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Abstract: Ultrasonic concentration meters have widely been used at water purification, 

sewage treatment and waste water treatment plants to sort and transfer high concentration 

sludges and to control the amount of chemical dosage. When an unusual substance is 

contained in the sludge, however, the attenuation of ultrasonic waves could be increased or 

not be transmitted to the receiver. In this case, the value measured by a concentration meter 

is higher than the actual density value or vibration. As well, it is difficult to automate the 

residuals treatment process according to the various problems such as sludge attachment or 

sensor failure. An ultrasonic multi-beam concentration sensor was considered to solve 

these problems, but an abnormal concentration value of a specific ultrasonic beam 

degrades the accuracy of the entire measurement in case of using a conventional arithmetic 

mean for all measurement values, so this paper proposes a method to improve the accuracy 

of the sludge concentration determination by choosing reliable sensor values and applying 

a neuro-fuzzy learning algorithm. The newly developed meter is proven to render useful 

results from a variety of experiments on a real water treatment plant. 
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1. Introduction 

The sludges discharged from water, sewage and wastewater treatment plants are buried, dumped into 

the ocean or incinerated, and for this reason, urgent action is required to effectively reduce sludge 

emissions according to pollution regulations [1–3]. In general, the sludge treatment process involves 

precipitation from the sedimentation basin of the water treatment processes and it then goes through 

adjustment, concentration, dehydration and disposal [4]. Sludge is usually mixed with colloid material and 

hydroxide to create a coagulant which is then submerged and allows for the solid-liquid part to be separated 

from the agglomerated material. The main source of sludge from the water treatment plant stems from 

submerged and back-washed water and it is very important to know the amount of solids in the sludge 

through a density meter. Therefore, it is necessary to accurately measure the sludge concentration to 

optimize the polymer dosage rate and stabilize the water quality to be discharged to rivers [5,6].  

When matters such as gas and air go through the ultrasonic sensor of an existing sludge density meter, 

the measured value can be overstated or can fluctuate like a flow measurement [7,8]. When a sludge 

feeding pump is operated, initially the sludge suddenly moves in a congested state, thus, time is needed 

for it to stabilize and to get an exact value. Widely used insertion-type density meters might deteriorate 

the sensor sensitivity due to sludge attachment on the sensor surface, which could cause more errors. To 

overcome these problems, an ultrasonic multi-beam concentration sensor was considered. An abnormal 

concentration value of a specific ultrasonic beam, however, degrades the accuracy of the entire 

measurement in case of using a conventional arithmetic mean for all measurement values. Figure 1 

shows that Sensor-3 is disturbed by bubbling inside the pipe among four sensors and as a result, the 

arithmetically averaged measurement value gives a rather larger measurement error.  

 

Figure 1. Example of sludge measurement distortion using an ultrasonic multi-beam sensor. 

In this paper, we propose a method to improve the accuracy of the sludge concentration 

determination by choosing reliable sensor values and applying a neuro-fuzzy learning algorithm. The 

newly developed meter is proven to render useful results from a variety of experiments performed on a 

real water treatment plant.  



Sensors 2015, 15 26963 

 

 

2. Development of the Ultrasonic Multi-Beam Densitometer 

2.1. Development Overview 

A detachable sensor instrument needs to be considered for easy cleaning, calibration and 

maintenance in addition to real-time sludge concentration measurement in sludge treatment processes 

in water purification plants (adjustment ↔ thickener ↔ storage tank ↔ dehydrator) and sewage 

treatment plants (primary sedimentation, thickener, aeration, secondary sedimentation basin, storage 

tank, dehydrator, etc.). The effects of air bubbles were minimized by filtering the measured values of 

the multi-beam method, which kept the output value stable. 

2.2. Densitometer Configuration 

In Figure 2, the diagram shows the structure of the developed ultrasonic densitometer which 

consists of a flange to be attached to the pipe, a sensor to measure its attenuation, a converter to be 

changed to an electric signal and a display to show its measured value. In addition, a compressor and 

portable calibration kit are built inside for periodic air cleansing and accuracy improvement.  

 

Figure 2. Structure of the ultrasonic concentration meter. 

2.3. Converter Design and Function 

Table 1 shows the design specification of the converter, which is considered to minimize the 

influence of gas and bubbles which are known to cause lower or abnormal measurements. As the block 

diagram of the meter in Figure 3 shows, four ultrasonic sensors measure the values, calculate a mutual 

deviation and then remove the largest abnormality which is likely to be calibrated poorly and 

influenced by air.  
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Table 1. Converter design specifications. 

