
Sensors 2015, 15, 27087-27115; doi:10.3390/s151027087

sensors
ISSN 1424-8220

www.mdpi.com/journal/sensors

Article

A Novel Multilayered RFID Tagged Cargo Integrity
Assurance Scheme

Ming Hour Yang 1,*, Jia Ning Luo 2 and Shao Yong Lu 1

1 Chung Yuan Christian University, Chung Pei Road, Chung Li District, Taoyuan 32023, Taiwan;

E-Mail: lumosac@gmail.com
2 Ming Chuan University, Deming Road, Guishan District, Taoyuan 33348, Taiwan,

E-Mail: deer@mail.mcu.edu.tw

* Author to whom correspondence should be addressed; E-Mail: mhyang@cycu.edu.tw;

Tel.: +886-3-2654-733; Fax: +886-3-2654-799.

Academic Editor: Vittorio M. N. Passaro

Received: 11 August 2015 / Accepted: 19 October 2015 / Published: 23 October 2015

Abstract: To minimize cargo theft during transport, mobile radio frequency identification

(RFID) grouping proof methods are generally employed to ensure the integrity of entire

cargo loads. However, conventional grouping proofs cannot simultaneously generate

grouping proofs for a specific group of RFID tags. The most serious problem of these

methods is that nonexistent tags are included in the grouping proofs because of the

considerable amount of time it takes to scan a high number of tags. Thus, applying grouping

proof methods in the current logistics industry is difficult. To solve this problem, this paper

proposes a method for generating multilayered offline grouping proofs. The proposed

method provides tag anonymity; moreover, resolving disputes between recipients and

transporters over the integrity of cargo deliveries can be expedited by generating grouping

proofs and automatically authenticating the consistency between the receipt proof and pick

proof. The proposed method can also protect against replay attacks, multi-session attacks,

and concurrency attacks. Finally, experimental results verify that, compared with other

methods for generating grouping proofs, the proposed method can efficiently generate

offline grouping proofs involving several parties in a supply chain using mobile RFID.

Keywords: radio-frequency identification; multilayered grouping proof; supply chain

management; anonymity; multi-session attacks; concurrency attacks

OPEN ACCESS

Sensors 2015, 15 27088

1. Introduction

Mobile radio frequency identification (RFID), a widely adopted technique in supply chain

management (SCM), involves using a mobile reader to scan RFID tags [1,2]. In each SCM stage, RFID

tags can be employed to store cargo information and facilitate autonomous stocktaking, thereby

improving inventory management and accelerating the retail cycle [3]. RFID tags can also be employed

to track and locate cargo, which not only improves order management [3], but also reduces management

costs. For example, by adopting an RIFD SCM system, Wal-Mart reduced its annual distribution costs

by approximately 6%–7%, an equivalent saving of US$1.4 billion [4].

Although tracking cargo through RFID is easier than using other logistics management methods,

malicious members of a supply chain can steal cargo during the transfer process [5,6]; consequently,

delivery of all cargo cannot be guaranteed. Annually, cargo theft accounts for approximately US$30

billion in losses worldwide [4]. However, when determining whether the suppliers, transporters, and

recipients are suspects, disputes may arise when the actual suspect cannot be confirmed [7]. To solve

this problem, Zhou and Rodrigues have proposed a smart grid based infrastructure to verify the generated

codes for each recipient [8]. Lo et al. [9] proposed a cargo tracking system utilizing RFID. The tracking

system provides the ability to report the real-time locations of the cargo and its flow. RFID systems have

been designed to generate grouping proofs for all RFID tags during cargo transfer [10–12]. Accordingly,

in the event of a dispute, transporters can use the receipt proofs as evidence of having delivered the

cargo. Moreover, by generating a receipt proof when the cargo is delivered, the recipient provides

undeniable proof that they have received their shipment in full.

However, if a poorly designed integrity check mechanism is used, malicious users can exploit the

mechanism, thereby compromising its credibility. For example, attackers can record the messages

communicated between tags and readers and then replay them to generate bogus proofs that can pass

authentication protocols, despite nonexistent tags being used in the attack. Saito and Sakurai [13] employed

timestamps generated by a verifier to replace random numbers [14] to protect against replay attacks.

However, tag impersonation attacks can be used to exploit generating timestamps in systems that generate

multiple grouping proofs simultaneously. Therefore, Peris-Lopez et al. [15,16] have proposed a protocol

for generating grouping proofs that protect against tag impersonation attacks and safeguards the method

proposed by Yu, Hou, and Chiang [17] by not only protecting against multisession attacks, in which

malicious users intercept pieces of grouping proofs transmitted in the same time zone and then generate a

composite bogus proof, but also protecting RFID systems from most attacks targeting online grouping

proofs. However, because generating the grouping proof protocol requires writing data to an RFID tag

multiple times, concurrency attacks can occur when multiple readers concurrently generate grouping

proofs for the same RFID tag, causing messages from the readers to interactively overwrite the tag content

generated by each reader in the tag, thus generating the erroneous grouping proofs. Therefore, Lin, Lai,

Tygar, Yang, and Chiang [18] proposed a protocol that instantly generates grouping proofs to protect

against concurrency attacks that prevent grouping proofs from being generated.

When transporters receive or deliver cargo in areas where mobile readers cannot connect to the

verification server (verifier) for authentication, the server cannot generate a trustworthy time value to

initiate generating the grouping proofs [10]. Therefore, Sun, Ting, and Chang [19] and Hermans and

Peeters [20] have utilized the timeout mechanism of RFID tags to ensure that the grouping proofs are

Sensors 2015, 15 27089

accurate. When group members cannot complete the protocol because they are not within range of a

mobile reader, the reader cannot obtain the grouping proofs or ensure that all of the RFID tags are in the

same interval when the proofs are generated. Lo and Yeh [21] and Ma, Lin, Wang, and Shang [22] have

employed additional active tags or trusted devices that generate timestamps to ensure that the time

difference between timestamps is within a time threshold before responding to a mobile reader’s requests

for the generated proofs; thus, all the of the RFID tags involved in the grouping proofs must be present

at the same interval.

In addition to the correctness of the generated grouping proofs, the conventional grouping

proofs [14,23–28] are generated by all tags on site one after another, thus making these tags incapable

of simultaneously computing the pieces of proof assigned to the tags. The calculation time for generating

this type of grouping proof increases with the number of tags; thus, it is unsuitable for cargo with a

considerable number of RFID tags, which is common in most supply chains. Lien, Leng, Mayes, and

Chiu [29] proposed a method that satisfies the exclusiveness of commutative property or is capable of

combining the pieces of proof computed by the tags through XOR operands in order to generate grouping

proofs. The method enabled the reader to request that proofs be generated by other tags before the pieces

of proof have been reconstructed. Without needing to consider the sequence of requests, the request

order can be directly combined to generate the final grouping proof. In addition, parallel computing

accelerates the generation of grouping proofs. Jantarapatin, Mitrpant, Tantibundhit, Nuamcherm, and

Kovintavewat [30] and Nuamcherm, Kovintavewat, Tantibundhit, Ketprom, and Mitrpant [31] have

improved the security of message requests for grouping proofs by enabling mobile readers to directly

broadcast the random number incorporated in the tags. All tags must simultaneously use both the key

shared by the verification server and encrypt to obtain the random number sent by the reader in order to

obtain protocol for generating the pieces of proof. Similarly, the final grouping proof is produced by

reconstructing the pieces of proof generated by each tag through a process of exclusion or combination,

which reduces the amount of time taken for generating the proof. However, with this method,

compromised readers can be exploited to insert random numbers in the request messages before

transmitting them to the tags; after recovering the pieces of proof from the tags, a piece of proof with a

tag that is the same as the tag of the inserted random number can be used to generate bogus grouping

proofs that can pass authentication, despite not having the tags. Thus, Sun, Ting, and Chang [19]

proposed using message broadcast to render it impossible for readers to generate a bogus grouping proof

with nonexistent tags through encrypting the returned messages of all the participating tags using a

shared key. Yen, Lo, and Wu [32] indicated that when a reader is online (i.e., connected to a network),

all tags should first be authenticated, and the grouping proofs should then be generated and transmitted

to a backend verifier; thus, completion can be achieved by broadcasting only two messages. Hermans

and Peeters [20] employed an additional timestamp to initiate the procedure of generating grouping

proofs and signing the final collected grouping proof, thus achieving the same outcome except in an

offline environment.

The time taken for generating pieces of proof can be reduced considerably by using parallel

computing because the requests for grouping proofs are broadcast to all RFID tags. However, when

these tags transmit the pieces of proof to the reader, collisions occur because of simultaneously receiving

a high number of tag messages. If messages are sent using anticollision mechanisms, such as

tree-walking or the aloha protocol of ISO-18000 [33], then the time taken for responding to messages

Sensors 2015, 15 27090

increases [34,35]; thus, malicious users can exploit this time difference to generate a legitimate grouping

proof from a group of tags that are not in the same time interval [36]. Therefore, Leng, Lien, Mayes, and

Markantonakis [37] proposed a subgrouping grouping proof that minimized the number of collisions by

using fewer grouping tags. This method involves dividing groups of tags into several subgroups and

generating proofs sequentially; however, because only one reader is employed to generate the grouping

proofs, retransmitting messages across subgroups can only be performed in the specific sequence; thus

employing parallel retransmission does not improve the effectiveness. Moreover, the scanning

restrictions on the maximum number of tags that can be read by the reader [38,39] render this method

unfeasible in logistics management when a high number of tags requiring scanning are involved.

Therefore, the present study proposed a method for generating multilayered grouping proofs to

resolve the problem of needing to scan generated grouping proofs in batches because of the limited

number of tags that can be scanned using a reader [38,39], which, in a supply chain environment, would

invalidate the grouping proof because the processing time would exceed its time threshold. The goal of

our method is proposing a hierarchical management framework that enables several readers to

simultaneously generate pieces of proof; subsequently, the final grouping proofs are generated by an

authorized reader. In addition, regardless of whether the reader can connect to the backend verifier, the

cargo transporter can use the reader to collect tag information to generate proofs. When the messages

are transmitted in an online environment, the verifier can confirm whether the tags were generated by

readers in the same location. Thus, the proposed method is effective for (1) generating grouping proofs

for a supply chain in which a considerable number of tags must be scanned simultaneously; (2) reducing

the time required for generating proof concurrently through multiple readers when a high number of tags

are involved; (3) providing undeniable proof of delivery for recipients, suppliers, and transporters by

generating proofs before every cargo transfer and by acquiring signatures from all relevant personnel as

evidence that the cargo was received in full and by the intended recipient; (4) ensuring that the tags are

secure from replay, eavesdropping, and impersonation attacks, and as well as most attacks designed to

generate bogus grouping proofs; (5) ensuring data confidentiality through using anonymous tags;

(6) ensuring that the supply chain’s cargo routes remain confidential; (7) automatically determining

whether the transporters deliver the cargo on time and according to order; and (8) dynamically scaling

the number of cargo tags according to the scan rate at which the mobile reader scans to generate

grouping proofs.

