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Abstract: Facial nerve palsy induces a weakness or loss of facial expression through 

damage of the facial nerve. A quantitative and reliable assessment system for facial nerve 

palsy is required for both patients and clinicians. In this study, we propose a rapid and 

portable smartphone-based automatic diagnosis system that discriminates facial nerve 

palsy from normal subjects. Facial landmarks are localized and tracked by an incremental 

parallel cascade of the linear regression method. An asymmetry index is computed using 

the displacement ratio between the left and right side of the forehead and mouth regions 

during three motions: resting, raising eye-brow and smiling. To classify facial nerve palsy, 

we used Linear Discriminant Analysis (LDA) and Support Vector Machine (SVM), and 

Leave-one-out Cross Validation (LOOCV) with 36 subjects. The classification accuracy 

rate was 88.9%. 

Keywords: facial nerve palsy; smartphone; automatic diagnosis; asymmetry;  

assessment system 
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1. Introduction 

Facial nerve palsy is a nervous system disorder where there is loss of voluntary muscle movement 

in a patient’s face caused by nerve damage. A clinical assessment system of facial nerve palsy is an 

important tool for diagnosing, monitoring and treating facial nerve palsy. The House-Brackmann  

(H-B) scale is a widely accepted system that grades the facial function from normal (grade 1) to total 

paralysis (grade 6) [1]. The disadvantage of the H-B scale is its subjective assessment characteristics, 

which are not reliable and vary among clinicians. 

Recently, many studies have proposed methods to quantify facial nerve palsy using  

image-processing techniques. Current automatic grading systems can be divided into image or  

video-based. The main advantages of image-based systems are their low computational costs and ease 

of use. However, such systems have several limitations because images contain less information than 

video. This drawback introduces errors in calculating the asymmetric index as well as low 

reproducibility. In response to these disadvantages, most recent studies have proposed video-based 

systems. Park et al. proposed measuring the asymmetric index in the mouth region using video 

captured with webcams [2]. They used a thresholding approach based on the HSV space and  

point-tracking algorithms for lip segmentation and tracking, but the algorithms can be easily affected 

by the recording environment. In addition, the asymmetry index measured only the mouth region. 

Wang et al. proposed an automatic recognition method from six facial actions using active shape 

models plus Local Binary Patterns (ASMLBP) [3]. They used images, not videos, and only recognized 

those patterns of facial movements required to evaluate the diagnosis of facial paralysis.  

McGrenary et al. proposed a system that uses an artificial neural network [4]. They trained the network 

with maximum displacement values and mean intensities calculated through regional analysis. This 

system is not automatic and its performance can be affected by the conditions of the recording 

environment, such as lighting conditions. Shu et al. demonstrated a system that uses Multiresolution 

Local Binary Patterns (MLBP) to extract feature and resistor-average distance to measure the 

asymmetry of facial movements [5]. A total of 197 videos were obtained from a video camera and 

validated using Support Vector Machine (SVM). The MLBP-based method achieved 94% accuracy for 

the overall H-B scale. Although their results estimated the facial palsy grade, they had constraints with 

the recording video environment. Reilly et al. used Active Appearance Models (AAMs) for facial 

feature localization and extracted the distance between the corners of the mouth and mean smile as 

features [6]. However, they used a synthesized dataset that was not from real-world data and assessed 

paralysis of smiling function. All these studies are based on separate systems that cannot be carried by 

clinicians to evaluate patients. Furthermore, previous studies have not focused on the diagnosis of 

facial palsy nerve patients from normal state and have assumed that measurements are conducted in 

constrained environment. 

In this study, we propose a smartphone-based facial nerve palsy assessment system to diagnose 

facial nerve palsy quickly and simply in daily life, similar to using videophone functions. The 

automatic system is designed to helping both patients and clinicians, who only need to perform three 

motions to diagnose facial nerve palsy and record progression of the disease. To diagnose facial nerve 

palsy, we use incremental training of discriminative models to detect facial shape points and extract 

those features that represent face asymmetry using shape points.  
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2. Experiment 

In this section, we describe an incremental parallel cascade of linear regression for face landmark 

localization and tracking proposed by Asthana et al. [7]. Then, we describe the data acquisition  

and analysis. 

