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Abstract: Variations in soil moisture strongly affect surface energy balances, regional 

runoff, land erosion and vegetation productivity (i.e., potential crop yield). Hence, the 

estimation of soil moisture is very valuable in the social, economic, humanitarian (food 

security) and environmental segments of society. Extensive efforts to exploit the potential of 

remotely sensed observations to help quantify this complex variable are ongoing. This study 

aims at developing a new index, the Thermal Ground cover Moisture Index (TGMI), for 

estimating soil moisture content. This index is based on empirical parameterization of the 

relationship between raw image digital count (DC) data in the thermal infrared spectral band 

and ground cover (determined from raw image digital count data in the red and  

near-infrared spectral bands).The index uses satellite-derived information only, and the 

potential for its operational application is therefore great. This study was conducted in  

18 commercial agricultural fields near Lubbock, TX (USA). Soil moisture was measured in 

these fields over two years and statistically compared to corresponding values of TGMI 

determined from Landsat image data. Results indicate statistically significant correlations 

between TGMI and field measurements of soil moisture (R2 = 0.73, RMSE = 0.05,  

MBE = 0.17 and AAE = 0.049), suggesting that soil moisture can be estimated using this 
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index. It was further demonstrated that maps of TGMI developed from Landsat imagery 

could be constructed to show the relative spatial distribution of soil moisture across a region. 

Keywords: thermal infrared; raw image digital count; soil moisture; estimation 

 

1. Introduction 

Soil moisture is a key factor in controlling the exchange of water and heat energy flux between the 

land surface and atmosphere through evaporation and transpiration processes [1–3]. Information on the 

distributed soil moisture at larger scales with sufficient spatial and temporal resolution is needed for 

improving climatic and hydrologic modeling and prediction [4]. In addition, information on soil moisture 

is of great use in crop management, including irrigation scheduling. Early detection of dry conditions is 

important for yield forecasting, which can serve as an early warning system in agriculture. 

Various approaches have been developed to estimate soil moisture, from ground-based sampling  

e.g., [5,6] to air/space-borne remote sensing techniques e.g., [3,7–15]. Ground-based methods involve 

point measurements, so local scale variations in soil properties, terrain, and vegetation cover make the 

selection of representative field sites difficult, if not impossible [3,16]. Moreover, field methods are 

complex, labor intensive and expensive. Therefore, in situ measurements may not adequately represent 

the spatial distribution of soil moisture content and are not available for continuous spatial and temporal 

coverage at regional and global scales. In contrast, remote sensing (RS) techniques are promising 

because they produce spatially explicit measurements [17]. For large areas, the cost of acquiring RS data 

may be less than ground-based methods. Since the 1970s, a number of remote sensing methods have 

been developed to quantify soil moisture using different regions of electromagnetic spectrum, from the 

optical to microwave regions [8,11,14,18–22]. 

A wide variety of models for estimating soil moisture have been developed using various satellite 

data. They are typically based on satellite-derived Vegetation Indices (VIs) evaluated from visible and 

near infrared data and/or surface temperature (Ts) estimated from thermal band data. The applications of 

approaches combining VIs and Ts dates back to the 70’s and are typically based on the concept for 

detecting canopy water stress or crop evapotranspiration [23]. Indices such as the Crop Water Stress 

Index (CWSI) were developed to be used for irrigation scheduling [24]. Over the past 40 years, the  

Ts–VI concept has been used in various applications, such as the estimation of soil moisture and 

evapotranspiration. A number of studies have documented the Ts–VI relationship and have described a 

geometric (triangular or trapezoidal) representation of the data falling between the Ts and the VI  

axes [11,12,20,25–30]. The application of the Ts–VI concept for soil moisture content estimation began 

with the work of Nemani et al. [31], who took advantage of the spatial information offered by satellite 

data to infer canopy conductance from the slope of the Ts–VI relationship. They found a strong negative 

correlation between Ts and VI expressed as the Normalized Difference Vegetation Index (NDVI) for all 