The remainder of this paper is organized as follows. Section 2 introduces the environmental

hypothesis for the grouping-proof protocol applied to many RFID readers, as well as the relationships

among the tags, readers, and certain members in a supply chain. In addition, the initialization process

and methods for generating and authenticating grouping proofs are explained in detail. Subsequently,

Section 3 investigates the security of the proposed protocol and compares it with that of other grouping

proofs. In Section 4, the computation effectiveness of the proposed method is analyzed and compared

with that reported by related studies. Finally, Section 5 offers the conclusions for this study.

2. Cargo Inspection Management of Mobile Logistics

The method proposed in this study can be applied to improve SCM. As depicted in Figure 1a, the

proposed method can be adopted to automatically generate grouping proofs to facilitate using mobile

Sensors 2015, 15 27091

RFID readers to manage cargo. To automate the scanning process for transporters delivering cargo,

suppliers, transporters, and recipients adopting the protocol must first register their mobile RFID devices

on a verifier (i.e., a server for backend authentication). In addition, the threat model developed is based

on the hypothesis that malicious users can conduct eavesdropping attacks by intercepting the messages

transmitted by RFID readers and tags. In addition, transporters might exploit the proposed protocol

through the following two malicious behaviors: (1) providing a bogus proof to conceal stolen cargo; and

(2) tampering with the proof timestamp to conceal delayed deliveries caused by negligence. Therefore,

in this study, a clock tag was incorporated into the transporter’s reader to ensure that the timestamp

generated under offline conditions is trustworthy for when the reader cannot connect to the verifier.

As indicated by Step 1 in Figure 1a, when the transporter requests the verifier to authenticate the

delivery of cargo to n recipients, denoted as 	ܲଵ, 	ܲଶ, … , 	ܲ, the delivery of cargo to any recipient can be

expressed as shown in Equation (1): 	ܶ = ൛ܶܦܫ│	∀݅ ܦܫܶ ∈ ܲ, 1 ≤ ݅ ≤ ,ݍߜ ݍߜ ∈ ℤାൟ (1)

where ܶܦܫଵ,ܶܦܫଶ,…,ܶܦܫఋ denote the RFID tag codes; δq represents the number of RFID tags; and ܲܦܫ	 is the recipient’s RFID code, which is incorporated into the tags.

Assume that a supplier must deliver cargo with a group of RFID tags, denoted as ܶ = 	 	ܶଵ ∪ 	 	ܶଶ ∪ …∪	 	ܶ, where n denotes the number of recipients. To ensure that the transporter can immediately check the

integrity of cargo delivered to recipient 	ܲ, the verifier applies Equation (2) to obtain a verification code

indicating the integrity of the delivered cargo: ܶܣ	 = …||ଶܪܶ||ଵܪܶ ఋܪܶ|| , ݁ݎℎ݁ݓ ∀݅ ܪܶ = 	||ܶܵ௩ݐܭ||ܦܫ൫ܶܪ ൯ (2)

where ܶܣ	 is the verification code; ݐܭ denotes the shared key for the verifier and the tag ܶܦܫ; and ܶܵ௩	 is a timestamp generated by the verifier.

To enable the RFID reader to encrypt the multicast messages transmitted to the cargo tags and to

establish a secure multicast channel between the readers and tags [40], the verifier generates the group
keys for the k-ary tree with ܭܩ	as the starting node (a detailed explanation of key tree is provided in

Section 2.1). At Step 2 in Figure 1a, the verifier transmits the following data to the transporter’s reader:

a group of verification codes ܶܣ = ,ଵܣܶ} ,ଶܣܶ … , } for n recipients; a key tree comprising the groupܣܶ

of tags ܭܩ = ,ଵܭܩ} ,ଶܭܩ … , 	} from the recipients; the timestamp ܶܵ௩ܭܩ ; and verification codes for

the clock tags generated in the offline phase. Figure 1b shows that the reader generates verification codes

for the transporter, supplier, all of the RFID tags involved in delivering the cargo, and a receipt proof for

the cargo delivery. Subsequently, the check codes generated by the transporter’s reader and the verifier

are compared to confirm whether they are identical in order to ensure the integrity of the cargo and that

it has been received in full.

As indicated in Figure 1c, when the transporter delivers cargo to each recipient, the cargo tags and

recipient’s RFID tag are scanned using the reader, which then generates receipt proofs and verification

codes for each recipient. The integrity and correctness of the delivered cargo are confirmed by ensuring

that the verification code issued by the verifier and the receipt proof and verification code generated by

the transporter are consistent. The reader transmits the pick proofs and receipt proofs to the verifier as

soon as a connection is established. In the event of a dispute (e.g., the recipient denying having received

the cargo), the receipt proof is evidence that the transporter has already delivered the cargo in full, as

Sensors 2015, 15 27092

illustrated in Step 6 of Figure 1a. By contrast, if the transporter denies that the cargo has been consigned

by the supplier, then the pick proof is evidence that the transporter has already collected the cargo, as

indicated in Step 4 of Figure 1a. Moreover, if the recipient notices that the cargo content differs from the

consignment note, then the backend verifier can cross-reference the pick proof and receipt proof. Should

the tags for the receipt proofs and pick proofs be identical, then the error is associated with the quantity

shipped by the supplier. A discrepancy between the receipt proof and pick proof indicates that the transporters

has lost cargo in route. Thus, the grouping proofs solve and clarify problems regarding lost cargo.

Figure 1. Process of supply chain distribution and grouping proof: (a) steps of the supply

chain distribution; (b) generate the grouping proofs for pick up and delivery; (c) generate the

grouping proofs for cargo delivery.

However, some problems remain unresolved in this method of logistics verification; when the reader

cannot connect to the verifier, trusted proofs cannot be generated securely. Regarding the method

proposed in this study, identical procedures are used for picking up cargo from suppliers and transporting

cargo to recipients. Although pick proofs must be generated from cargo tags when suppliers consign

cargo for deliver to multiple recipients, the method proposed in this study is no different except for the

number of tags, the personnel engaged in the process, and the identification code of the reader. Without

loss of generality, the subsequent sections discuss the following three phases for generating grouping

proofs, which is achieved through the transporter and recipient using the identification codes ܦܫܣ and ܲܦܫ	 , respectively: (1) an initialization phase for generating the group key tree; (2) an integrity

verification phase for generating grouping proofs and integrity check codes for when the multilayered

reader is used in offline phase; and (3) a dispute resolution phase, in which all of the grouping proofs are

examined to verify the cargo delivery process in the event of a dispute.

Sensors 2015, 15 27093

2.1. Initialization Phase

When a cargo shipment with a tag collection 	 	ܶ is delivered to recipient 	ܲ, the reader requests the

verifier to establish a secure multicast connection to ensure that the generated grouping proofs accord

with those on the recipient’s reader and that messages can be transmitted to the δq tags in 	 	ܶ. Therefore,

the verifier generates a k-ary group key tree with a height difference of the subtree of ≤1 (tree height of ℎ௫ = ⌈log(ݍߜ ݇⁄)⌉) for the shared key ݐܭ available to all tags ܶܦܫ. In summary, the group keys

that can transmit messages to δq tags in 	 	ܶ are defined as ܭܩ, as illustrated in Figure 2. Figure 2a

shows the numbering sequence that is generated when the group number of a certain node in the k-ary
group key tree is ܩ௦: from top to bottom, from left to right, the number of parent nodes is ہܩ(ೞషభ) ೖ⁄ ۂ , and

the number of the child nodes ranges from ܩ௦∗ାଵ to ܩ௦∗ା . Figure 2b indicates an example of a 3-ary

key tree generated by 	 	ܶ, a set of 23 tags; the group key ܭܩଶ is employed to encrypt the multicast

messages transmitted to the tags numbering from ܶܦܫଵ to ܶܦܫଵ଼ , and the tags ܶܦܫଵ ଵଵܦܫܶ , , and ܶܦܫଵଶ

decrypt the multicast messages encrypted with the group key ܭܩ by using the keys ݐܭଵ ଵଵݐܭ , , and ݐܭଵଶ shared with the verifier.

Figure 2. Group Key tree of cargo tags of recipient 	ܲ: (a) Rule for numbering among group

keys; (b) key tree for 3-ary group tags.

Therefore, the nodes with the group number of ܩ௦ are composed by 1 to a number of k subtrees, with

Equation (3) indicating the group key incorporated by any node ܩ௦. Group key ܭܩ௦ exists in all the
parent groups numbered ܩ௦ that incorporate ܩ௦ and satisfy the intersection of group number ܩ௦	and ܩ௦ equaling ܩ௦. The difference set between ܩ and ܩ௦ and the intersection between ܩ and ܩ௦ as

an empty set is as indicted in Equation (4).

(a)

GK0
q

GK1
q GK2

q GK3
q

…

(b)

s

s*k+1 s*k+2 s*k+k

s-1
k

GK4
q

TID1
q

TID2
q

TID3
q

GK5
q

TID4
q

TID5
q

TID6
q

GK6
q

TID7
q

TID8
q

TID9
q

GK7
q

TID10
q

TID11
q

TID12
q

GK8
q

TID13
q

TID14
q

TID15
q

GK9
q

TID16
q

TID17
q

TID18
q

GK11
q

TID22
q

TID23
q

GK11
q

TID19
q

TID20
q

TID21
q

Sensors 2015, 15 27094

௦ܩ = ቄܭܩ│∀݈	ܭܩ ∈ ,௦ܩ ݏ ∗ ݇ + ିଵିଵ ≤ ݈ ≤ ݏ ∗ ݇ + (ିଵ)ିଵ , ℎ ∈ ℤା, ݏ ∈ ℤାቅ
௦ܩ = ۔ۖەۖ

௦ܭܩۓ ∈ ቨೞషೖషభೖషభೖܩ ቩ , ℎ ∈ ℤା, ݏ ∈ ℤାۙۘۖ
ۖۗ ௦ܩ	௦,whereܭܩ	ݏ∀			, ∩ ௦ܩ = ௦ܩ

(3)

and ൫ܩ − ௦ܩ ൯ ∩ ௦ܩ = ∅ (4)