2.1. Incremental Parallel Cascade of Linear Regression 

There have been many successful facial landmark localization algorithms. In this study, we need a 

robust tracker because patients have asymmetric facial characteristics. When we attempted to localize 

facial landmarks using standard AAMS, the performance was good for healthy subjects, but poor for 

patients. For landmark localization, we choose the algorithm referred to as incremental Parallel 

Cascade of Linear Regression (iPAR-CLR). This algorithm can train data quickly and add new training 

samples to the regression functions without re-training on previous information. In this study, we use a 

2D-shape model described as: (ܘ)࢙ = ܛ̅)܀ݏ + ࢙) + (1) ܜ

where ܛ is the vector that represents the location of feature shapes, ̅ܛ is the mean location of the shapes, ࢙ denotes the submatrix of the basis of variations,  is the parameters of non-rigid variations of the 

shape, R is rotation, s is scale, and ܜ is translation. The parameters of the model are 	ܘ = ሾs, ,܀ ,ܜ  .ሿ
The details for iPAR-CLR can be found in [7].  

The facial feature tracker was trained using the iPAR-CLR method with 49 facial landmark points, 

as shown in Figure 1. For successful facial feature tracking, we used real-world databases not collected 

in a controlled environment. We trained the facial feature tracker using widely used databases: Labeled 

Face Parts in the Wild (LFPW) [8], Helen [9], Annotated Faces in the Wild (AFW) [10] and intelligent 

Behavior Understanding Group (iBUG) [11,12]. LFPW consists of 1423 faces from images 

downloaded from Google, Flickr, and Yahoo. The Helen database consists of 2330 faces gathered from 

Flickr. The AFW database consists of 468 faces, and the iBUG database consists of 135 faces. 

Examples of the trained databases are shown in Figure 2. The databases has 68 annotated landmarks, 

but we used only 49 points, with the exception of the contour of the face. 

 

Figure 1. Total of 49 points mark-up used for feature tracking. 
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Figure 2. Examples of trained databases. Red points represent 68 annotated landmarks.  

(a) AFW; (b) Helen; (c) iBUG; (d) LFPW.  

2.2. Data Acquisition 

All participants were asked to perform three facial movements: “rest,” “smile,” and “raise eye brows”. 

The video was acquired using iPhone 4S and iPhone 6 at 30 frames per second with 1080 × 1920 resolution 

using a rear-facing camera. The clinicians acquired front view videos of the participants by holding the 

smartphone in their hands with no constraints and under normal office fluorescent lighting conditions. The 

video recording duration of each person was 15~20 s. 

2.3. Feature Extraction 

The asymmetric index was calculated using the displacement of shape point sets that correspond to 

the eye-brows and mouth regions while the participants performed facial movements. To extract the 

asymmetric index, the forehead and eye regions were used based on the H-B scale and heuristic 

approach. We applied two approaches local points-based method and axis-based method. Given the  

49 landmarks from the facial landmarks localization shown in Figure 1, ܲ represents the ith landmark 

and d(x,y) represents the distance between points x and y. 

2.3.1. Local Points-Based Feature Extraction 

Asymmetry Index of Forehead Region 

The asymmetry index of the forehead region was calculated using a displacement ratio between the 

left and right eye brow. We performed the following steps:  

(1) Calculate the mean point of the left and right eye-brows (LEB and REB) by averaging five 

points from each eye-brow from number one to five and six to ten as shown in Figure 3: 

LEB = 15P୧ହ
୧ୀଵ , REB = 15P୧ଵ

୧ୀ  (2)

(2) Calculate the mean point of the eye (LEC and REC) by averaging six points from each eye 

from the numbers 20 to 25 and 26 to 31 as shown in Figure 3: 
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LEC = 16  P୧ଶହ
୧ୀଶ , REC = 16  P୧ଷଵ

୧ୀଶ  (3)

(3) Calculate distance (ܦா and ܦோா) between the mean point of the eyebrow and that of the eye 

as shown in Figure 3:  ܦா = d(LEB, LEC), ோாܦ = d(REB, REC) (4)

(4) Calculate displacement on each side by subtracting the mean distance of the resting state from 

the maximum distance of the raising eye brow movement: ݎ௧_ௗ = 	 ቚ	max(݁ݏ݅ܽݎா) − mean( ௧_ௗݎ		 ,ቚ	ா)ݐݏ݁ݎ = ቚmax(݁ݏ݅ܽݎோா) − mean(ݐݏ݁ݎோா)	ቚ (5)

(5) Calculate the displacement ratio between the left and right side of the forehead. After 

comparing the two displacement values, the larger becomes the denominator: 

ௗ݅ݐܽݎ = ۔ە
ۓ ௧_ௗݎ௧_ௗݎ , ݂݅ ௧_ௗݎ > ௧_ௗݎ௧_ௗݎ௧_ௗݎ , ݁ݏ݅ݓݎℎ݁ݐ 																								 (6)