biome types. The concept was further developed by Moran et al. [14], who used the trapezoidal shape 

of NDVI versus (Ts–Tair) to estimate plant canopy water stress. This “VIT trapezoid” was an attempt to 

combine spectral vegetation indices with composite surface temperature measurements to evaluate 

evapotranspiration rates for sites with full or partial vegetation cover [14]. At about the same time, 
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Carlson et al. [22] proposed a universal triangular method to explore the relationship between soil 

moisture availability, Ts and NDVI. Since then, trapezoid or triangle relationships between VI and Ts 

have been widely studied to estimate soil moisture and energy flux at different spatial scales using RS 

data from different sources [32,33]. 

All of the previously discussed methods require converting thermal remote sensing to surface 

temperature data. This conversion is time-consuming and requires the collection of additional 

information, which can be expensive. In addition, small errors in computed surface temperature can lead 

to unreasonable values of the surface energy fluxes [32]. A drawback of the triangle or trapezoid 

approaches is that establishing the “dry edge” of the Ts–VI space is often not straightforward [11], 

because different surface types can have different slopes and intercepts for the dry edge even under equal 

atmospheric and surface moisture conditions. A number of studies have been conducted to identify the 

dry edge and estimate its slope and intercept. Some of these efforts have had only theoretical bases [14], 

some have been based on in situ measurements [34], and others have been based largely on finding a 

“best fit” to the dry edge as it varies from image to image [11,20,29,32]. The objective of this study is 

to present a simple method for estimating soil moisture in agricultural regions using raw remote sensing 

data without calibration or conversion to surface reflectance or temperature. This method represents 

modification of the approach proposed by Moran et al. [14] consisting of replacing NDVI by vegetation 

ground cover (GC) and Ts–Tair by raw thermal digital counts (TIRDC). The method is conceptually and 

computationally straightforward, and only satellite-derived information is needed. The ability of the 

method to estimate soil moisture is tested using independent measurements of soil moisture obtained 

from agricultural fields in the study region. We also demonstrate the ability of the method to map 

variations in soil moisture across an agricultural region. 

2. Materials and Methods 

2.1. Conceptual Basis 

As shown by numerous investigators, plotting values of VI versus corresponding values of Ts  

derived from multispectral satellite imagery produces the characteristic “triangle” or “trapezoid” 

distribution [11,14,20,25,29]. Vegetation indices such as NDVI are indicators of the amount of 

vegetation in the scene. However, they are not direct measures of the amount of vegetation and are 

usually related to measures of vegetation density (such as GC or LAI) empirically. In an earlier study, 

Carlson [32] replaced VI with fractional vegetation cover and showed that this replacement does not 

change the shape of the triangular or trapezoidal distribution. Carlson [32] used fractional vegetation 

cover instead of VI in an attempt to establish a more universal triangle for estimating soil moisture 

availability. Some authors [35] favor a linear relationship between NDVI and fractional vegetation cover, 

rather than the equation proposed by Carlson [32]. Maas and Rajan [36] demonstrated that fractional 

vegetation cover can be directly evaluated from satellite image DC data in the red and  

near-infrared spectral bands and they called it vegetation ground cover (GC). We propose replacing VI 

in the triangular or trapezoidal distributions with remotely sensed GC. The advantage of this method is that 

GC can be calculated directly from raw satellite image DC data. In addition, GC provides a more direct 

interpretation of the interaction of plant canopy density and plant canopy temperature. 
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Figure 1a shows the typical distribution of points resulting from plotting values of vegetation GC 

(result of plotting Digital Count (DC) in Red and NIR spectral bands) versus corresponding values of 

surface temperature (Ts) for pixels comprising a medium-resolution multispectral satellite image 

(Landsat-7) of an agricultural region. Figure 1b shows a similar distribution, but in this case Ts has been 

plotted versus the raw thermal infrared digital count values (TIRDC) of Landsat-7 used in calculating 

Ts. When properly scaled, the shapes of the distributions in the two figures are the same. The advantage 

of working with the distribution in Figure 1b is that it can be constructed from raw satellite DC data 

without the need for atmospheric or radiometric calibration (recall that GC can be determined directly 

from raw DC data as described in the previous paragraph). 