Table 1. Definition of symbols. ܸ ܸ݁ݎ݂݁݅݅ݎ: a third-party verification server to reinspect grouping proofs ܵ ܵݎ݈݁݅ݑ: shipping supplier ݎ݁ݐݎݏ݊ܽݎܶ ܣ: transporter who delivers cargo 	ܲ ܴ݁ܿ݅ݐ݊݁݅: q-th recipient who receives the cargo ݈݇ܿܥ ܥ	ܶܽ݃: a third-party clock tag providing time for the system in offline phase ܦܫܣ Identification code for ܦܫܥ ܣ		 Identification code of a trusted and active third-party ܦܫܴ ܥ	 Identification code of the reader used by ܽ ܲܦܫ	 Identification code of 	ܲ ܴܦܫ Identification code of the ݆-th reader used by ܲ ܶܦܫ Identification code of the ݅-th tag for ܲ ܩ௦ ݏ-th group code for 	ܲ ܶܪ Verification hash value for ܶܦܫ ܿܭ Shared key for ܥ and ܸ ݎܭ Shared key for ܴܦܫ and ܸ ݐܭ Shared key for ܶܦܫ and ܸ ܭܩ௦	 Shared key for ܩ௦	and ܸ ܵܭ Session key among readers ܲܭ	 Public key for ܽ ܴܲ	 Private key for ܽ ܲܭ	 Public key for 	ܲ ܴܲ	 Private key for 	ܲ ܰݎ Random number generated by ܴܦܫ ܰݐ Random number generated by ܶܦܫ ܰܿ		 Random number generated by ܥ ܰܽ		 Random number generated by ܽ ܰ	 Random number generated by ܲ ܶܵ௩	 Timestamp generated by ܸ ܶܵ	 System time of ܥ Δܶ Time threshold for generating grouping proofs (݃ݏܯ,ݕ݁݇)ܧ Encryption function generated by message (݃ݏܯ) through an employment of symmetric key (݇݁ݕ) ܵ݅݃݊(݇݁݃ݏܯ,ݕ) Signing function generated by ݃ݏܯ through an employment of private key	(݇݁ݕ) (݃ݏܯ,ݕ݁݇)ܥܣܯ Function for message authentication code generated by ݃ݏܯ by an employment of (݃ݏܯ)ܪ ݕ݁ܭ Message authentication code generated from an employment of hash function by ܨ ݃ݏܯ 	ܱ Judgement of whether the grouping proof for ܲ is generated in online or offline phase

Sensors 2015, 15 27095

In addition, this study defined the ⌈ఋ ⁄ ⌉ -number of key trees coded from ඃ(ഃ ೖ⁄)షభೖషభ ඇ to 	ඃ(ഃ ೖ⁄)షభೖషభ ඇ + ⌈ఋ ⁄ ⌉ − 1, that directly connects with the nodes on the tags, as leaf group, as indicated in
Equation (5) and represented by ܩ, . For example, tag codes ܶܦܫଵ, ܶܦܫଶ, and ܶܦܫଷ connect with

the leaf node ܩ,ଵ of group code ܩସ. ܩ, = ቄܶܦܫ│∀݈	ܶܦܫ ∈ ,ܩ , (݉ − 1)݇ + 1 ≤ ݈ ≤ ݉݇, 1 ≤ ݉ ≤ ቒఋ ቓቅ (5)

Table 1 provides the definition of the symbols used in the protocol.

2.2. Integrity Verification Phase: Grouping Proof Protocol of a Multilayered Reader

After the transporter delivers the cargo to the recipient and simultaneously generates grouping proofs

using the reader with a maximum reading capacity of r, the group keys are distributed to several mobile

readers from the transporters’ reader ܴܦܫ to securely multicast messages to δq tags via the recipients’

readers, thus enabling each reader to receive the maximum number of tags by performing only one

multicast; in other words, the grouping proof is generated using the minimum number of group keys.

During the initialization phase, Equation (3) is employed to generate the group keys and construct a

complete k-ary key tree for ܴܦܫ with a tree height of ℎ = ⌈log(ݍߜ ݇⁄)⌉ − ݎ)logہ ݇⁄ ୪୭ೖہ݇ for multicasting ۂ(ۂ tags; in other words, the key tree satisfies the maximum number of reading limits, r, and can

encrypt the maximum number of tags with group keys, thereby forming a complete subtree. Therefore,

when the number of tags that ݇ group key (whose height ℎ equals that of the key tree) can encrypt

(݇ × ୪୭ೖہ݇ ۂ tags) equals δq, the complete key tree with successive group keys with a multicast range

from 1 to ݎ	for multicasting ݇ہ୪୭ೖ ۂ tags is derived, which also satisfies the nonrepetition requirement

for the tags. ݂(ܽ) = ቒ(ഃ ೖ⁄)షభೖషభ ቓା⌈ഃ ೖ⁄ ⌉ିଵିೌିଵିଵೌ (6)

However, if ݇ × ୪୭ೖہ݇ ݍߜ < ۂ, then the k-ary key tree (Figure 3) would be incomplete. To enable

the reader to scan all of the tags with the least number of group keys, the system must perform a search

to determine whether any incomplete tree contains a group key that can encrypt a particular number of

tags, the number ranging between ݇ہ୪୭ೖ ۂ and r. Because an incomplete subtree would appear in the

subtree with the maximum number of leaf nodes, Equation (6) is applied to determine ݂(ہlog in (ۂݎ

order to determine the parent node code at the level of ہlog height = ℎ) ۂݎ − 1) above the maximum
leaf node code level ඃ(ഃ ೖ⁄)షభೖషభ ඇ + ݍߜ⌉ ݇⁄ ⌉ − 1. Subsequently, Equation (3) is employed to determine all of

the leaf group codes in the encrypted nodes; also in addition, Equation (5) is applied to compute ܴܣ, the

total number of tags that can be read. As expressed in Equation (7), when the maximum number of r

tags scanned by the reader can contain ܴܣ number of tags, a group key with the code ݂(ہlog which ,(ۂݎ

satisfies the number of tags between ݇ہ୪୭ೖ ۂ and r quantity, is obtained. Consequently, the group key
with the code ݂(ہlog is selected as the first key ܴ; else, the smallest code in which the message (ۂݎ

can multicast to ݇ہ୪୭ೖ ۂ number of tags can be selected as the first key ܴ.

Subsequently, Equation (8) was employed to compute that under these two conditions, another group
key code ܴ larger than ܴ , enabling the key with codes ranging between ܴ and ܴ to be capable of

encrypting all tags, with none of the two keys repeatedly encrypting the same tag.

Sensors 2015, 15 27096

ܴ = ൜ logہ)݂ (ۂݎ , ܣܴ ≤ logہ)݂ݎ (ۂݎ + 1, ܣܴ > (7) ݎ

ܴ = ۔ۖەۖ
ۓ ݇ ∗ ܴ	, ݇ ∗ ܴ < ቜہఋ ⁄ ۂ − ݇݇ − 1 ቝ + ݍߜ⌉ ݇⁄ ⌉ − 1
ቜہఋ ⁄ ۂ − 1݇ − 1 ቝ + ݍߜ⌉ ݇⁄ ⌉ − 1, ݇ ∗ ܴ ≥ ቜہఋ ⁄ ۂ − ݇݇ − 1 ቝ + ݍߜ⌉ ݇⁄ ⌉ − 1 (8)

For example, Figure 3a is a distribution diagram of Figure 2b that involves the results obtained from

the 23 group keys tagged on the k = 3-ary group key tree for the reader with a reading capacity of r = 6.

According to ⌈logଷ(23 3⁄)⌉ − logଷ(6ہ 3⁄ the group key with the tree height of 2 can multicast ,2=0-2=ۂ(

message to three tags and encrypt the maximum number of tags within the capacity that can be read by
the reader. In addition, of the parent node located in the level of ہlogଷ ۂ6 = 1 above the group key	ܭܩଵଵ

of the largest leaf group within an incomplete key tree coded 11, the leaf group keys ܭܩଵ and ܭܩଵଵ

incorporated in key ܭܩଷ, with a tree height of 1, can read three and two tags, respectively. This study

computed that an incomplete subtree with the height of 1 can read a total of 5 tags, which was less

than 6, the number of tags that can be simultaneously read by a reader; in addition, the tags that can be
encrypted by the largest leaf node was already incorporated within the group key	ܭܩଷ (݇ × ܴ = 3 ×݂(2) =9→9 < 11). Therefore, a reader generates grouping proofs from the group keys coded from 3 to
 .(ଽܭܩ ଷ toܭܩ) 9

Figure 3b is a similar distribution diagram of Figure 2b as that of Figure 3a as it presents the results

from the group key to the reader on the key tree; however, Figure 3b differs from Figure 3a in that the
reader had a reading capacity of r = 4. In this example, the starting group key ܭܩଷ of an incomplete

subtree with the height of 1 can read five tags, which was larger than the number of tags that can be
simultaneously read by a reader. Therefore, the group key ܭܩଷ	was replaced by the subgroup keys ܭܩଵ

and ܭܩଵଵ and the reader with the reading capacity of four tags generated grouping tags using group keys

ranging from ܭܩସ to ܭܩଵଵ .

Figure 3. Examples showing group key selection in an incomplete group Tree: (a) the

number of remaining tags ܴܣ ≤		reading capacity of ݎ tags; (b) ܴܣ	 > .ݎ	

Subsequently, the following two strategies were employed to distribute ܴ − ܴ + 1 number of group

keys to the reader with a reading capacity of r.

GK4
q GK5

q GK6
q GK7

q GK8
q GK9

q GK6
qGK10

q GK11
q GK4

q GK5
q q GK7

q GK8
q GK9

q GK10
q GK11

q

GK1
q GK2

q GK3
q GK1

q GK2
q GK3

q

GK0
q GK0

q

(a) (b)

Sensors 2015, 15 27097

I. Only one group key was distributed to each reader used by a recipient to maximize the benefit of
concurrent reading; consequently, a total of ඃೃషೃೝషభ ඇ + ܴ − ܴ readers was required to generate

the grouping proofs.

II. Distribute one or multiple group keys to the reader to satisfy the condition that within all the

readers, the total number of tags that can be encrypted by the key was less than the number of r

tags, and only a minimal number of readers for recipients was required [41–43]; therefore,

grouping proofs were generated using the least resources.

Finally, when the number of recipients’ readers was larger than r, reader ܴܦܫ	 cannot simultaneously

transmit messages to all recipients’ readers. The method as indicated in Figure 2a in Section 2.1 was

thus employed to form a read tree and code reader to solve the problem in which several readers

simultaneously generate grouping proofs. To ensure the security of group key transmission and message
transmission among readers, any reader ܴܦܫ can use the key shared with the verifier to generate a

session key ܵܭ for encrypting messages transmitted between the parent node as well as to generate a

maximum number of r keys (ranging	from	ܵܭ∗ାଵ to ܵܭ∗ା) for child node communication, and for

encrypting messages transmitted between two readers. For example, Figure 4 presents the read tree in
which each or several of the seven group keys ܭܩଷ, ܭܩସ, ܭܩହ, ܭܩ, ܭܩ, ܭܩ଼, and ܭܩଽ, as indicated

in Figure 3a, were distributed to each reader. Figure 4a indicates that when the seven keys were processed

into seven readers to enable all readers to concurrently read all the tags, transporter’s reader ܴܦܫ	 with

a reading capacity for only six tags could not simultaneously transmit messages to seven readers owned

by the recipients; instead, a middle reader was required for transferring messages. Thus, eight
(ඃೃషೃలషభ ඇ + ܴ − ܴ = 8) readers were required in total. Pieces of proof were generated by ܴܦܫଶ to ܴܦܫ଼ ; among them, reader ܴܦܫ generated pieces of proof with tag codes ܶܦܫଵଷ ଵସܦܫܶ , , and ܶܦܫଵହ

from the distributed group key ܭܩ଼, with the proofs encrypted by session key ܵܭ and transmitted back

to the reader for decryption by parent node ܴܦܫଵ. Moreover, Figure 4b presents the results when several

keys were written into the same reader; thus, only four readers (ܴܦܫଵ to ܴܦܫସ) were needed to

simultaneously generate the pieces of proof for all tags. However, because a single reader such as ܴܦܫସ

distributed two group keys ܭܩ଼ and ܭܩଽ, thus six pieces of proof for tags coded from ܶܦܫଵଷ to ܶܦܫଵ଼

must be generated.