Asymmetry Index of Mouth Region 

The asymmetric index of the mouth was calculated using the displacement ratio between the left 

and right mouth corners. We performed the following steps:  

(1) Calculate the mean distance (ܦெ and ܦோெ) between the point of the mouth corner and the 

points of the middle of mouth (Pଷହ, Pସଵ, Pସହ, Pସ଼) as shown in Figure 3:  ܦெ = 14 (d( ଷܲଶ, ଷܲହ) + d( ଷܲଶ, ସܲଵ) + d( ଷܲଶ, ସܲହ) + d( ଷܲଶ, ସ଼ܲ)) ܦோெ = 14 (d( ଷ଼ܲ, ଷܲହ) + d( ଷ଼ܲ, ସܲଵ) + d( ଷ଼ܲ, ସܲହ) + d( ଷ଼ܲ, ସ଼ܲ)) (7)

(2) Calculate the displacement of each side by subtracting the mean distance of the resting state 

from the maximum distance of the smile movement:  ݎ௧_௨௧ = 	 ቚmax (ಽಾ݈݁݅݉ݏ) − mean( ௧_௨௧ݎ 		,ெ)ቚݐݏ݁ݎ = ቚmax (ೃಾ݈݁݅݉ݏ) − mean( ோெ)ቚ (8)ݐݏ݁ݎ

(3) Calculate the displacement ratio between the left and right side of the mouth. After comparing 

the two displacement values, the larger becomes the denominator. 

௨௧݅ݐܽݎ = ቐݎ௧_௨௧ ௧_௨௧ൗݎ , ݂݅ ௧_௨௧ݎ > ௧_௨௧ݎ௧_௨௧ݎ ௧_௨௧ൗݎ , ݁ݏ݅ݓݎℎ݁ݐ 																									 (9)
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Figure 3. Descriptions of parameters used to calculate asymmetric indices. LEB represents 

a mean point of left eye brow and REB represents mean point of right eye brow. LEC 

represents a mean point of left eye and REC represents mean point of right eye. ܦா 

indicates distance between LEB and LEC. ܦோா indicates distance between REB and REC. Pଷଶ  represents left mouth corner and Pଷ଼  represents right mouth corner. ܦெ  and ܦோெ 

indicate mean distance between point of mouth corner (Pଷଶ, Pଷ଼) and points of middle of 

mouth (Pଷହ, Pସଵ, Pସହ, Pସ଼). 

2.3.2. Axis-Based Feature Extraction 

The face is divided into the left and right regions based on the shape points of the eyes because they 

represent the minimum asymmetry among the corresponding regions. First we determine the horizontal 

line using the points of the eye region, and then calculate the vertical line that is perpendicular to the 

horizontal line. The horizontal line is the extension of the connected line between the left and right 

medial canthus (Pଶଷ, Pଶ) shown in Figure 4. The vertical line is perpendicular to the horizontal line that 

passes through the eye’s midpoint (EM), which is the mean point of the left and right medial canthus.  

Asymmetry Index of Forehead Region 

The asymmetry index of the forehead region was calculated using a displacement ratio between the 

left and right eyebrow. We performed the following steps:  

(1) Calculate the mean point of the eyebrows by averaging five points for each eyebrow (from the 

numbers one to five and six to ten, as shown in Equation (2)). 

(2) Find the point of intersection with the mean points of the eyebrows by drawing lines 

perpendicular to the horizontal line. 

(3) Calculate the distance between the mean point of the eyebrow and the point of intersection 

  .(ோா shown in Figure 4ܦ ா andܦ)
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(4) Calculate the displacement of each side by subtracting the mean distance of the resting state 

from the maximum distance of the raising eyebrow movement. 

(5) Calculate the displacement ratio between the left and right side of the forehead. After 

comparing the two displacement values, the larger becomes the denominator. 

Asymmetry Index of Mouth Region 

The asymmetric index of the mouth was calculated using the displacement ratio between the left 

and right mouth corners. We performed the following steps:  

(1) Find the point of intersection with the points of the mouth corners by drawing lines 

perpendicular to the vertical line. 

(2) Calculate the distance between the point of the mouth corner and the point of intersection (ܦெ 

and ܦோெ shown in Figure 4).  

(3) Calculate the displacement of each side by subtracting the mean distance of the resting state 

from the maximum distance of the smile movement. 

(4) Calculate the displacement ratio between the left and right side of the mouth. After comparing 

the two displacement values, the larger becomes the denominator. 