The distribution shown in Figure 1b can be described diagrammatically by Figure 2. Points along the 

left edge of the distribution (line connecting points a and b) represent pixels with relatively cool surface 

temperatures, either from high evaporation rates from the wet soil surface under low GC conditions (near 

point a), or from high transpiration rates from the vegetation canopy under high GC conditions 

associated with high soil moisture contents and a lack of water stress (near point b). A combination of 

both of these effects may be present at intermediate GC levels. In contrast, points along the right edge 

of the distribution (line connecting points c and d) represent pixels with relatively warm surface 

temperatures, either from low evaporation rates from the dry soil surface under low GC conditions (near 

point c), or from low transpiration rates from the vegetation canopy under high GC conditions associated 

with low soil moisture contents leading to stomatal closure in the canopy (near point d). Again, a 

combination of both of these effects may be present at intermediate GC levels. Since the left edge of the 

distribution is generally associated with wetter soil moisture conditions, it is often called the “wet edge”. 

The “wet edge” represents the situation where there is enough water to allow evaporation to occur at 

unrestricted rates and the vegetation is not stressed by the lack of soil moisture. This line corresponds to 

the wet edge of the temperature–vegetation dryness index (TVDI) proposed by Sandholt [11]. 

The right edge of the distribution, which is generally associated with drier soil moisture conditions, 

is often called the “dry edge.” The dry edge represents the maximum soil water-limiting conditions for 

the plant canopy [37]. The position of a point between the wet and dry edges of the trapezoid is indicative 

of its soil moisture content. Note that it is the position of the point relative to the wet and dry edges, and 

not the absolute value of the point, that is important in indicating its soil moisture content. Thus, plotting 

GC versus TIRDC (Figure 1b) provides similar information as plotting GC versus Ts (Figure 1a), since 

both distributions of points contain the characteristic wet and dry edges. Values of GC in Figure 2 will 

range from 0 (bare soil) to 1 (full canopy). Values of TIRDC between image acquisitions may vary due 

to differences in weather conditions, surface conditions, and atmospheric clarity. Normalizing TIRDC 

by its maximum and minimum values within the distribution can remove this image-to-image variation. 

Normalizing the TIRDC distribution results in both coordinate axes varying from 0 to 1 regardless of the 

amount of net radiation or the ambient air temperature and thermal radiation [32]. Normalization of 

TIRDC can be accomplished using the following equation, ܶܥܦܴܫ,= (ܶܥܦܴܫ–ܶܥܦܴܫ)/(ܶܥܦܴܫ௫–ܶܥܦܴܫ) (1)

in which TIRDCnorm,i is the normalized value of TIRDC for a given pixel, TIRDCmax is the maximum 

value of TIRDC representing dry, bare soil (point c in Figure 2), and TIRDCmin is the minimum value of 

TIRDC representing non-stressed full vegetation canopy (point b in Figure 2). 
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Figure 1. Result of plotting vegetation GC (result of plotting DC in Red and NIR spectral 

bands of Lnadsat-7) versus (a) surface temperature Ts; (b) raw thermal infrared digital count 

data (TIRDC) for pixels comprising a medium-resolution multispectral satellite image 

(Landsat-7) of an agricultural region. 