Figure 4. Read Tree with the reading capacity of six tags: (a) A single group key;

(b) several group keys.

(a) (b)

RID5
q

RID4
q

RID3
qRID1

q

RID0

RID8
q

RID7
q

SK7 SK8

SK1 SK3 SK4 SK5

RID2
q

RID6
q

SK2 SK6

GK3
q GK4

q GK5
q GK6

q

RID4
q

RID3
q

RID2
q

RID0

SK2 SK3 SK4

RID1
q

SK1

GK7
q GK3

q GK4
q GK6

q GK8
q

GK5
q GK7

q GK9
q

GK8
q GK9

q

q q

q q q q q q q q q q

Sensors 2015, 15 27098

After group keys were distributed, the following explains the three stages regarding grouping proof

protocol OMRGP proposed in this study: how can ܴܦܫ	 generates a grouping proof under offline

conditions in which the reader cannot be instantly connected to the backend verification server. From

Figures 5–7, the contents in the boxes at the top indicate that the contents were information already

written into protocol during the initial setting and before the execution of the protocol. First, through

third-party active clock tag, Stage 1 obtained the trusted start timestamp for the system. Second, Stage 2

gradually generated pieces of grouping proof and inspection pieces from the read tree’s leaf nodes, with

the parent node combining all pieces of proof from child nodes until the tree root. Finally, Stage 3

incorporated affirming whether the grouping proofs signed by both the transporter and recipient and sent

to the clock tag-grouping proof in the beginning was completed in time.

As illustrated in Figure 5, Stage 1 indicates that when transporter’s reader ܴܦܫ	 cannot connect to the

verification server, the timestamp ܶܵ௩	 	written into the reader in the initial setting must be first

transmitted to trusted clock tag to acquire the trustworthy initial time. After the clock tag receives the ܶܵ௩	 transmitted by the reader ܴܦܫ	 , it uses the identification code CID, verifier’s shared key ܭ	 , tag’s

current timestamp ܶܵ		 , and the received timestamp ܶܵ௩	 to compute the signed timestamp TSC. The
message verification code ܸ	 = 	ܭ|หܦܫܥ൫ܪ)ܪ |หܶܵ௩	 ൯||ܶܵܥ) is also computed and transmitted to the

reader ܴܦܫ	 along with TSC. Finally, to authenticate the source of the received message TSC, the reader ܴܦܫ	 uses the clock tag check code ܪ൫ܦܫܥห|ܭ	 |หܶܵ௩	 ൯ received from the verifier and the acquired TSC

to compute the message verification code ܸ	.

Figure 5. Signed timestamp acquired from trustworthy clock tag.

At Stage 2, the reader ܴܦܫ	 uses the keys in the layered read-tree and child node (Figure 4) to encrypt
recipient’s identification code ܲܦܫ	, timestamp ܶܵ௩	 , signed timestamp ܶܵܥ, group key set ܴܩ for the

child node reader ܴܦܫ, and tag verification code set ܴ ܶ and transmits them to all child nodes until all

leaf nodes have been reached. For example, as indicated in Figure 4a, the reader ܴܦܫ	 first uses the key ܵܭଵ to encrypt ܲܦܫ	 , ܶܵ௩	 ܥܵܶ , , ܴ ଵܶ = ଵଷܪܶ} , ଵସܪܶ , ଵହܪܶ , ଵܪܶ , ଵܪܶ , ଵ଼ܪܶ } , and ܴܩଵ = ,଼ܭܩ} ଵܭܵ ଵ, which employs the session keyܦܫܴ ଽ}, and then transmits them to the readerܭܩ

to decrypt the message and encrypt ܲܦܫ	, ܶܵ௩	 ܴ ,ܥܵܶ , ܶ = ଵଷܪܶ} , ଵସܪܶ , ଵହܪܶ ܩܴ ,{ = 	, ܶܵ௩	ܦܫܲ ,{଼ܭܩ} ଼ܴܶ ,ܥܵܶ , = ଵܪܶ} , ଵܪܶ , ଵ଼ܪܶ }, and ܴܩ଼ = ଼, andܭܵ andܭܵ by using the session keys {ଽܭܩ}

Clock TagReader0

1. TSv

 If Vc' = Vc

 Message TSC Authenticated;

2. TSC, Vc

 get TSc

 TSC = MAC(Kc, CID||TSv||TSc)

 Vc = H(H(CID||Kc||TSv)||TSC)

CID, Kc

 If FO q equals 0

 goto step3

PIDq, RIDq, Krq, TAq, Gq, TSv, k, (CH)*1 PIDq, RID0, Kr0, TAq, G0, TSv, k, (H(CID||Kc||TSv))
*1

*1 When FO q = 1, the clock tag message must be authenticated.

Sensors 2015, 15 27099

then sending them to the leaf node readers ܴܦܫ and ܴܦܫ଼. Subsequently, all leaf node readers collect

the pieces of proof from the corresponding tags to generate a grouping proof, which is then transmitted

to the upper levels and transmitted back to the reader ܴܦܫ	 .
Since the activities of any two readers in the read-tree are identical, the algorithm uses any leaf node

reader ܴܦܫ in the read-tree receiving a request from the parent node reader ܴܦܫ to generate a grouping

proof, as shown in the steps in Figure 6. After the leaf node reader ܴܦܫ uses its session key ܵܭ	 to

decrypt a message ܨ	 transmitted from the reader ܴܦܫ of the recipient ܲܦܫ	, all group keys in ܴܩ are

extracted and the multicast message ܩܯ,௦ is encrypted using the keys ܲܦܫ	 , ܶܵ௩ , and ܶܵܥ and

transmitted to each tag to generate the pieces of proof.
When any tag ܶܦܫ receives a multicast message ܩܯ,௦ that is decrypted using the shared key ݐܭ of

the verifier, the decrypted messages are checked to determine whether they contain the correct ܲܦܫ	 in
order to verify the read message. When the message is successfully verified, the shared key ݐܭ of the
verifier is employed to compute the pieces of proof ܯ, assigned to a tag ܶܦܫ generated by ܴܦܫ for

confirming the personal tag identification code ܶܦܫ , a randomly generated number ܰݐ , and a

timestamp (when the offline stamp and online stamp are ܶܵܥ and ܶܵ௩, respectively). Subsequently, the
hash value ܪ(ܶܦܫ||ݐܭ||ܶܵ௩) for ܶܦܫ, ݐܭ, and ܶܵ௩ are computed together with the pieces of proof ܯ, 	and a random number ܰݐ, to generate the message verification code ܸ, for the reader to reconfirm.

When the leaf node reader ܴܦܫ receives response messages from the tags, the obtained ܰݐ, ܯ, ,

and tag verification value ܶܪ = (as indicated in Step 3)ܦܫܴ transmitted from (||ܶܵ௩ݐܭ||ܦܫܶ)ܪ

are computed to obtain ܸ, ; in addition, the message verification code ܸ, ᇱ transmitted by the tags are,

this time, employed to inspect the message integrity and verify which tags transmitted the messages,

which is derived from the other group members, in order to prevent malicious users from exploiting any

of the recipients’ tags that are not associated with this delivery, thereby blocking transmission of the
proof. Subsequently, the reader ܴܦܫ combines all of the pieces of proof ܯ, and the verification code ܸ, by incorporating the XOR operation of commutative law, both of which are generated by the group

member tags, into pieces of proof ܯ, without sequence and message verification code ܸ, . Through

the shared key ݎܭ of the verifier, the pieces of proof ܯ generated by the reader are computed using

the reader identification code ܴܦܫ and the randomly generated numbers ܰݎ and ܯ, ; along with ܸ,

and ܰݎ, the message verification code ܸ is generated for all of the tags. The session key ܵܭ is used

to encrypt ܲܦܫ	, ܯ, ܸ, ܰݎ, ܯ, , and ܰݐ for all group member tags, which are transmitted back to

parent node reader ܴܦܫ.

After the parent node reader ܴܦܫ	 receives the response message ܨ	 transmitted by child node reader ܴܦܫ, the session key ܵܭ	 is first used to encrypt the message to confirm that the message contains the

same recipient ܲܦܫ	 in order to ensure the correctness of the message. Subsequently, using the same
method as the leaf node reader, all of the received pieces of proof ܯ and message verification codes ܸ of the child node reader are used to generate the pieces of proof 	ܯ for the reader, and the message

verification code ܸ is transmitted with message ہܨ(ೖషభ) ೝ⁄ 	ۂ 	 to the reader at the upper level.

Sensors 2015, 15 27100

Figure 6. Generating grouping proofs by multilayered reader.

As shown in Figure 7, Stage 3 indicates that after the reader ܴܦܫ	 receives a message from the
recipient ܲܦܫ	, the tag verification value ܶܣ generated by the verification server, and the ܰݐ, ܯ, transmitted by the child node reader are computed to confirm whether they match theܯ , andݎܰ ,

message verification code ܸ to reconfirm the message integrity and verify the tag message. In addition,

the shared key ݎܭ	 of the verifier is employed to generate the grouping proof ܯ , which is then

transmitted to the transporter’s tags depending on the results obtained from the identification code ܴܦܫ	 	of the reader, and a randomly generated number ܰݎ	 and all of the excluded pieces of proof sent

back from the child node.
When the transporter’s tag receives the grouping proof ܯ from the reader ܴܦܫ	 , a random number ܰܽ

is generated, and the transporter’s private key ܴܲ	 is used with the signing function to compute ܯ and

the signed proof ܯ; subsequently, ܯ and ܰܽ are transmitted back to the reader ܴܦܫ	 . After the reader ܴܦܫ	 receives the message ܯ signed by the transporter, ܯ is then transmitted to the recipient’s tag for

signing. Using the randomly generated numbers ܰ and ܯ and the private key ܴܲ	 , the recipient
computes the signed proof ܯ; finally, ܯ and ܰ are then transmitted back to the reader ܴܦܫ.