 

Figure 4. Descriptions of parameters used to calculate asymmetric indices. Pଶଷ  and Pଶ 

represent left and right medial canthus, respectively. Blue horizontal line is drawn by 

extending connecting line between Pଶଷ and Pଶ. EM is center point of Pଶଷ and Pଶ. Blue 

vertical line is drawn perpendicular to horizontal line that passes EM. LEB indicates mean 

point from left eyebrow. REB indicates mean point from right eyebrow. Pଷଶ  and Pଷ଼ 

represent left and right mouth corners, respectively. ܦா indicates distance between LEB 

and point of intersection. ܦெ indicates distance between point of mouth corner and point 

of intersection. 
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2.4. Subjects 

A total of 36 volunteers participated in the study. Of these, 23 subjects suffered from facial nerve 

palsy and 13 were normal subjects without facial disorders. Before the experiments, each subject was 

informed of the experiment procedures and the purpose of the study; all consented. 

3. Results 

The images were resized to 540 × 960 to reduce processing time, and asymmetry indices were 

extracted from the forehead and mouth regions. We compared the performance of combinations of axis 

and local points-based approaches using Linear Discriminant Analysis (LDA) and SVM with linear 

kernel as a classification method. Leave-one-out Cross Validation (LOOCV) was used to evaluate the 

performance of the classification system. Data analysis was performed with MATLAB (Math Works, 

Inc., Natick, MA, USA). 

Figures 5 and 6 show one example of the displacement of eye-brows and mouths corners for a patient 

and normal person. The displacement of the normal subject has the symmetry shown in Figures 5 and 6. 

However, the displacement of the patient with facial nerve palsy has significant asymmetry. 

Figure 7 shows that the results of the calculated asymmetry indices with the best combination are 

the local points-based approach for the forehead and the axis-based approach for the mouth region. 

The 2D plot of the asymmetry indices of the forehead and mouth regions shows that the mouth region 

has a more discriminating index. When compared using the mean value and standard deviation of the 

asymmetry index, the mouth region shows more discrimination than the forehead region. Table 1 

represents the classification accuracy, precision rate, and recall rate for LDA and, SVM with linear 

kernel. The asymmetry index of the forehead region based on local points that of the mouth region 

based on axis scored the highest classification accuracy at 88.9%. The precision and recall rates were 

92.3% and 90.0%, respectively. SVM with RBF and polynomial kernels, not listed in the table, were 

applied as classifiers, but their results were lower than LDA and SVM with linear kernel. 

 

Figure 5. Displacements of eyebrow points during raising eye brow movement. Upper graph 

shows displacement of a patient. Lower graph shows displacement of a normal subject. 
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Figure 6. Displacements of mouth corner points during smile movement. Upper graph 

shows displacement of a patient. Lower graph shows displacement of a normal subject. 

 

Figure 7. (a) 2D plot of asymmetry indices for forehead and mouth region for normal 

subjects and patients; (b) Bar graphs show mean values and standard deviation of 

asymmetry indices for forehead and mouth regions for normal subjects and patients. 

Table 1. Comparison of classification accuracy, precision and recall rate for LDA and 

SVM with linear kernel on combinations of asymmetry indices. 

 
LDA SVM (Linear) 

Accuracy Precision Recall Accuracy Precision Recall

Forehead_axis + Mouth_axis 77.8 76.9 66.7 77.8 76.9 66.7 
Forehead_axis + Mouth_region 66.7 46.2 54.6 63.9 46.2 50.0 
Forehead_region + Mouth_axis 88.9 92.3 80.0 88.9 92.3 80.0 

Forehead_region + Mouth_region 75.0 85.7 63.2 77.8 84.6 64.7 
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4. Discussion 

4.1. Simulation of Asymmetry Index with Various Head Orientations 

To simulate various head orientations, we used the 3D facial points of a symmetric face consisting 

of 49 points. The synthetic face was rotated from −30° to 30° at intervals of one degree about the x-, y-, 

and z- axes, corresponding roll, pitch, and yaw movements. The rotated synthetic face was projected 

into the x-y plane, which is identical to an image plane, as shown in Figure 8a. We trained the LDA 

classifier using the best features (forehead_region and mouth_axis) extracted from all participants and 

tested to synthetic 2D projected face data. According to the simulation results, our method is more 

sensitive to yaw movement as compared to pitch movement, as shown in Figure 8b. Roll movement 

did not affect the asymmetry indices. 

 

Figure 8. Simulation results of estimating facial nerve palsy among various head pose.  