 

Figure 2. Diagrammatic representation of the distribution of vegetation GC versus raw 

thermal infrared digital count data (TIRDC) like that presented in Figure 1b. 
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2.1.1. TIRDCnorm–GC Space 

TIRDCnorm–GC distributions fit within a trapezoidal space (Figure 3) that has three fixed vertices: 

point a (TIRDCnorm = 0, GC = 0), point b (TIRDCnorm = 0, GC = 1), and point c (TIRDCnorm = 1,  

GC = 0). Since the dry edge of the distribution likely represents the driest soil moisture conditions over 

the imaged scene, the gradient in soil moisture within the scene should be roughly perpendicular to the 

orientation of the dry edge. Thus, it is important to know the position of the dry edge. Since point c is 

fixed in the TIRDCnorm–GC space, this comes down to determining the location of point d. The position 

of point d usually cannot be determined directly from the distribution of observed pixel data, since it is 

uncommon to find vegetation that is severely stressed yet has GC = 1. Figure 3 shows a method to 

estimate the location of point d and thereby establish the location of the dry edge. A straight line with a 

slope of −1 (dashed line “B” in Figure 3) is placed through point a. The choice of a slope of −1 is 

somewhat arbitrary but should place the orientation of line “B” roughly perpendicular to the soil moisture 

gradient. This line is used as a baseline for measuring distance along the gradient. The observed point in 

the TIRDCnorm–GC distribution that has greatest perpendicular distance from the baseline “B” is found 

by inspection (indicated by point f in Figure 3). Point d can be considered to be the point where a straight 

line from point c passing through point f intersects the top of the trapezoid (GC = 1). It has been our 

experience that, for agricultural regions with a mixture of field crops, perennial pastures, and natural 

vegetation, the distribution of image pixel values will usually allow identification of point f during most 

of the growing season. However, the authors recognize that the approach in the form described in this 

article might not be directly applicable to all situations. 

 

Figure 3. TIRDCnorm–GC space used for determining the vertex d of the trapezoid. Line “B” 

passes through point a with a slope of −1 and serves as a baseline for measuring perpendicular 

distance across the TIRDCnorm–GC space. In this example, point f is the point in the distribution 

of observed pixel values that has the maximum perpendicular distance from line “B”. 

Knowing the positions of points c and d, the equation of the dry edge can be written as follows: ܥܩ ൌ ,ௗܥܦܴܫௗܶܥܩ െ 1 ൈ ,௫,ܥܦܴܫܶ െ ,ௗܥܦܴܫௗܶܥܩ െ 1 (2)
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where GCi is the value of GC for a given image pixel at the dry edge, TIRDCnorm,max,i is the value of 

normalized TIRDC at that pixel, and GCd and TIRDCnorm,d are the GC and normalized TIRDC values, 

respectively, observed for point d. By rewriting Equation (2), the value of TIRDCnorm,max,i can be calculated 

for any point along the dry edge: ܶܥܦܴܫ,௫, ൌ ሺܥܩ  ,ௗܥܦܴܫௗܶܥܩ െ 1 ሻ/ሺ ,ௗܥܦܴܫௗܶܥܩ െ 1ሻ (3)

2.1.2. Thermal Ground Cover Moisture Index 

An index, the Thermal Ground cover Moisture Index (TGMI), can be defined based on the relative 

position of a point in the TIRDCnorm–GC space depicted in Figure 3. The TGMI is similar to the WDI 

described by Moran et al. [14] but can be evaluated from raw image DC data. TGMI is shown 

diagrammatically in Figure 4. The value of TGMI for a given image pixel can be evaluated as follows: ܶܫܯܩ ൌ ܤܣܦܥ ൌ ,௫,ܥܦܴܫܶ െ ,௫,ܥܦܴܫ,ܶܥܦܴܫܶ െ , (4)ܥܦܴܫܶ

where TGMIi is the value of TGMI calculated for a point within the TIRDCnorm–GC space, TIRDCnorm,min 

is the minimum normalized TIRDC value at the wet edge (equal to 0), TIRDCnorm,i is the observed 

normalized TIRDC value at given pixel image and TIRDCnorm,max,i defines the maximum normalized 

TIRDC value at the dry edge calculated from Equation (3). TGMI has the values of 1 at the “wet edge” and 

0 at the “dry edge.” Now by substituting Equation (3) into Equation (4), TGMI can be rewritten as follows: ܶܫܯܩ ൌ 1 െ ,ܥܦܴܫܶ ൈ ,ௗܥܦܴܫௗሺܶܥܩ െ 1ሻ ൈ ܥܩ  ௗ (5)ܥܩ

where GCi is the GC value for given pixel image, and GCd and TIRDCnorm,d are the GC value and 

normalized TIRDC value at point d, respectively. 