Item Design Specifications 

Ultrasonic 
Circuit 

Calculates the attenuation value using the measured voltage of the receiving circuit in case of 
the 3 MHz AC signal transmission 

Display LCD WG1286A 128X64DOT 

Converter 
Switches the signal of the transmitter and reception circuit through the amplifier circuit. 
Multiplexer MX399 

Amplifier 
Amplifies the outgoing signal so that the received signal is at a constant level, Amplifier 
VCA810 GAIN 80 dB (±40 dB) 

CPU CPU HD64F2357F (Hitachi, 16BIT Micro Processor) 
Memory ROM 128 kByte, RAM 8 kByte, External Memory(RAM 256 kByte), Clock 20 MHz 

Alarm Dry Contact and High/Low of Density 
Output 4–20 mA, RS485 (MODBUS) Comm. 

 

Figure 3. Block diagram of the convertor circuit. 

If the sludge transfer pumps are started, initially submerged sludge already in pipeline gives a  

non-uniform shape, which causes measurement errors. To solve this problem, as shown in Figure 4, the 

timing of the density measurement is delayed for a certain period of time after the initial start-up of the 

sludge feed pump operation (delay time: up to 300 s). 

 

Figure 4. Delay of the density measurement. 
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2.4. Design and Function of the Detector 

A newly developed stainless steel detector is designed in order to prevent the corrosion and 

suppress sludge deposition by curving the surface of the sensor and using a directional ultrasonic 

wave. The ultrasonic sensor cable is designed as a connector type for convenience of detaching and 

attaching the ultrasonic sensor. The water resistance level is chosen as IP 67 for easy portable 

calibration. The Tx and Rx sensors are designed to accommodate multiple sensors, in this paper, a set 

of four. In addition, a compressor was built into the panel in order to suppress the deposition of sludge 

on the sensor during operation, as shown in Figure 5. Air is periodically injected into the sensor 

surface through the holes (1.5 mm) of the lower end of sensor to prevent interference of the fluid flow, 

so it is called self-cleaning.  

 

Figure 5. Flow chart for the auto clarifier operation. 

A converter is designed to allow the removal of sensors without interrupting the sludge treatment 

processes, which makes the present bypass pipeline and valve useless and saves space and cost. The 

sensors can be easily removed and attached by local operators, which usually must be done by 

professional engineers and with tools.  

2.5. Design and Function of the Calibration Kit 

A portable calibration device can be applied to a variety of pipe diameters can complete calibration 

work quickly and easily within 2 h. Ultrasonic sensors are inserted into both sides of the calibrator, 

where the ultrasonic transmitting plate is fixed inside and the receiving plate is flexible so the position 

for each diameter can be adjusted. At first, the sensor calibrator is inserted in the receiving plate with 

the same portable sensor diameter as the ultrasonic sensor. Then, transmitting and receiving sensors 

are removed from the calibrated density meter and attached into a portable calibration device. Zero 

calibration is completed by entering the ultrasonic attenuation measurement by ultrasonic sensor 

channels in the clear water. Laboratory calibration is also done by entering the attenuation value after 

injecting the laboratory reagent, kaolin. Calibration processes should be carried out individually and 

repeatedly, because the attenuation between each channel is different.  

3. Sludge Density Estimation Algorithm Using Neuro-Fuzzy Method 

The proposed algorithm uses a data selector to choose data from three of the sensors with lower 

disturbance among the four sensors with input selection, as shown in Figure 6, and then sludge density 

is estimated through a neuro-fuzzy algorithm for the three selected sensor data.  
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Figure 6. Concentration estimation algorithm using a neuro-fuzzy model. 

3.1. Data Selection 

Data preprocessing is done to eliminate the largest deviating data. That is, the Euclidean distances 

between the values of four sensors are calculated and then the sensor having the largest deviation is 

removed in every data point, which is thought to be due to disturbance by bubbles or lumps of sludge.  

For a kaolin solution test in a pilot plant, Sensor 1 and Sensor 2 are relatively stable as shown in Figure 7.  

Sensor 3, however, has large amplitudes that change continuously. On the other hand, Sensor 4 is closest to 

the actual measured value, but strange changes suddenly occur three times due to disturbance factors. 

 

Figure 7. Concentration value acquired by four sensors. 