TagiTagq ReaderjReaderq ReaderqReaderk

PIDq
, RIDq, rrq, SKqPIDq, RIDj, Kr j, SKj PIDq, RIDq, Krq, SKq qPIDq, RIDk, Krk, SKj, TSv, RGj, RTj, (TSC)*2PIDq, TIDi, tt iPIDq, TIDq, Ktqq

5. Mj,i, Nti, Vj,i
q qq

Fj = E(SKq, TSv||(TSC)*3|| Fj = E(SKj, PIDq||TSv||(TSC)*2||RGj ||RTj)
q q

If Vj,i = H(THi ||Mj,i||Nti)

 Vj,0 = {Vj,0⊕Vj,i | ∀i THi ∈ RTj }

 Mj,0 = {Mj,0⊕Mj,i | ∀i THi ∈ RTj }

 generate Nrj

 Mj = MAC(Krj, RIDj ||Nrj ||Mj,0)

 Vj = H(Mj ||Vj,0||Nrj)

 Fk = E(SKj, PIDq||Mj ||Vj ||Nrj ||{Mj,i, Nti |∀i THi ∈ RTj })

q

qq q

q q q q

q

q q q q q

q q q

q q q q q q q q

q'

q

q q q q

q

q

3. Fj

IF

 MG q= {Eg(GK q q q

If PIDq' = PIDq

 MGj,s = {Eg(GKs, PIDq||TSv||(TSC)*2) | ∀s GKs ∈ RGj }
4. MGj,s

q

If

 Group ID Authenticated;

 generate Ntq

 M q = MAC(K q, TDq||Ntq

q qq qq

q

{PIDq||TSv,||(TSC)*2} = Dg(Kti, MGj,s)

If PIDq' = PIDq

 Recipient ID Authenticated;

 generate Nti
 Mj,i = MAC(Kti, TIDi ||Nti ||(TS)*3)

 Vj,i = H(H(TIDi ||Kti ||TSv)||Mj,i ||Nti)

q q

If PIDq' = PIDq

 Vk,0 = {Vk,0⊕Vkr+u | ∀u RGkr+u ⊆ RGk ∧ 1≤ u ≤ r}

 Mk,0 = {Mk,0⊕Mkr+u | ∀u RGkr+u ⊆ RGk ∧ 1≤ u ≤ r}

 generate Nrk

 Mk = MAC(Krk, RIDk ||Nrk ||Mk,0)

 Vk = H(Mk ||Vk,0||Nrk)

 F[(k-1)/r] = E(SK[(k-1)/r], PIDq||Mk ||Vk ||Nrk ||{Mkr+u,i, Nti |∀i THi ∈ RTk })

q q q

q q q

q

q

q

q

q q q q

q q q q q q

q

q

q q q q

q q

*2 When offline FO q = 1, the timestamp is generated by the trusted clock tag.
*3 When offline FO q = 1, TS = TSC; else, TS = TSv .

6. Fk

Sensors 2015, 15 27101

If the reader ܴܦܫ cannot connect to the verifier when the receipt proofs and pick proofs are signed
by the transporter and recipient, then the timestamp ܶܵ௩ and signed proof ܯ must be transmitted back

to trusted clock tag to verify that parts of the cargo could not have been moved to other locations while

the proofs were being generated. When the clock tag receives a message indicating that the difference

between the system time and the time when grouping proof was initialized (ܶܵ) is below the threshold

value, the shared key ܿܭ of the verifier can be employed to generate the final grouping proof ܯ௩ for ܯ, ܶܵ௩	 , ܶܵ	 , thereby providing evidence that all of the tags, the transporter, and the recipient are in the

same interval. Using a light symmetric key encryption method, the key ܿܭ encrypts the grouping proofs ܯ௩ and ܶܵ	 into the message ܶܥ, which is transmitted back to the mobile reader and then to the verifier

once a connection becomes available, for the protocol to be finalized. However, if the reader ܴܦܫ can

connect to the verifier when it receives the grouping proofs signed by the transporter and the recipient,

then the clock tag is not needed and the grouping proof can be directly transmitted to the verifier to

confirm whether the grouping proof has been completed within the time threshold.

Figure 7. Affirm the tags and proofs signed by both sides and verify the time constraint.

2.3. Dispute Resolution Phase

When the transporter transmits the final grouping proof ܲ to the verifier, the verifier confirms the

integrity of the transporter, recipient, and cargo. First, when ܨ 	ܱ = 0, the shared key ܿܭ of the clock

tag is employed to decrypt in order to obtain the grouping proof ܯ௩ and start time ܶܵ	 in message ܶܥ;

subsequently, the recipient’s random number ܰ	 and public key ܲܭ	 are used to decrypt the grouping

proof ܯ௩ in order to obtain ܯ , and the transporter’s random number ܰܽ and public key ܲܭ	 are
employed to decrypt ܯ in order to obtain the grouping proof ܯ. According to the total number of tags ݍߜ, segments k, readers ݍߚ, and the maximum number of concurrent scans r, the read-tree and grouping

 generate Na

 Ma = Sign(PRa, M0||Na)q q

Reader0 TransporterClock Tag Recipient

CID, Kc PIDq, PRq

 If FO q equals 0

 goto Verifier

12. TC

 generate Npq

 Mp = Sign(PRq, Ma||Npp)q q

7. M0
q

8. Ma, Naq

9. Ma
q

10. Mp, Np1 q q

11. TSv, Mp
q

AID, PRa
PIDq, RID0, Kr0, TAq, RG0, TSv

q

 If TSnow – TSc < ΔT

 Mv = MAC(Kc, Mp ||TSv||TSc)

 TC = LE(Kc, Mv ||TSc)

q q

q

 P = {(Nt1, Nt2, ..., Ntδq), (Nr0, Nr1, ..., Nrβq), Na, Npq, r, Mp, (TC)*4}q q q q q q q

If PID q' = PID q and Vu = Vu

 M0,0 = {M0,0⊕Mu | ∀u RGu ⊆ RG0 ∧ 1≤ u ≤ r}

 generate Nr0

 M0 = MAC(Kr0, RID0 ||Nr0 ||M0,0)

q' q

q q q q q

q

q qq

*4 When the offline FO q = 1, the timestamp and grouping proof is encrypted by the clock tag.

Sensors 2015, 15 27102

key are surmised from and adopted for generating the proofs. In accordance with the proposed protocol, ܯ is recomputed and compared with the transmitted grouping proof ܯᇱ to determine whether the two

are identical. Finally, according to the shared key ܿܭ, start time ܶܵ௩	 , and timestamp ܶܵ	 of the clock
tag, the message verification code ܯ௩ = 	ܭ൫ܥܣܯ 	||ܶܵ௩ܯ, ||ܶܵ	 ൯ is computed to reconfirm whether the

code corresponds with the authentication message provided by the clock tag, thus effectively completing

the grouping proof. By contrast, when ܨ 	ܱ = 0, the verifier first computes whether the time difference
between the current system time and timestamp ܶܵ௩	 is below the threshold value; subsequently, ܯ is

computed by the read-tree, and ܯ௩ is confirmed to complete the reinspection through the proofs signed
by both parties and the computed random number ܯᇱ.

Therefore, in the process of generating the grouping proofs, the transporter and recipient each verify

all of the involved tags and use their personal private keys to sign the proofs; thus, the grouping proofs

guarantee the rights of both parties. Specifically, when cargo is received by the recipient, the transporter

has undeniable proof that the recipient has received the cargo. In addition, if the recipient needs to return

cargo through the transporter, the same protocol can be applied, except that the roles of recipient and

transporter are swapped. The recipient also has the signed proof indicating that the cargo has been

returned to the transporter, thus preventing the transporter from denying that cargo has been retrieved.

3. Security and Performance Analysis

The proposed method and the Internet connection method for the verifier use secure frameworks and

can therefore be trusted. Extant mechanisms can also be employed so that the transporter’s reader ܴܦܫ	
can extract the recipient’s identification code ܲܦܫ	, timestamp ܶܵ௩	 , tag check code ܶܣ	, and group of
keys ܩ by using the current security verification procedure to ensure that the connection is secure before

the protocol proceeds. The following analysis is primarily focused on determining whether the protocol

proposed in this study can prevent most known malicious attacks aimed at exploiting grouping proofs

transmitted between tags and readers, and whether it can guarantee anonymity and message integrity.

Prevent Replay Attack

Malicious users intercept a message containing a previously generated grouping proof through an

eavesdropping, and the previously captured message is replayed to produce grouping proofs for
nonexistent tags. However, because any piece of proof for the tags incorporates a random number ܰݐ,

timestamp ܶܵܥ, or ܶܵ௩ generated by tags, the reader can thus detect errors and ignore the replay message

by using the message check code transmitted from the verifier to authenticate the received message.

Prevent Tag Impersonation

The tags generate the pieces of proofs ݐܭ)ܥܣܯ	, ||ܶܵ) and a message verification code ܸ,	ݐܰ||	ܦܫܶ from the shared key ݐܭ of the verifier, and the reader stores the message verification code required

for reading the tags, which is generated by the verifier. Because malicious users do not have the required
shared key ݐܭ	of any tag in the tag group, the pieces of proofs generated by impersonated tags cannot

pass the reader’s or the verifier’s authentication process.

Sensors 2015, 15 27103

Prevent Multi-session Attack

If multiple readers simultaneously generate grouping proofs, the leaf node reader stores the tag check

codes of all of the members in this tag group; thus, tags that are not assigned to the group cannot pass the

authentication process; and thus, tag impersonation attacks are ineffective. Consequently, malicious users

cannot forge extra grouping proofs by crisscrossing pieces of proofs derived from two different groups.

Prevent Denial of Proof

In addition to generating pieces of proof for every tag, the protocol also generates the message
verification code ܸܣ, with the tag verification code ܪ(ܶܦܫ||ݐܭ||ܶܵ௩). Although the leaf node reader

has no shared key ݐܭ for the tags and cannot generate tag verification codes, using the cargo integrity

check code 	ܶܪ = 	||ܶܵ௩ݐܭ||ܦܫ൫ܶܪ ൯ provided by the verifier, it can confirm whether a response

message has cargo tag members that do not belong to this delivery, but are instead generated by a

malicious user. Therefore, the condition of authentication failure being generated by the verifier despite

the existence of all legitimate tags is prevented.

Prevent Concurrency Attack

When two readers simultaneously use the same tags, parameter confusion can occur, which enables a

malicious reader to scan tags by crisscrossing tags, and block grouping proofs. However, in the proposed

protocol, no cargo tag has a temporary parameter, and the reader needs to communicate with the tags only

once to generate the pieces of proof. Therefore, it is impossible for a concurrency attack to occur.

Anonymity

In the proposed protocol, all messages used by the reader are multicast messages that do not contain
specific tag information. In addition, the pieces of proof ܯ and message check code ܸ, transmitted by

any tag ܶܦܫ are computed from using hash functions, along with the random numbers ܰݐ generated

each time and a shared key ݐܭ; thus, the anonymity of the cargo tags can be protected. In the final

signed message, the confidentiality of the transporter’s and recipient’s tags is protected by random

numbers ܰܽ and ܰ	, respectively.

Prevent Tracking Attack

The protocol proposed in this study can protect the anonymity of all the involved tags. The messages
transmitted by a tag change according to the random number ܰݐ , which is generated each time a

message is sent, and the reader also uses a different session key for every message. Therefore, the

relationship among the messages containing proofs for any tag cannot be obtained by analyzing multiple

grouping proofs; thus, the protocol ensures the confidentiality of the location of the cargo tags to prevent

the cargo from being tracked by malicious users.