 

Figure 4. An illustration of the TIRDCnorm–GC space used for determining Thermal Ground 

Cover Moisture Index (TGMI). For a given pixel, CD and AB are used to calculate the TGMI. 

The value of TGMI should be proportional to the volumetric soil water content (VWC) present at the 

site of a given pixel. TGMI calculated in Equation (5) changes between 0 and 1, while soil moisture 

content varies between 0 (at dry edge) and soil moisture content at saturation (at wet edge) that depends 
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on the soil texture and characteristics. Considering the range of soil moisture content at dry soil and 

saturated soil, TGMI can be normalized between 0 and soil moisture content at the saturation (VWCs) using 

Equation (6). The result of this equation represents soil moisture content for each pixel: 

VWCi = TGMIi × VWCs (6)

2.2. Field Study 

Performance of the TGMI approach under different environmental conditions was evaluated using 

data from 18 commercial fields in the Southern High Plains of Texas (Figure 5). The fields used in this 

study were part of the Texas Alliance for Water Conservation (TAWC) Demonstration Project,  

a large project conducted in this region to promote conservation of regional water resources. 

Predominant soils in the study area are non-calcareous clay loams and loams in the Pullman and 

Pullman-Olton associations [38] with general value of 0.5 for VWCs [38]. 

The study involved the acquisition and analysis of multispectral satellite imagery for calculating 

TGMI and measurement of volumetric soil water content for comparison with the corresponding 

calculated TGMI values. Methods of data collection and analysis are described in the following sections. 

 

Figure 5. Map and experiment stations in the study area. 

2.3. Satellite Image Data 

Satellite data for calculating TGMI were obtained from Landsat imagery. In 2012, Landsat-7 

Enhanced Thematic Mapper (ETM) imagery containing the study site was acquired on 5 dates spanning 

the period when soil moisture sensors were installed in study fields. These acquisitions were 

supplemented by Landsat-8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) 

imagery acquired on five additional dates during the 2013 growing season. Data acquisition dates are 

listed in Table 1. Images used in this study were numbered from 1 to 10 for easier referral. Level 1T of 

each image, located according to the Landsat World Reference System (WRS-2) along Path 30 at  

Row 36, was obtained from the U.S. Geological Survey (USGS) Earth Explorer website [39]. Pixel size 
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in the imagery was 30 m in the visible and short wave infrared spectral bands. For the thermal infrared 

imagery, imagery was acquired at a lower spatial resolution (60 m for Landsat-7 and 100 m for  

Landsat-8) and was re-sampled to 30 m. Level 1T images provide systematic radiometric and geometric 

accuracy by incorporating ground control points while employing a Digital Elevation Model (DEM) for 

topographic accuracy [40]. A cloud mask based on simple thresholding in the visible and thermal 

channels was applied to all images, leaving only cloud-free pixels for our analyses. 

Data extracted in the red and near-infrared spectral bands of the Landsat imagery were used to estimate 

GC for each field using the procedure described by Maas and Rajan [36]. In this procedure, a scatterplot 

is constructed for each image by plotting pixel DC values in the near-infrared spectral band versus 

corresponding DC values in the red spectral band. The bare soil line is identified in each scatterplot by 

visual inspection, allowing the value of the Perpendicular Vegetation Index (PVI) to be calculated for each 

image pixel [41]. The point in each scatterplot corresponding to 100% GC are also identified by visual 

inspection, and its PVI value is determined. The average PVI value for each field in the study was 

determined from the PVI values for the image pixels contained within the boundaries of the field. The GC 

for each field was then calculated by dividing the average PVI value by the appropriate value of PVI 

corresponding to 100% GC. These image analysis operations were performed using ENVI image processing 

software (ITT, Boulder, CO, USA) and MATLAB programming software (MathWorks, Natick, MA, USA). 