 

Figure 8. Frequency of sensor removal by the data selector. 
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In this case, Figure 8 shows the results of input selection removal data of sensors, where Sensor 3 

has been removed most frequently at 982 times, while Sensors 1, 2, and 4 were removed 395, 185, and 

98 times, respectively. It is shown that only one dominant sensor does not continuously and 

significantly affect the measurement error. Since bubbles and the mass of sludge are moving in the 

pipe, they can affect any sensor among the four sensors. So, if the values of Sensor 2 or Sensor 4 

deviate from the other sensor values, they can also be removed. 

3.2. Neuro Fuzzy Algorithm 

Figure 9 shows the neuro-fuzzy algorithm structure for the sludge concentration forecasting. For the 

concentration predictions calculated by the proposed algorithm, each learning was based on three 

sensors after removing the sensor having the largest deviating value.  

 

Figure 9. ANFIS structure for density inference. 

The Adaptive Network-based Fuzzy Inference System (ANFIS) uses the Tagagi-Sugeno-Kang (TSK) 

fuzzy structure, which is believed to be computationally efficient and amendable to elegant mathematical 

analysis. The characteristics and learning processes of ANFIS with Matlab Fuzzy Logic Toolbox are as 

follows [9–12].  

Layer 1: Let us denote ݔ,  ,as selected three sensor outputs, then every node ݅ in this layer  ݖ	݀݊ܽ	ݕ

calculate the membership value for the premise parameter as shown in Equation (1): 	 ܱଵ = (ݔ)ݑ ݎ݂ ݅ = 1~10, 
ܱଵ = ݅	ݎ݂	(ݕ)షభబݑ = 11~20 		 ܱଵ = (ݖ)షమబݑ ݎ݂ ݅ = 21~30 

(1)

Here, a generalized bell function is selected as membership function for the fuzzy set 		ܦ	(= ,ܣ (ݔ)ݑ  :) as shown in Equation (2)ܥ	ݎ	ܤ = 11 + ቚݔ − ܿܽ ቚ  
(2)

where, {ܽ, ܾ	, ܿ}is the parameter set.  
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Layer 2: Output the weight to multiply the membership value obtained in layer 1 by each rule: 

ܱଶ = ݓ = (ݔ)ݑ	 × (ݕ)ݑ × ,(ݖ)ݑ ݅ = 1, 2,⋯ , 10	 (3)

Layer 3: Calculate ratio of i-th rule’s strength vs. all rules’ firing strength and normalize firing 

strength as shown in Equation (4): O୧ଷ = w୧ = w୧wଵ + wଶ +⋯+wଵ , i = 1, 2,⋯ , 10 (4)

Layer 4: Calculate the multiplication of normalized value and consequent parameters for each node 

as shown in Equation (5): 

ܱସ = ݓ ݂ = ݔ)ݓ + ݕݍ + zݎ + ݀), ݅ = 1, 2,⋯ , 10 (5)

where, ݓ	  are normalized firing strengths obtained in Layer 3 and , ,ݍ ݀	and	ݎ  are the linear 

parameters of Tagaki-Sugeno fuzzy modeling [13]. 

Layer 5: Calculate overall output by using weighted average:  

ܱହ = ݓ ݂ଵ
ୀଵ = ݓ∑ ݂∑ݓ  (6)

Figure 10 shows a neuro-fuzzy learning process to be completed for the sludge concentration 

prediction and to be composed of 10 fuzzy clusters and rules. Each fuzzy membership of the selected 

three sensor inputs is calculated and minimum membership values are taken in each rule. Then, a final 

output is calculated by the weighted sum of the output and its weight [14,15].  

 

Figure 10. Fuzzy rule and inference value for density estimation. 

4. Experimental Results 

4.1. Configuration of the Experimental Device 

A pilot plant is configured as shown in Table 2 and Figure 11 for the performance test of the  

multi-beam sludge concentration meter. Its main components are composed of a sludge storage tank, 
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stirrer for mixing, inverter pump for the circulation of the mixed sludge, electromagnetic flowmeter, 

multi-beam ultrasonic meter, and data logger. 

Table 2. Major facilities of the pilot plant. 

Type Specifications Remarks 

Sludge Tank 5 m3 Capacity  
Mixer 0.75 kW  

Supply Pump Inverter 2.2 kW Sample Circulation 
Magnetic Flowmeter 100 A Velocity measurement 

Ultrasonic Density meter 4 CH 100 A  
RTU Cimon Real Time data logging 

Electronic Scale 200 g ACCULAB 
Oven 550 °C Lab House 

 

Figure 11. Pilot plant system. 