Message Integrity

The pieces of proof ܯ, transmitted back to the reader by the tags are require a random number ܰݐ

in order to be calculated; thus, when a malicious user intercepts the random numbers, despite the pieces

of proof being generated by legitimate tags, the proofs cannot be successfully reconstructed by the

verifier because the random numbers are different for every message. Therefore, the message verification

Sensors 2015, 15 27104

code ܸ, is employed to ensure that a response message has not been modified in order to ensure the

message integrity.

Table 2 shows the OMRGP proposed in this study and other grouping proof methods to compare

whether they can protect against the major types of attacks targeting grouping proofs: replay attack, tag

impersonation attack, multisession attack, denial of proof, concurrency attack, and tracing attack. The

protocols can protect against those marked with an “O”; those marked with an “X” are a security threat;

and those marked with “∆” can be are not a threat so long as certain conditions are satisfied.

Table 2. Comparison table indicating the security of grouping proof.

Protocol Replay Attack Tag Impersonation Multi-Session Attack Concurrency Attack Denial of Proof

Burmester et al. [10] O O O X ∆2

Saito et al. [13] X X O X X

Lin et al. [18] O O O O X

Sun et al. [19] O O O ∆1 X

Hermans et al. [20] O O O X X

Lo et al. [21] O O O O X

Ma et al. [22] O O O O X

Chien et al. [24] O O O X X

Peris-Lopez et al. [26] O O O O X

Piramuthu [27] O O X X X

Sundaresan et al. [28] O O O O O

Yen et al. [32] O O O O ∆2

Leng et al. [37] O O O X X

Huang et al. [44] O X O X X

OMRGP O O O O O

Note: ∆1: Not overwriting the proofs from different readers; but the random numbers generated by proofs may

still be overwritten; ∆2: Filters proofs that do not belong to a group of tags, but cannot prevent a denial of proof

attack because of the compromised proof integrity.

Table 2 shows that the grouping proof proposed in this study can protect against all major attacks

currently in use. In the method proposed by Saito et al. [13], the tags generate messages but do not use

random numbers that change for every message; consequently, malicious users can generate counterfeit

tags by replaying old messages to generate grouping proofs [18,27,31]. The method proposed by Huang

and Ku [44] can be exploited by replacing parts of the pieces of proof to forge tags [26,45] and

authentication can be avoided if the verifier has listed tag as redundant in its cyclic redundancy check.

Peris-Lopez et al. [15] showed that the method proposed by Piramuthu [27] was flawed because it

enables malicious users to eavesdrop and intercept pieces of grouping proofs by crisscrossing two

identical time intervals to forge an additional third proof. In addition, according to the methods proposed

by Saito et al. [13] and Piramuthu [27], tags are read and written multiple times to generate grouping

proofs; this causes the problem in which the previously written content can be overwritten by other

readers [21]. Moreover, various methods for generating grouping proofs [10,20,24,37,44] require the

reader to read the tags more than twice when generating grouping proofs. However, the tags cannot

verify readers; thus, when several readers simultaneously generate grouping proofs for the same tag,

concurrency attacks can arise, which can prevent grouping proofs from being generated because the

Sensors 2015, 15 27105

contents in previous tags are overwritten by subsequent readers. The method proposed by Sun et al. [19]

requires the read group to be inspected every time tags generate proofs; thus, the proofs read by different

readers are not overwritten; however, the random numbers are not subjected to the same security check

in the previous step and may therefore be overwritten. Because the proposed method can complete the

grouping proofs by reading and writing on the tags and because random numbers are also used in addition

to the identification codes used in the prior authentication process, the proposed protocol prevents

erroneous grouping proofs from being generated, thereby protecting against replay attacks, tag

impersonation, multisession attacks, and concurrency attacks.

In addition to the correctness of the generated proofs, the readers do not authenticate the response message

tags in the grouping proof methods of [13,18–22,24,26,27,37,44]; thus, if response messages generated from

tags that do not belong to the specific group of tags are included, the verifier rejects the messages and discards

the proofs, resulting in a denial of proof [28]. Yen et al. [32] and Burmester et al. [10] have proposed that

message integrity must be authenticated to prevent parts of a message from being modified, which causes

the problem in which legitimate proofs cannot be authenticated by the verifier, resulting in a denial of

proof [28]. Therefore, in the present study, readers were employed to verify all of the collected tags to

prevent including tags that do not belong to the group and to avoid denial of proof from occurring.

Finally, the method proposed by Sundaresan et al. [28] can protect known attacks on grouping proofs.

However, as shown in Table 3, because the proposed method cannot enable all of the involved proof

tags to reduce the time for generating grouping proofs through parallel computing, therefore, attackers

can exploit this time difference to generate legitimate grouping proofs from a group of tags that do not

exist in the same time and location [36]; consequently, this method is inapplicable to SCM where large

volumes of cargo are involved.

Table 3. Comparison of grouping proof performance.

Protocol Anonymity Tracking Attack Offline Order Independent Simultaneity

Burmester et al. [10] O O O X ∆4
Saito et al. [13] O ∆3 X X X
Lin et al. [18] X X O X X
Sun et al. [19] O O O O O

Hermans et al. [20] O O O O O
Lo et al. [21] O O O X X
Ma et al. [22] O O O X X

Chien et al. [24] O ∆3 X X X
Peris-Lopez et al. [26] O O X X X

Piramuthu [27] X X X X X
Sundaresan et al. [28] O O O X X

Yen et al. [32] O O X O O
Leng et al. [37] X X X O X

Huang et al. [44] X X O X X
OMRGP O O O O O

Note: ∆3: Single message that features anonymity; however, relevance among tags with messages from

different sessions can be used to track tag movement; ∆4: Only parts of the tags in the group can concurrently

compute pieces of proof.

Sensors 2015, 15 27106

Table 3 indicates that the proposed system can prevent cargo from being tracked and provide

anonymity while operating in the offline phase; simultaneously, pieces of proof that do not need to follow

the tag sequence can be generated to achieve the five types of security characteristics involved in

processing grouping proofs. However, to ensure confidentiality, the system must be designed to prevent

malicious attackers from obtaining the identity of the tag owner by eavesdropping on grouping proofs.

Because many grouping proof methods [18,27,37,44] involve directly transmitting identification codes

to the readers without first anonymizing the tag owner’s identity; consequently, the cargo owners’ private

information can be stolen and the location of their cargo can be tracked [28]. Moreover, although the

methods proposed by Chien et al. [24] and Saito et al. [13] ensure tag anonymity and thus ensure that

malicious attackers cannot track the tagged cargo simply by monitoring the identification codes of the

tags, nevertheless, because the request acknowledgement response messages sent by the tags are

identical, malicious attackers can track the location of the tagged cargo by eavesdropping on multiple

messages [26]. Therefore, this study incorporated random numbers into the messages to scramble the

responses for preventing from being tracked in the supply chain, thereby achieving location privacy.

According to the method proposed by Peris-Lopez et al. [26], a reader must be able to connect to

the verifier for it to obtain a timestamp of when the proofs were generated; subsequently, the grouping

proofs are immediately sent to the verifier to compare the time [22]. Similar grouping proof

methods [13,24,27,32,37] also require immediate authentication from the verifier, and are unsuitable for

generating grouping proofs in the offline phase.

The grouping proofs proposed by Saito et al. [13] and Piramuthu et al. [27] pertain to conventional

proofs generated by all tags on site one after another; thus, the verifier must verify the tags in the order that

they were generated [29]; furthermore, methods for generating grouping proofs [10,18,21,22,24,26,44]

typically have a particular sequence. Because the method proposed by Leng et al. [37] involves unicasting

messages to tags, the participating members cannot concurrently conduct computation [19]. In the

method proposed by Burmester et al. [10], the tree structure can permit only a few tags in the group to

concurrently compute the pieces of proof, and the reader must follow the predetermined sequence when

collecting the proofs. Therefore, the present study adopted the multicasting method to simultaneously

generate the pieces of proof for all tags and can collect the grouping proofs without adhering to any

sequence through the XOR operation of commutative law.

4. Effectiveness Analysis

Because the grouping proofs generated in sequence require the time complexity O(m!) when being

authenticated by the verifier, this section compares the proposed OMRGP method only with those

grouping proof methods that do not require a predetermined sequence [19,20,32,37] to examine the

computing and transmission time for the tag and reader to generate proofs. To ensure that the comparison

is objective, the experiments were conducted under the following constraints: each method involved

using a reader that can scan r tags [39] to generate grouping proofs for m tags [46] at a rate of 3.55 M

clock cycles per second. In addition, an error-correcting code and asymmetric encryption function with

the same security strength (280 bits) were employed.

Specifically, TSE denotes the computation time for conducting symmetric encryption and

decryption [47], TEC indicates the time for conducting elliptic curve encryption and decryption [48], TG

Sensors 2015, 15 27107

represents the time for encrypting and decrypting a group key [49], TRNG denotes the required time for

generating a random number [50], TH is the computation time for executing a hash function [47], and

TSIG indicates the required time for proof signing [51]. In addition, because XOR logic operation can be

neglected compared to the aforementioned computation time, the formulas in Table 4 do not consider

the required time for this type of operand. To simplify the comparison, the computing capacity of the

reader was adopted to present the required computation time for devices with a powerful arithmetic

capability, as demonstrated by the additional timestamps used in the various methods.

Table 4. Computational capacity of grouping proof tags (with m number of tags).

Name of the Method Cargo Tag Mobile Reader

Sun et al. [19] ⌈݉/ݎ⌉(2 ௌܶா + ோܶேீ) ௌܶா + 2 ுܶ
Hermans et al. [20] ⌈݉/ݎ⌉(2 ாܶ + 2 ோܶேீ) ௌܶூீ + ோܶேீ

Yen et al. [32] ⌈݉/ݎ⌉(7 ோܶேீ) 2 ௌܶூீ + m(ோܶேீ) + 5 ோܶேீ

Leng et al. [37] ݉(2 ுܶ + ோܶேீ) ݉(ுܶ) + ݉(ுܶ)ݎ + ுܶ

OMRGP ܶீ + 3 ுܶ + ோܶேீ
ܶீ + 2 ௌܶூீ + 3 ௌܶா + 7 ுܶ + 3 ோܶேீ (⌈log(݉ ⁄ݎ)⌉)(2 ௌܶா + 2 ுܶ + ோܶேீ)

Table 4 indicates the computational capacity of m tags according to the grouping proofs generated by

the reader with r capacity for the maximum number of tags that can be scanned concurrently. Therefore,

for the OMRGP method proposed in this study, each reader can manage a maximum of r and thus only

one multicast is to be broadcasted to all tags. The grouping proof methods in [19,20,32] also send

multicast messages to all tags; however, when m > r, the reader must transmit the message multiple

times; thus, m tags required a computation time of ⌈݉/ݎ⌉ times. According to the method proposed by

Leng et al. [37], a reader must send different messages to each tag, and each tag requires its own

computation, in that m tags ultimately require m times of computation time. By contrast, Leng et al.

indicated that the reader should assign messages to each tag; Yen et al. verified the identification code

for individual tags, in which the computational capacity of the reader increased with the number of tags;

and Hermans et al. and Sun et al. have employed methods in which identical messages were broadcast

to all tags; thus, the required computational capacity for the reader to generate grouping proofs remained

constant. The proposed method was designed for operation in a multilayered reader; despite a similar

message is broadcast, the readers are required to communicate with other readers, thereby increasing the

computational capacity to log times. In Figures 8 and 9, readers with a maximum reading capacity ݎ/݉

of 200 tags were employed to analyze the computing time required by various methods when the number

of tags and group tags in the reader doubled from 100 each time until the quantity reached 12,800. Since

we use a group key with the tree height of 2, a reader can multicast message to 200 tags within the

capacity that can be read by the reader. In the following simulations, 100 tags and 200 tags need two

readers, 400 tags need three readers, 800 tags need five readers, 1600 tags need nine readers, 3200 tags

need 17 readers, 6400 tags need 33 readers, and 12,800 tags need 65 readers.