A scatterplot was constructed for each image by plotting calculated GC values versus corresponding 

pixel DC values in the thermal infrared spectral band. In addition, Ts image were created for each image 

acquisition date [42] and a scatterplot was constructed for each image by plotting GC values versus 

corresponding pixel DC values in Ts. The maximum value of TIRDC at GC = 0 was identified in the 

scatterplot, along with the minimum value of TIRDC at GC = 1. These values were used in normalizing 

the thermal infrared DC values according to Equation (1). The same method was used to identify “Ts,max” 

and “Ts,min” values. Then Ts values were normalized between 0 and 1. In addition, the value of 

TIRDCnorm,d and GCd were determined for point d using Equation (3). Finally, TGMIi was calculated for 

each pixel using Equations (4) and (5). The average TGMI for each field in the study was determined from 

the TGMIi values for the image pixels contained within the boundaries of the field. These image analysis 

operations were performed using ENVI image processing software and MATLAB programming software. 

Table1. Landsat image acquisitions used in this study. 

Year 
Acquisition Date 

Image Number 
Landsat-7 Landsat-8 

2013 29 September 

4 August 1 
5 September 2 

21 September 3 
- 4 

7 October 5 

2012 

22 June - 6 
9 August - 7 

25 August - 8 
10 September - 9 
26 September - 10 
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2.4. Soil Moisture Data 

In situ measurements of volumetric soil water content (VWC) were made for the 18 fields in the 

study. In 10 of the fields, we installed Model CS616 time domain reflectometry (TDR) probes (Campbell 

Scientific, Logan, UT, USA) at the start of the study. These were installed to measure the water content 

of the soil in a layer approximately 5 cm below the surface. Data were continuously recorded using either 

CR10X or CR1000 data loggers (Campbell Scientific). The data logger program used to read the probes 

utilized a factory calibration for a mineral soil to calculate volumetric soil water content from the 

measured dielectric constant. In an eight additional fields, volumetric soil water content was measured 

with commercially available capacitance probes installed by two companies as part of the TAWC 

project. These were either John Deere Field Connect soil moisture probes (John Deere, Moline, MO, 

USA) or AquaSpy soil moisture probes (AquaSpy, San Diego, CA, USA). Both systems measure soil 

moisture at various depths in the soil down to 150 cm. For this study, soil moisture measurements in the 

upper portion of the soil profile roughly corresponding to the soil layer in which the CS616 TDR probes 

were installed were used. Data from these probes was accessed from websites set up to monitor soil 

moisture in the fields as part of the TAWC project. Measurements of volumetric soil water content were 

extracted from the data records for each field that corresponded to the dates and times of the satellite image 

acquisitions (Table 1). For the CS616 probes, these data were extracted from the data logger records. For 

the John Deere and AquaSpy probes, these data were accessed and extracted from their respective websites. 

2.5. Statistical Analysis 

Values of VWC were calculated from TGMI using Equation (6) for comparison with corresponding 

measurements of VWC for days with satellite imagery acquisitions. In these calculations, the value of 

VWCs was set equal to 0.5. A paired t-test was used to determine if the average of the calculated VWC 

values were significantly different from the average of the observed VWC values of soil volumetric 

water content from the field measurements. 

Calculated values of VWC were plotted versus corresponding measured soil volumetric water 

content. The distribution of points was fit using simple linear regression analysis. Student’s t-tests were 

used to determine if the slope of the regression was significantly different from 1, and if the intercept of 

the regression was significantly different from zero. Were this the case, one could conclude that the 

regression was not significantly different from the 1:1 line, and that the TGMI × VWCs approach did a 

reasonably good job of estimating volumetric water content for the study. The difference was determined 

for each pair of calculated and measured VWC and used to calculate the Average Absolute Error (AAE) 

according to the equation: 

AAE = 
n

VWCsTGMI
n

i


=
−

1
measuredVWC*

 
(7)

where n is the number of observations. AAE can be considered as a measure of the overall accuracy of 

the estimation approach. 
  