The ultrasonic meter is designed and manufactured in order to mount a set of four multiple beam 

sensors. The detector is made with stainless steel to prevent corrosion, and the sensor surface was 

curved as much as possible for the improvement of the ultrasonic directional strength, which also helps 

to suppress the deposition of sludge. The ultrasonic sensor cable is manufactured as a connector type 

for convenient attachment and detachment, and a IP67 rating is taken into account for usage as a 

portable calibration device. 

4.2. Experimental Method 

Fresh water is mixed with kaolin powder similar to sludge characteristics, by which various 

concentrations of sludge are created in order to be tested in the pilot plant. Before data is acquired from 

the densitometer sensor, the sensor needs zero and span calibration because it depends on the 

characteristics of installation conditions and manufacture status. 

The pilot plant test procedures are conducted as shown in Figure 12. Data are acquired in real-time 

by the second through a Human Machine Interface (HMI) software installed on a laptop computer, 

which is connected with the densitometer converter through RS-232 communication. 
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Figure 12. Experimental procedure for the pilot plant. 

The sensor clean step removes foreign substances on its surface in order to reduce the measurement 

error before calibration. In the zero calibration step, the reception attenuation displayed on ultrasonic 

sensor transducer is set to a concentration value of 0%, in which fresh water is filled in the 

densitometer. The span setting is calibrated by comparing a 3% concentration of kaolin solution with 

the measurement value for the attenuation of the ultrasonic sensor transducer. The converter setting 

involves the connection and acquisition of data through an RS-232 interface with a laptop computer in 

the densitometer converter. Sludge density measurement involves the measurement of the real-time 

concentration for the sludge supplied by a feed pump from a tank.  

Finally, the sludge moisture-content measurement step involves measuring the water content of 

sludge, in which the weight of the evaporation dish ( ଵ݃) and the weight of a sample liquid (݃ଶ) in an 

evaporating dish are measured. Then the weight (݃ଷ) is measured again after drying by heating for 12 h 

or more in an oven at 105 °C. The water content is calculated as the ratio of the solid (݃ଷ) and the 

sludge (݃ଶ). The concentration calculation formula is shown below: Density(%) = (݃ଷ − ݃ଵ)(݃ଶ − ݃ଵ) × 100  (7)

A scale and oven are used to know the true sludge density, where the scale is a model ALC2100.2 

produced by ACCULAB (Tokyo, Japan) and the oven is a model DMF-5T produced by LAB house 

(Pocheon-si, Gyeoggi-do, Korea).  

4.3. Experimental Results 

Various algorithms are reviewed in order to improve the measuring accuracy of the meter from the 

acquired data. General methods and intelligent algorithms are compared with each other to improve the 

measurement accuracy of the sludge concentration meter. The algorithms are verified through sample 

kaolin solution and sludge in a water treatment plant in order to evaluate the performance measurement. In 

addition, outlier removal algorithms are adopted to minimize the error according to mass and air bubbles. 

The algorithms are shown in Table 3 to review the sludge concentration prediction. 

Table 3. Tested algorithms for sludge density estimation. 

Method Algorithm 

Method 1 Arithmetic mean with four sensors 
Method 2 Arithmetic mean with selected three sensors 
Method 3 Multiple regression with four sensors 
Method 4 Multiple regression with selected three sensors 
Method 5 Neuro fuzzy with four sensors 
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Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), Root Means Square Error 

(RMSE) and R-squared are considered for the algorithm performance evaluation: 

MAPE = 1ܰฬ݈ܽݑݐܿܣ − ݈ܽݑݐܿܣݐݏܽܿ݁ݎܨ ฬே
ୀଵ × 100 (8)

MAE = 1ܰ|݈ܽݑݐܿܣ − |ேݐݏܽܿ݁ݎܨ
ୀଵ  (9)

RMSE = ඩ1ܰ(݈ܽݑݐܿܣ − )ଶேݐݏܽܿ݁ݎܨ
ୀଵ  (10)

4.3.1. Kaolin Solution Test in the Pilot Plant 

We use a kaolin solution which can easily change its concentration. It is measured by multi-beam 

sensors only to estimate its density by the proposed algorithms. The data set composed of desired 

input-output pairs is called the training data and the data set to see if the model identified responds 

correctly is referred to as the test data [13]. A total of 2920 datapoints are measured and averaged in 

arithmetic mean method without the division of training and testing data. However, even-indexed and 

odd-indexed data are divided into training and testing data equally for the linear regression and  

neuro- fuzzy models to check the over-fitting and under-fitting error.  

