows the comparison for the grid deployment. For each compression technique, the graphs 

show the number of bits disseminated to transfer the nodes’ locations and the stimulus measured at that 

location. The following can be observed from the above results: 

(1) The proposed LiftingWiSe technique outperforms the other compression techniques for both 

the locations and stimulus data in both deployment methods.  

(2) The locations’ data represent a less dynamic signal with large values. However, the stimulus 

data is a more dynamic signal with small values. Such characteristics explain why 

disseminating the stimulus signal without data compression (None) performs better than the 

Offset and Marcelloni techniques.  
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(3) There is no significant effect of the deployment method on the performance of LiftingWiSe. 

This is not the case for the Offset and Marcelloni techniques as they are affected by the 

deployment method. 

Figure 8. Disseminated bits through 1200 randomly deployed nodes. 

 

Figure 9. Disseminated bits through 1200 grid deployed nodes. 

 

More simulation runs were conducted to validate the implementation of the simulation. These runs 

are used to show the following: 

(1) The effect of the sensor nodes’ radio range on the number of the disseminated bits. 

(2) The effect of the sensor nodes’ radio range on the execution time of the compression techniques.  

(3) The effect of the stimulus coverage over the sensor field on the number of the disseminated bits.  
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The grid distribution of 600 deployed sensors used for these runs as shown in Figure 10. The figure 

shows one settings for the radio range and distribution of the stimulus. The simulation was run for 

different settings of these parameters.  

The radio range in the simulation is measured by its circle diameters in dots. For the grid distribution 

of Figure 10, the shown radio range covers only the sensor node’s closest neighbors. That range has a 

diameter of 20 dots. LiftingWiSe was tested for radio range diameters from 20 to 200 points, where the 

200-point range covers the whole sensor field. 

Figure 10. Disseminated bits through 600 grid-deployed nodes. 

 

Figure 11 shows the effect of the radio range on the total number of bits disseminated throughout a 

network field with 600 nodes. The graph shows that, for the three studied techniques, the greater the 

radio range the smaller the number of bits needed to disseminate the nodes’ data all the way to the  

sink node. The reason is that the greater the radio range the less average number of hops on the 

dissemination paths. 

Figure 11. The effect of the radio range on the number of disseminated bits. 
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Figure 12 shows the effect of the radio range on the execution time of the studied technique.  

It shows that as the radio range increases, the execution time decreases. This is because the number of 

hops needed to reach the sink decreases and hence the compression/decompression processes are 

executed less frequently. 

Figure 12. The effect of the radio range on the execution time. 

 

Figure 13 shows how the number of the disseminated bits are affected by the percentage of the 

sensor field covered by the stimulus’ coverage. A 0% coverage means the field is not affected by the 

stimulus at all. A 100% coverage means the stimulus covers the whole field with its maximum allowed 

value. The left graph in Figure 13 shows that both the Offset and Marcelloni techniques are barely 

affected by the stimulus coverage. The right graph in Figure 13 shows that with LiftingWiSe more bits 

are generated by the compression technique as the dynamic of the stimulus signal increases. In the 

extreme cases (i.e., 0% and 100%), the stimulus values are almost constant across the field, which 

results in better compression rate and less number of disseminated bits. 

Figure 13. The stimulus coverage effect on the number of disseminated bits. 
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Complexity and Integrity Analysis 

The complexity and integrity of the proposed LiftingWiSe technique were analyzed. The complexity 

is measured by calculating the computational complexity [17]. Computational time complexity is 

proportional to the number of clock cycles required to compress, decompress, and disseminate data 

throughout a WSN of 1200 nodes. Computational memory complexity is proportional to the memory space 

needed to perform the above tasks on the data. The integrity of the proposed compression technique is 

measured by calculating the percent error of the disseminated data compared to its original values. 

Computational time complexity of LiftingWiSe is measured by the complexity of the lifting wavelet 

transform and encoding processes that are shown in Figure 3. The computational complexity of both 

processes is O(n), where n is the length of the signal (L in Figure 3). Both the Offset and Marcelloni 

techniques have computational complexity of O(n) as well. Figure 14 shows a quantitative comparison 

of the execution times of the three compression techniques. The execution time is measured in 

milliseconds. It represents the required time to disseminate the data throughout the 1200 network nodes. 

The dissemination process includes data compression, encoding, transmission, decoding, and 

decompression throughout the network nodes until all data are collected at the sink node. The comparison 

shows that the proposed LiftingWiSe technique outperforms the Marcelloni technique in terms of 

execution time. The Offset requires less execution time than the proposed LiftingWiSe technique. 

Figure 14. Computational time complexity comparison. 

As for computational memory complexity, LiftingWiSe requires less memory space than the 

Marcelloni technique as LiftingWiSe performs its calculations in place (no need for temporary arrays 

of data). The Offset technique performs its calculations in place as well. However, LiftingWiSe does 

not require the overhead of disseminating the reference value with every signal as required by the 

Offset technique. 

As LiftingWiSe is a lossy compression technique, it is important to check for its integrity. Integrity 

is measured by calculating the percent error of the disseminated data compared to its original values. 

As for the disseminated X and Y coordinates of all 1200 nodes; the percent error is 0.35%. The percent 

error is 0.02% for the disseminated stimulus signal. Both percent error values are insignificant 
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considering the nature of the disseminated info. Studies illustrated that the loss due to compression 

using low-memory wavelet transform techniques is typically not visible [26]. 

6. Conclusions 

An efficient and simple data processing technique, LiftingWiSe, for data dissemination in Wireless 

Sensor Network (WSN) was introduced in this paper. LiftingWiSe is based on the lifting method of the 

Discrete Wavelet compression technique. LiftingWiSe can be applied on signals with arbitrary length. 

The algorithm used to implement the compression core of LiftingWiSe has two features. First, it 

requires simple calculations that do not need a lot of processing power. Second, it performs the 

compression in place (i.e., one array is needed to store the signal while it is being processed).  

These features are particularly important due to the limited processing capability and memory space in 

the WSN nodes. The proposed technique was evaluated on a WSN with 1200 nodes. The nodes were 

deployed both randomly and in a grid fashion. The disseminated data includes the nodes’ locations and 

the stimulus at those locations. The proposed technique was compared to two other simple 

compression techniques appropriate to be used in wireless sensor nodes that have very limited 

processing and memory resources. The results show that LiftingWiSe outperforms the other techniques 

in terms of the number of bits to be disseminated in the network. Future work includes testing the 

proposed technique with other types of signals (e.g., multimedia) as well as testing it on a prototype of 

real sensor nodes. 
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