Sensors 2015, 15 1935 

 

 

3. Results and Discussion 

3.1. TIRDC–GC Space 

Plotting TIRDC as a function of GC for each image showed that the trapezoidal TIRDC–GC  

space was well defined in all cases (see Figure 6). Figure 6 also shows that when properly scaled, the 

TIRDC-GC space has the same shape as the Ts–GC space. Differences in the range of TIRDC values can 

largely be attributing to differences in net radiation, atmospheric conditions, or soil moisture conditions 

on the date of image acquisition. Figure 7 shows that how the points corresponding to TIRDCmax and 

TIRDCmin were defined for each TIRDC–GC scatterplot. This figure shows that TIRDCmax and TIRDCmin 

are well-defined for all cases. These values were used to normalize TIRDC values according to Equation (1). 

 

Figure 6. Plots of GC as functions of either TIRDC and Ts for each Landsat image acquisition. 
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Figure 7. Identification of TIRDCmax and TIRDCmin used to normalized TIRDC values in the 

TIRDC-GC scatterplot. 

3.2. TIRDCnorm Versus Ts,norm 

A regression analysis was used to compare TIRDCnorm versus Ts,norm. To perform this analysis, 

corresponding areas were selected in TIRDCnorm and Ts,norm images constructed for each image 

acquisition date. Average values of TIRDCnorm and Ts,norm for each selected area were calculated using 
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the Region of Interest (ROI) tool in ENVI. The average values of TIRDCnorm were plotted versus the 

corresponding average values of Ts, as shown in Figure 8. 

 

Figure 8. Simple linear regression between TIRDCnorm and Ts,norm. 

The points in this graph tend to lie along the 1:1 line. The slope and intercept of the least-square linear 

regression fit to these data is 1.01 and 0.005 respectively. Analysis using the Student’s t-test indicated 

that the slope and intercept was not significantly different from 1 (t = 0.338, 31 df, α = 0.05) and the 

intercept was not significantly different from 0 (t = 0.107, 31 df, α = 0.05). Thus, the regression line 

through these points is not significantly different from the 1:1 line. A Student’s t-test of the average 

TIRDCnorm and Ts,norm values indicated that these two values are not significantly different (t = −0.263, 

64 df, α = 0.05). From this analysis we conclude that TIRDCnorm can be used to estimate soil moisture in 

place of Ts,norm in TIRDC–GC space. 

3.3. TIRDCnorm–GC Scatterplot 

In order to determine the parameters describing the “dry edge”, the position of point f (the point 

corresponding to the greatest perpendicular distance from line “B” in the TIRDCnorm–GC space) was 

identified for each image acquisition date using Equations (2) and (3). The slopes of the dry edge 

determined for the 10 images is plotted as a function of image number in Figure 9. The small variation 

in dry edge slopes in Figure 9 (approximately 11% of the mean slope) suggests that there was reasonable 

consistency in the positions of point f determined for the images used in the study. Figure 10a shows the 

GC value associated with each point f plotted versus image number, while Figure 10b shows the 

TIRDCnorm values associated with it. The small variations in these values (approximately 4% of the mean 

GC value and 20% of the mean TIRDCnorm value) also emphasizes the consistency among the values 

determined for point f. 
  

y = 1.01x + 0.005
R² = 0.99

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.1 0.3 0.5 0.7

T
s,

n
or

m

TIRDCnorm



Sensors 2015, 15 1938 

 

 

 

Figure 9. Dry edge slopes for the 10 images used in the study. 

 

Figure 10. Position of point f in the 10 images used in the study, (a) GC value of point f;  

(b) TIRDCnorm value of point f. 