(a) Examples of projected 2D synthetic face with various head-orientations; (b) Simulation 

results of facial nerve palsy estimation by using best features (forehead_region, 

mouth_axis) and LDA. The blue color represents the correct estimation, and the red color 

represents wrong estimation. The results of roll movements are not showed in this figure 

because there was no change in the asymmetry index within the roll angle from −30° to 30°. 

4.2. Measurement Error 

During the data analysis, we found that measurement errors lead to wrong classification result. The 

most critical error occurred when a subject was located on a perfect frontal focus of the camera angle 

with a rotated head pose. If the left and right mouth corner points moved the same distance while the 

head rotates at some angle to the camera, the displacement at the image plane of the side rotating 

toward the camera is increased more than real displacement, whereas the displacement from the side 

that is rotating away from camera decreases more than the real value. This difference can results in a 

ratio error calculated from the displacement measurements. If we use the 3D deformable shape model, 
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we can acquire head pose parameters relative to the camera. Therefore, we can calibrate facial 

landmark positions and reduce the errors in the results caused by head rotation. 

The second measurement error is caused by inaccuracy in the facial landmark localization. In 

general, this error occurs during initialization of the shape points at the start of localization. We can 

overcome this error by presenting an initial shadow face outline and instructing the subjects to fit their 

face approximately within the shadow face outline. 

4.3. Analysis of Eye Region 

In this study, we did not analyze closing eye motions for the diagnosis of facial nerve palsy. 

Calculating asymmetry for the eye region is difficult if displacement of facial points is used. 

According to the H-B scale, if the eye has asymmetry, the mouth or forehead also has asymmetry. Our 

goal is to design a system that discriminates facial nerve palsy patients from normal individuals. 

Within this scope, it is adequate to analyze the forehead and mouth regions only. Shu et al. also 

showed that the forehead and mouth regions have better results than eye closing motions, although the 

detailed algorithm is different [5]. 

4.4. Combination of Asymmetry Indices 

In this study, we used four combinations of asymmetry indices in the forehead and mouth regions 

using the axis and local points-based approach. The asymmetry index of the local points-based 

approach in the mouth region exhibited poor accuracy. In the case of normal subjects, the midpoints of 

the mouth region ( ଷܲହ, ସܲଵ, ସܲହ, ସ଼ܲ) used as reference points showed few movements during the smile 

movement. However, in the case of patients, the midpoints were followed the movement of unaffected 

mouth corner during smile movement, and the distance between the left and right mouth corners had 

similar values to the reference points. The asymmetry index of the axis-based approach in the forehead 

region also scored poor accuracy compared with the local points-based approach. We cannot explain 

the reason for this clearly, but we assume that selecting the eye center as the reference point for the 

local points-based approach is more suitable than the horizontal line used in the axis-based approach. 

To calculate each eye center, we used six points, but to obtain the horizontal line, we only used two 

points; therefore, the eye center might be a more reliable reference point. 

4.5. Performance Comparison with Conventional Methods 

As public databases for facial nerve palsy are not available, we compared the results reported in 

other articles. Previous studies only showed the methods used without mentioning their performance. 

Few papers presented the performance of their proposed systems. He et al. reported that approximately 

94% accuracy was achieved when using MLBP-based method or the optical flow-based method [5]. 

Reilly et al. reported 88% accuracy when using the AAMs-based method [6]. Previous studies reported 

only accuracy, not the precision or recall rates, which are important for evaluating the performance of 

the diagnosis system. The accuracy of the proposed method was lower than that of MLBP or optical 

flow-based method, but similar to that of the AAMs-based method. However, the MLBP-based 

method used area information by using the front view of the face. Hence, the drawback of this method 
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is that it is not robust to head poses. Our method in this paper was distinct from the AAMs-based 

method of Reilly et al in that asymmetry indices of forehead and mouth region were proposed and real 

dataset were used. 

4.6. Limitations of Proposed System 

In this study, we only used simple displacement of specific facial points and did not evaluate 

reproducibility and repeatability which are very important factors for reliable diagnosis system. 

Reproducibility can be evaluated through an experiment under changing conditions caused by 

illumination changes, a video recording captured from different smartphones, etc. Repeatability can be 

calculated by repeated measurements of the same subject over a short period.  

4.7. Future Works 

An automatic asymmetry grading function for the features extracted from the eye closing motion 

can be added to the proposed system. In addition, the system’s reproducibility and repeatability will be 

investigated by adding more subjects. 

5. Conclusions 

We propose a smartphone-based system that discriminates between patients with facial nerve palsy 

and normal subjects using only three facial movements, resting, smiling, and raising eye-brows, 

without constraints from the recording environment. This system can be helpful for discriminating and 

monitoring facial nerve palsy patients in their daily life. 
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