Table 4. Experiment result by kaolin solution in the pilot plant. 

Algorithm 
All Data 

MAPE MAE RMSE R-Squared 

One Sensor 28.8819 0.6554 0.7212 0.1164 
Method 1 13.5682 0.2603 0.2781 0.9239 
Method 2 8.9533 0.1459 0.1604 0.9783 

Algorithm 
Training Data 

MAPE MAE RMSE R-Squared 

Method 3 3.3183 0.0638 0.0820 0.9940 
Method 4 5.2251 0.0817 0.1073 0.9903 
Method 5 0.0431 0.0003 0.0011 1.0000 
Method 6 0.0009 0.0001 0.0001 1.0000 

Algorithm 
Testing Data 

MAPE MAE RMSE R-Squared 

Method 3 3.3123 0.0637 0.0820 0.9941 
Method 4 5.2335 0.0815 0.1072 0.9904 
Method 5 0.0424 0.0003 0.0011 1.0000 
Method 6 0.0009 0.0001 0.0001 1.0000 

Table 4 shows the analysis results by the arithmetic means and the learning algorithms with and 

without outlier removal. The percentage error of one sensor is 28%, which can vary by sensor, before 

multiple sensors are used. Multiple sensors can improve the error to 13% using the conventional 
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arithmetic mean. If the outlier removal method is added to remove the data with the largest deviation 

among four sensors, arithmetic mean without outlier can reduce its error to 8.9%. The conventional 

linear regression method improves the error to 3% and the proposed algorithm (neuro fuzzy with 

outlier removal) has the lowest error of 0.0009%. 

Figure 13 shows the analysis results of the error characteristics for one sensor. As the sludge 

concentration is increased, the measurement error also increases. It is assumed that 2500th data values 

have a sudden high error due to bubbles or mass of sludge. The error characteristic for arithmetic mean 

using four sensors is improved when compared with one sensor in a high concentration. Most of 

estimated values are lower than the actual measured value. It is thought that the difference is caused by 

the off-set depending on the fluid status such as bubble and sludge attachment to sensors.  

 

Figure 13. Performance curve of one sensor case and Method 1. 

Figure 14 is the result of a linear regression analysis and ANFIS with input selection, which helps 

minimize the estimation error. The estimated values are located around the true value contrary to 

arithmetic mean. While the error of linear regression still exists a little more in high density areas, the 

error of ANFIS cannot be noticed because the true and estimated values are overlapped. In the error 

analysis with histograms, it ranges from −0.5 × 10−4 to 0.5 × 10−4. 

 

Figure 14. Performance curve of Methods 4 and 6. 
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4.3.2. Real Sludge Test in the Pilot Plant 

Real sludge was gathered from the sludge thickener at an operating water treatment plant, retained 

for two days and a high concentration sludge from a lower layer was extracted. The test was done with 

the highly concentrated sludge diluted with water.  

A total of 1600 datapoints are averaged in the arithmetic mean method without input selection. In 

the linear regression and neuro- fuzzy models, all data is equally divided into training and testing data. 

Table 5 shows the test results of the water treatment plant sludge in the pilot plant, in which one sensor 

has an error of 12.6% while the multi-sensor has an error of 3%–4%. As it is known in the linear 

regression analysis, more variables result in better performance. The proposed neuro-fuzzy algorithm 

with three sensors subjected to input selection, however, is the lowest with an error of 0.01%.  

Table 5. Experiment result by WTP sludge (pilot). 

Algorithm 
All Data 

MAPE MAE RMSE R-Squared 

One Sensor 12.6388 0.1459 0.1722 0.9677 
Method 1 3.1092 0.0412 0.0573 0.9954 
Method 2 4.0933 0.0453 0.0694 0.9926 

Algorithm 
Training Data  

MAPE MAE RMSE R-Squared 

Method 3 2.5247 0.0305 0.0385 0.9978 
Method 4 5.4544 0.0560 0.0632 0.9941 
Method 5 0.0271 0.0002 0.0004 1.0000 
Method 6 0.0172 0.0001 0.0003 1.0000 

Algorithm 
Testing Data  

MAPE MAE RMSE R-Squared 

Method 3 2.5358 0.0310 0.0388 0.9977 
Method 4 5.4620 0.0553 0.0625 0.9942 
Method 5 0.0276 0.0002 0.0004 1.0000 
Method 6 0.0159 0.0001 0.0003 1.0000 

Figure 15 shows the error analysis of one sensor, where the estimated value is higher in terms of 

high density but it is lower in terms of low density. In the error analysis of four sensors, the estimated 

value is especially lower in the middle density and the other area has a sudden peak of data several 

times compared to one sensor case. It is assumed to be caused by bubbles and a mass of sludge. 