Sensors 2015, 15 27108

Figure 8. Comparing the computational load of the tags.

Figure 9. Comparing the computational load of readers.

According to Figure 8, when the proposed OMRGP method involved fewer than 200 tags, more

computing time was required because the group key has to be decrypted. When the number of tags

exceeded 200, the number of grouping proofs [19,20,32,37] increased with the number of tags; thus, the

computing time and tag number were linearly related. Therefore, when the grouping proofs were

generated for an extreme number of tags, the tag computational capacity of the proposed OMRGP

method was more efficient compared with the other methods. In addition, Figure 9 indicates the

computational capacity of the reader in generating grouping proofs. Although the same message was

broadcast, the required computation time was more than that of the other multicast methods [19,20,32]

because the group messages must be encrypted, messages must be transmitted between readers, and

proofs must be signed by both the transporter and the recipient. Because the method proposed by

Leng et al. [37] adopted a unicast method, the required computation time under conditions involving

extreme number of tags was higher than that required from using OMRGP method.

This study subsequently compared the required transmission time for the proposed OMRGP with that of

the other methods, for which LID denotes the length of a tag identification code (based on ISO-18000-6), LSE

is the message length after applying symmetric encryption, LEC indicates the message length after

applying elliptic curve encryption, LG represents the message length after performing group key

Sensors 2015, 15 27109

encryption, LRNG indicates the message length for a random number, LH represents the message length

of a hash function, and LSIG represents the required message length after signing the proof.

Table 5 indicates the transmission capacity of the grouping proofs generated by m tags. Because the

proposed OMRGP method adopted a multilayered grouping proof structure, a maximum or r tags were

distributed to each reader; thus, compared with the other methods, increasing the cargo volume did not

increase the transmission time from the tags to the verifier. Moreover, in the transmission from the reader

to tags, a read-tree was employed; consequently, the transmission time between readers increased ⌈log(݉ ⁄ݎ)⌉ times. In the methods proposed by Hermans et al., Yen et al., and Sun et al., the readers

could not manage m tags simultaneously; consequently transmissions were repeated ⌈݉/ݎ⌉ times.

According to the subgrouping proof of Leng et al., the reader transmitted the message ⌈݉/ݎ⌉ + ݉ times.

For the sake of objectivity, all methods adopted the electronic product code Class-1 Generation 2 (EPC

Class-1 Gen2), with the network bandwidth of the tags and readers set to 160 and 640 kbps,

respectively [38]. The message lengths for LID, LSE, LRNG, and LH were arbitrarily set at 64 bits, and the

message lengths for LECC and LG were arbitrarily set at 192 and 1024 bits, respectively.

Table 5. Transmission capacity of m grouping proof tags.

Name of the Method From Tag to Reader From Reader to Tag (or Reader)

Sun et al. [19] ݉(ܮூ + (ுܮ3)⌈ݎ/݉⌉ (ௌாܮ2
Hermans et al. [20] ݉(2ܮா + (ோேீܮ)⌈ݎ/݉⌉ (ோேீܮ

Yen et al. [32] ݉(4ܮோேீ) ⌈݉/ݎ⌉(ܮ3ோேீ)
Leng et al. [37] ݉(2ܮூ + ுܮ + (ோேீܮ ூܮ2)⌈ݎ/݉⌉ + (ோேீܮ + ூܮ)݉ + (ுܮ

OMRGP ܮ2)ݎு + ீܮ (ோேீܮ + (⌈log(݉ ⁄ݎ (ௌாܮ2)(⌈(
Figures 10 and 11 show the transmission time for the tags to generate the grouping proofs. The

methods of Sun et al. and the one proposed in the present study transmitted messages that were identical

in length (3 × 64 = 192	bits); however, the proposed method divided all of the tags into several groups

and every group could process concurrently. When the number of tags exceeded 200, the time for the

reader to collect the tags, according to Sun et al., exceeded the fixed transmission time suggested in the

proposed OMRGP method. In addition to the method proposed by Sun et al., the other three methods

had to transmit messages that were longer than 192 bits. Hence, when >200 tags were involved, the

transmission time of the proposed method was shorter than that of the other methods. Figure 11 depicts

the time required for the reader to transmit messages. Leng et al. [37] did not adopt a multicasting

protocol for transmitting messages, which increased the reader’s transmission time with an increased

number of tags. When more than 200 tags were involved, the grouping proof methods of [19,20,32] were

not able to scan all tags in one shot because of the reading capacity of the readers, which divided and

read for several cycles, thereby increasing the transmission time. In this present study, grouping proofs

were generated using the group key and the multilayered read-tree. When there was only a few tags

involved, the proposed OMRGP method took longer to read than that other multicast methods; however,

an observation can be made that the OMRGP method is more efficient compared with the other methods

when a considerable number of tags is involved.

Sensors 2015, 15 27110

Figure 10. Comparing the message quantity of the collected tags.

Figure 11. Comparing the message quantity transmitted by the reader.

Figure 12 shows the total amount of time consumed when several tags generated the grouping proofs,

including the computing and transmission times of the tags and readers involved. In the OMRGP method,

although an increased time was taken for computation, the transmission capacity was evidently larger

than the computational capacity and thus prevented the time for generating grouping proof to increase

considerably with an increased number of tags. In addition, the OMRGP method features a mechanism

for verifying tags. According to Sun et al., readers that were not required to verify tags reduced

computation load; however, the time for generating grouping proofs when an extreme number of tags

were involved exceeded the time for the OMRGP method. Yen et al. employed a random function to

generate grouping proofs; groups could not be selected under their method; thus, under the condition in

which a mechanism for verifying tags existed, the effectiveness of OMRGP method becomes more

obvious once the number of tags exceeds a certain threshold. Leng et al. adopted a unicast method, in

which the reader was required to perform a high number of transmissions; therefore, in less time than it

would take unicast grouping proofs, the OMRGP method can generate grouping proof in advance and

when there are fewer tags. Finally, Hermans et al. adopted a high elliptic curve encryption and decryption

to generate grouping proofs, demonstrating the effectiveness of the OMRGP method when there are

fewer tags.

Sensors 2015, 15 27111

Figure 12. Comparing the time for generating grouping proofs.

5. Conclusions

This study proposed a method for generating multilayered grouping proofs to solve the disputes over

the loss of cargo when high-quantity shipments are transferred in the supply chain. Through the layered

parallel scans, the requirement in which the generated grouping proofs must be read in batches because

of the maximum tag-reading capacity constraint on a reader in the supply chain environment can be

solved. Group keys were employed to distribute the tags corresponding to each reader to ensure that the

tags are not repeatedly read, thus exceeding the time threshold. In addition, both the transporter and

recipient were allowed to verify the cargo and sign the proofs to guarantee the integrity of the grouping

proof. The anonymity and message integrity characteristics of the OMRGP method can defend against

most of the currently known attacks on grouping proofs: replay attack, multi-session attack, tag

impersonation attack, denial of proof, and tracing attack. The OMRGP method overcame the problem

of at least one type of characteristic not complying with the security standards, a problem possessed by

most studies. This study also analyzed the computation load of the tag and reader. The effectiveness of

grouping proof protocols were compared, and the results show that when an extreme number of tags are

involved, the increase in the number of tags did not evidently increase the time for generating grouping

proofs under the proposed protocol. Consequently, the protocol can be applied to SCM to reduce the

time required to generate grouping proofs, and prevent exceeding the time threshold value for generating

grouping proofs, thus preventing attackers from hijacking tags when the grouping proof is being

processed, causing grouping proof problems.

Acknowledgments

The authors would like to express the sincere thanks to the reviewers for their invaluable comments

and suggestions. This work is supported by the Ministry of Science and Technology, Taiwan, under

Grant Nos. MOST 104-2221-E-033-020.

Sensors 2015, 15 27112

Author Contributions

All of the authors contributed extensively to the work. The original idea was conceived by

Ming Hour Yang and Jia Ning Luo. Ming Hour Yang is the main author; he developed the methodology,

supervised the research and revised the manuscript. Jia Ning Luo contributed to the manuscript’s

discussion and edition. Shao Yong Lu contributed with data processing and results analysis. The authors

approved the final manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Engberg, S.J.; Harning, M.B.; Jensen, C.D. Zero-knowledge Device Authentication: Privacy &

Security Enhanced RFID preserving Business Value and Consumer Convenience. In Proceedings

of the 2nd Annual Conference on Privacy, Security and Trust, Moncton, New Brunswick, Canada,

13–15 October 2004; pp. 89–101.

2. Pisarsky, G.M. RFID Technology: An Analysis of Privacy and Security Issues. In Proceedings of

the Computer Science Seminar SA3-T1–1, Hartford, CT, USA, 24 April 2004; pp. 1–5.

3. Koh, C.E.; Kim, H.J.; Kim, E.Y. The impact of RFID in retail industry:Issues and critical success

factors. Shopp. Cent. Res. 2006, 13, 101–117.

4. Michael, K.; McCathie, L. The Pros and Cons of RFID in Supply Chain Management. In

Proceedings of the International Conference on Mobile Business, Sydney, Australia, 11–13 July

2005; pp. 623–629.

5. Ekwall, D.; Lantz, B. Seasonality of cargo theft at transport chain locations. Int. J. Phys. Distrib.

Logist. Manag. 2013, 43, 728–746.

6. Ekwall, D.; Lantz, B. Cargo theft at non-secure parking locations. Int. J. Retail Distrib. Manag.

2015, 43, 204–220.

7. Ray, B.R.; Chowdhury, M.; Abawajy, J. Critical Analysis and Comparative Study of Security for

Networked RFID Systems. In Proceedings of the 14th ACIS International Conference on Software

Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, Honolulu, HI,

USA, 1–3 July 2013; pp. 197–202.

8. Liang, Z.; Rodrigues, J.J.P.C. Service-oriented middleware for smart grid: principle, infrastructure,

and application. IEEE Commun. Mag. 2013, 51, 84–89.

9. Lo, C.; Hsieh, W.; Huang, L. The Implementation of an Intelligent Logistics Tracking System

Utilizing RFID. In Proceedings of the International Conference on Electronic Business, Beijing,

China, 18–20 October 2004; pp. 199–204.