Figure 11 shows values of volumetric soil water content from field measurements in the 18 study 

fields plotted versus corresponding values of TGMI × VWCs calculated from multispectral satellite 

image data using Equation (6). The diagonal dashed line in the figure represents the 1:1 line. The dashed 

line represents the simple linear regression fit to the points in the figure. This regression line has a slope 

of 0.98 and a y-intercept of −0.02, and explains approximately 73% of the total variance in the data with 

an RMSE of 0.05 and Mean Bias Error (MBE) of 0.17. The t-test performed to determine if the regression 

slope was significantly different from 1 resulted in t = −0.23. This value was less than the corresponding 

critical value (tα = 1.99, 69 df, α = 0.05), which suggests that there was no significant difference between 

the slope of the regression and 1. The t-test performed to determine if the regression intercept was 

significantly different from zero resulted in t = −0.98 with 69 df. This value was less than the 

corresponding critical value (tα = 1.99, 69 df, α = 0.05), which suggests that there was no significant 

difference between the y-intercept of the regression and zero. Overall, these results suggest that there 
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was no significant difference between the regression line and the 1:1 line in this study. Thus, we conclude 

that the TGMI method was able to reasonably estimate volumetric water content in this study. The 

average absolute error (AAE) between TGMI × VWCs and measured volumetric water content values 

was 0.049. 

 

Figure 11. Simple linear regression between field measurements of volumetric soil water 

content and corresponding values of TGMI × VWCs calculated from multispectral satellite 

image data. 

Figure 12a,b presents maps of VWC (i.e., TGMI × VWCs) constructed for the study region from 

satellite data obtained on 22 June 2012 and 4 August 2013. Figure 12a was constructed from Landsat-7 

multispectral image data, while Figure 12b was constructed from Landsat-8 multispectral image data. In 

the figures, TGMI × VWCs is color-coded to emphasize its variation across the landscape, and  

non-agricultural features (urban areas, water bodies), clouds, and cloud shadows have been masked as 

black. The information provided by TGMI is consistent with the known soil moisture conditions across 

the region. For the 22 June image (Figure 12a), TGMI exhibits greater spatial variation. The reason for 

this variation is that 2012 was a dry year so there are bigger differences between irrigated and  

non-irrigated fields. In the 04 August 2013 image (Figure 12b), TGMI is high in most areas (green color) 

with and little spatial variation. This is because of heavy rainfall few days before image acquisition. 

Image products such as these could be useful in monitoring regional soil moisture or drought conditions, 

and could provide input or calibration information for running models of crop growth and yield. 
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Figure 12. Simple TGMI	ൈ	VWCs maps for two dates for a portion of the Texas High Plains; 

(a) TGMI	ൈ	VWCs map for 22 June 2012; (b) TGMI	ൈ	VWCs map for 04 August 2013. 

Orange and red color indicates low values of TGMI	ൈ	VWCs (low moisture), while green 

color indicates high values of TGMI	ൈ	VWCs (high moisture). Urban areas, water bodies, 

clouds and cloud shadows are masked in black. 
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4. Conclusions 

The results of this study suggest that TGMI is effective in estimating soil volumetric water content of 

agricultural fields under a variety of irrigation conditions ranging from fully irrigated to dryland. In this 

approach, TGMI can be evaluated on a pixel-by-pixel basis using raw image DC data without the need 

for conversion or calibration. Using measurements of volumetric soil water content obtained from 18 

agricultural fields in the Texas High plains over 2 years, statistical analysis showed that  

TGMI × VWCs was closely related to soil moisture (R2 = 0.73, RMSE = 0.05). TGMI was used to 

construct maps showing the spatial distribution of soil moisture conditions over an agricultural region in 

which patterns of high and low TGMI were consistent with what would be expected from known crop 

management practices. Changes in the spatial distribution of TGMI over time were consistent with 

changes in irrigation in the region. Additional testing with measured soil moisture data will help assess 

the overall accuracy of this approach in estimating soil moisture, and identify its possible limitations. 

TGMI appears to be a potentially useful indicator of soil moisture that could find practical use in a range 

of applications, such as regional water resource monitoring and irrigation scheduling. 
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