Figure 16 shows the result of multiple linear regression analysis, where the error in the arithmetic mean 

is smoothed, but the rather small error is observed in all densities. The outlier shown in Figure 15 is 

removed, because the sensor affected by the distortion would have a lower weight. On the contrary, the 

proposed neuro-fuzzy algorithm with input selection gives almost the same result as the real value. 

Therefore, the proposed method renders the best solution to estimate the density for real sludge tests in the 

pilot plant. 
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Figure 15. Performance curve of the one sensor case and Method 1. 

 

Figure 16. Performance curve of Methods 4 and 6. 

4.3.3. Real Sludge Test in a Real Water Treatment Plant 

The developed multi-beam density meter was installed and operated in a real water treatment plant 

in Korea. The data obtained from the meter was compared with the data from an actual water analysis 

method. The total data is a 4990 data set, which are equally divided into learning and testing data. 

Table 6 shows the results of tests in the actual operating water treatment plant. When using only one 

sensor, the error was 2.74% and whereas the multi-sensor has a 0.1 to 0.6 percent error. The  

multi-linear regression method has 0.1% error and neuro fuzzy algorithm has the least error at 0.02%.  

Figure 17 shows the results of analysis of the error characteristics using only one sensor and the 

arithmetic mean on the four sensors. While one sensor case has the error between −0.05 to 0.15, which 

is a little biased towards the positive value to be corrected, The error of four sensor average method is 

greatly improved compared with the one sensor and is close to the true value in all sectors.  
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Table 6. Experiment result by WTP Sludge (WTP). 

Algorithm 
All Data 

MAPE MAE RMSE R-Squared 

One Sensor 2.7421 0.0638 0.0696 0.5204 
Method 1 0.6932 0.0161 0.0176 0.9748 
Method 2 0.0962 0.0023 0.0027 0.9994 

Algorithm 
Training Data  

MAPE MAE RMSE R-Squared 

Method 3 0.0984 0.0023 0.0027 0.9994 
Method 4 0.4288 0.0100 0.0138 0.9852 
Method 5 0.0221 0.0006 0.0012 0.9999 
Method 6 0.0191 0.0005 0.0012 0.9999 

Algorithm 
Testing Data  

MAPE MAE RMSE R-Squared 

Method 3 0.0974 0.0023 0.0027 0.9994 
Method 4 0.4240 0.0099 0.0137 0.9856 
Method 5 0.0224 0.0006 0.0012 0.9999 
Method 6 0.0190 0.0005 0.0011 0.9999 

 

Figure 17. Performance curve of one sensor case and Method 1. 

 

Figure 18. Performance curve of Methods 4 and 6. 
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Figure 18 shows the result of multiple linear regression analysis and ANFIS for three sensors. The 

error in arithmetic mean almost disappears, because it helps to overcome the bias in the conventional 

average method by analyzing the past data. The proposed neuro-fuzzy system with input selection has 

the least error as shown in Figure 18. Thus, the proposed method is shown to estimate the sludge 

density properly also in case of the real plant.  

5. Conclusions 

Sludge concentration meters, which are mostly calibrated at initial installation to achieve the 

automation, are very important to automate sludge treatment processes and polymer injection. 

However, they are likely to contain bubbles or debris because of the sludge characteristics and fouling, 

and sensors can be easily distorted in specific density range. In addition, sludge is deposited on the 

sensor unlike in fresh water, which causes errors and failures. Thus, the multi-beam densitometer is 

developed and new algorithms are proposed to solve these problems and improve its reliability.  

This paper proposes a method to improve the accuracy of sludge concentration determinations by 

choosing reliable sensor values and learning them by a neuro fuzzy algorithm, which is tested by the 

various experiments in a pilot plant and a real water treatment plant. It is shown that estimation of 

sludge density requires more sensors to increase the number of accurate measurements and the outliers 

needs to be sorted by an input selection algorithm to find the sensor with the largest deviation. Even 

though the pre-processing results show inconsistency in the linear method, the proposed neuro-fuzzy 

algorithm with multiple sensors and the input selection is proven to improve the performance 

significantly both in the pilot plant and a real water treatment plant.  
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