10. Burmester, M.; Munilla, J. Group-Scanning for RFID Supply Management. In Proceedings of the

IEEE RFID Technology and Applications Conference, Tampere, Finland, 8–9 September 2014;

pp. 266–271.

11. Lien, Y.H.; His, C.T.; Leng, X.; Chiu, J.H.; Chang, H.K. An RFID basedMulti-batch supply chain

systems. Wirel. Pers. Commun. 2012, 63, 393–413.

Sensors 2015, 15 27113

12. Zhong, Z.; Qiu-Liang, X. Universal composable grouping-proof protocol for RFID tags in the

internet of things. Chin. J. Comput. 2011, 34, 1188–1194. (In Chinese)

13. Saito J.; Sakurai, K. Grouping Proof for RFID Tags. In Proceedings of the International Conference

on Advanced Information Networking and Applications, Taipei, Taiwan, 28–30 March 2005;

pp. 621–624.

14. Juels, A. “Yoking-Proofs” for RFID Tags. In Proceedings of the 2nd Annual International

Conference on Pervasive Computing and Communications, Orlando, FL, USA, 14–17 March 2004;

pp. 138–143.

15. Peris-Lopez, P.; Hernandez-Castro, J.C.; Estevez-Tapiador, J.M.; Ribagorda, A. Solving the

Simultaneous Scanning Problem Anonymously: Clumping Proofs for RFID Tags. In the

Proceedings of the 3rd International Workshop on Security, Privacy and Trust in Pervasive and

Ubiquitous Computing, Istanbul, Turkey, 19 July 2007; pp. 55–60.

16. Peris-Lopez, P.; Safkhani, M.; Bagheri, N.; Naderi, M. RFID in eHealth: How to combat medication

errors and strengthen patient safety. J. Med. Biol. Eng. 2013, 33, 363–372.

17. Yu, Y.C.; Hou, T.W.; Chiang, T.C. Low cost RFID real lightweight binding proof protocol for

medication errors and patient safety. J. Med. Syst. 2012, 36, 823–828.

18. Lin, C.C.; Lai, Y.C.; Tygar, J.D.; Yang, C.K.; Chiang, C.L. Coexistence Proof Using Chain of

Timestamps for Multiple RFID Tags. In Proceedings of the Web and Network Technologies and

Information Management, Huang Shan, China, 16–18 June 2007; pp. 634–643.

19. Sun, H.M.; Ting, W.C.; Chang, S.Y. Offlined Simultaneous Grouping Proof for RFID Tags. In

Proceedings of the 2nd International Conference on Computer Science and Its Applications, Jeju,

Korean, 10–12 December 2009; pp. 1–6.

20. Hermans, J.; Peeters, R. Private Yoking Proofs: Attacks, Models and New Provable Constructions.

In Proceedings of the 8th International Conference on RFIDSec, Nijmegen, The Netherlands,

2–3 July 2012; pp. 96–108.

21. Lo, N.W.; Yeh, K.H. Anonymous coexistence proofs for RFID tags. J. Inf. Sci. Eng. 2010, 26,

1213–1230.

22. Ma, C.; Lin, J.; Wang, Y.; Shang, M. Offline RFID Grouping Proofs with Trusted Timestamps. In

Proceedings of the International Conference on Trust, Security and Privacy in Computing and

Communications, Liverpool, UK, 25–27 June 2012; pp. 674–681.

23. Bolotnyy, L.; Robins, G. Generalized “Yoking-Proofs” for a Group of RFID Tags. In Proceedings

of the 3rd Annual International Conference on Mobile and Ubiquitous Systems: Networking &

Services, San Jose, CA, USA, 17–21 July 2006; pp. 1–4.

24. Chien, H.Y.; Liu, S.B. Tree-Based RFID Yoking Proof. In Proceedings of the International

Conference on Networks Security, Wireless Communications and Trusted Computing, Wuhan,

China, 25–26 April 2009; pp. 550–553.

25. Ozcanhan, M.H.; Dalkilic, G.; Utku, S. Analysis of Two Protocols Using EPC Gen-2 Tags for Safe

Inpatient Medication. In Proceedings of the Innovations in Intelligent Systems and Applications

(INISTA), Albena, Bulgaria, 19–21 June 2013; pp. 1–6.

26. Peris-Lopez, P.; Orfila, A.; Hernandez-Castro, J.C.; Lubbe, J. Flaws on RFID grouping-proofs.

Guidelines for future sound protocols. J. Netw. Comput. Appl. 2011, 34, 833–845.

Sensors 2015, 15 27114

27. Piramuthu, S. On Existence Proofs for Multiple RFID Tags. In Proceedings of the ACS/IEEE

International Conference on Pervasive Services, Lyon, France, 26–29 June 2006; pp. 317–320.

28. Sundaresan, S.; Doss, R.; Piramuthu, S.; Zhou, W. A robust grouping proof protocol for RFID EPC

C1G2 Tags. J. Inf. Forensics Secur. 2014, 9, 961–975.

29. Lien, Y.H.; Leng, X.; Mayes, K.; Chiu, J.H. Reading Order Independent Grouping Proof for RFID

Tags. In Proceedings of the International Conference on Intelligence and Security Informatics,

Taipei, Taiwan, 17–20 June 2008; pp. 128–136.

30. Jantarapatin, S.; Mitrpant, C.; Tantibundhit, C.; Nuamcherm, T.; Kovintavewat, P. Performance

Comparison of the Authentication Protocols in RFID System. In Proceedings of the Management of

Emergent Digital EcoSystems, New York, NY, USA, 26–26 October 2010; pp. 131–136.

31. Nuamcherm, T.; Kovintavewat, P.; Tantibundhit, C.; Ketprom, U.; Mitrpant, C. An Improved Proof

for RFID Tags. In Proceedings of the International Conference on Electrical Engineering/Electronics,

Computer, Telecommunications and Information Technology, Krabi, Thailand, 14–17 May 2008;

pp. 737–740.

32. Yen, Y.C.; Lo, N.W.; Wu, T.C. Two RFID-based solutions for secure inpatient medication

administration. J. Med. Syst. 2012, 36, 2769–2778.

33. International Organization for Standardization. ISO/IEC 18000: Information Technology Automatic

Identification and Data Capture Techniques—Radio Frequency Identification for Item Management

Air Interface, 2003. Available online: http://www.iso.org/iso (accessed on 22 October 2015).

34. Cha, J.R.; Kim, J.H. Novel Anti-Collision Algorithms for Fast Object Identification in RFID

System. In Proceedings of the 11th International Conference on Parallel and Distributed Systems,

Fukuoka, Japan, 22–22 July 2005; pp. 63–67.

35. Zhai, J.; Wang, G. An Anti-Collision Algorithm Using Two-Functional Estimation for RFID Tags.

In Proceedings of the International Conference on Computational Science and Its Applications,

Singapore, 9–12 May 2005; pp. 702–711.

36. Fuentes, J.M.; Peris-Lopez, P.; Tapiador, J.E.; Pastrana, S. Probabilistic yoking proofs for large

scale IoT systems. Ad Hoc Netw. 2015, 32, 43–52.

37. Leng, X.; Lien, Y.; Mayes, K.; Markantonakis, K. An RFID grouping proof protocol exploiting

anti-collision algorithm for subgroup dividing. Int. J. Secur. Netw. 2010, 5, 79–86.

38. EPCTM Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Protocol for

Communications at 860 Mhz–960 Mhz, ver 2.0.0, EPCGlobal Inc., November 2013.

Available online: http://www.gs1.org/sites/default/files/docs/epc/uhfc1g2_2_0_0_standard_

20131101.pdf (accessed on 22 October 2015).

39. Bockorick, R.C.; Cooper, S.; Diorio, C.; Dressler, D.; Gutnik, V.; Hagen, C.; Hara, D.; Hass, T.;

Humes, T.; Hyde, J.; et al. Design of ultra-low-cost UHF RFID tags for supply chain applications.

IEEE Comm. Mag. 2004, 42, 140–151.

40. Xu, L.; Huang, C. Computation-efficient multicast key distribution. IEEE Trans. Parallel Distrib.

Syst. 2008, 19, 577–587.

41. Balogh, J.; Békési, J.; Galambos, G. New lower bounds for certain classes of bin packing

algorithms. J. Theor. Comput. Sci. 2012, 440, 1–13.

42. Fleszar, K.; Charalambous, C. Average-weight-controlled bin-oriented heuristics for the

one-dimensional bin-packing problem. Eur. J. Oper. Res. 2011, 210, 176–184.

Sensors 2015, 15 27115

43. Gupta, J.N.D.; Ho, J.C. A new heuristic algorithm for the one-dimensional bin-packing problem.

Prod. Plan. Control. 1999, 10, 598–603.

44. Huang, H.H.; Ku, C.Y. A RFID grouping proof protocol for medication safety of inpatient. J. Med.

Syst. 2009, 33, 467–474.

45. Peris-Lopez, P.; Orfila, A.; Mitrokotsa, A.; Lubbe, J. A Comprehensive RFID solution to enhance

inpatient medication safety. J. Med. Inf. 2001, 80, 13–24.

46. Man, A.S.W.; Zhang, E.S.; Lau, V.K.N.; Tsui, C.Y.; Luong, H.C. Low Power VLSI Design for a

RFID Passive Tag baseband System Enhanced with an AES Cryptography Engine. In Proceedings

of the 1st Annual RFID Eurasia, Istanbul, Turkey, 5–6 September 2007; pp. 1–6.

47. Bogdanov, A.; Leander, G.; Paar, C.; Poschmann, A.; RobshawM.J.B.; Seurin, Y. Hash Functions

and RFID Tags: Mind the Gap. Cryptographic Hardware and Embedded Systems; Springer Berlin

Heidelberg: Heidelberg, Germany, 2008; pp. 283–299.

48. Feldhofer, M.; Wolkerstorfer, J. Strong Crypto for RFID Tags—A Comparison of Low-Power

Hardware Implementations. In Proceedings of the IEEE International Symposium on Circuits and

Systems, New Orleans, LA, USA, 27–30 May 2007; pp. 1839–1842.

49. Bo, S.; Ito, Y.; Nakano, K. CRT-Based DSP Decryption Using Montgomery Modular

Multiplication on the FPGA. In Proceedings of the IEEE International Symposium on Parallel and

Distributed Processing Workshops and Phd Forum, Shanghai, China, 16–20 May 2002;

pp. 532–541.

50. Tsoi, K.H.; Leung, K.H.; Leong, P.H. W. Compact FPGA-based true and pseudo random number

generators. In Proceedings of the 11th Annual IEEE Symposium on Field-Programmable Custom

Computing Machines, Napa, CA, USA, 9–11 April 2003; pp. 51–61.

51. Nakano, K.; Kawakami, K.; Shigemoto, K. RSA Encryption and Decryption Using the Redundant

Number System on the FPGA. In Proceedings of the IEEE International Symposium on Parallel &

Distributed Processing, Rome, Italia, 23–29 May 2009; pp. 1–8.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article

distributed under the terms and conditions of the Creative Commons Attribution license

(http://creativecommons.org/licenses/by/4.0/).

