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Abstract:

 In this paper, a new method for mass air flow (MAF) sensor error compensation and an online updating error map (or lookup table) due to installation and aging in a diesel engine is developed. Since the MAF sensor error is dependent on the engine operating point, the error model is represented as a two-dimensional (2D) map with two inputs, fuel mass injection quantity and engine speed. Meanwhile, the 2D map representing the MAF sensor error is described as a piecewise bilinear interpolation model, which can be written as a dot product between the regression vector and parameter vector using a membership function. With the combination of the 2D map regression model and the diesel engine air path system, an LPV adaptive observer with low computational load is designed to estimate states and parameters jointly. The convergence of the proposed algorithm is proven under the conditions of persistent excitation and given inequalities. The observer is validated against the simulation data from engine software enDYNA provided by Tesis. The results demonstrate that the operating point-dependent error of the MAF sensor can be approximated acceptably by the 2D map from the proposed method.
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1. Introduction

Accurate exhaust gas recirculation (EGR) rate control and air-fuel ratio (AFR) control are important technologies to satisfy the increasingly stringent emission regulations, which are dependent on the precise calculation of the EGR rate and AFR [1,2]. The accuracy of the EGR rate and AFR can be improved by a mass air flow (MAF) sensor, in which a sensor element is heated to a fixed temperature, and the difference in temperature attributed to heat transfer from the heating element to the air flow is a measure of the air mass flow [3,4,5]. However, there are many different local flow fields within the inlet piping due to the three-dimensional turbulence flow, leading to measurement biases in the MAF sensor installed between the air filter and the intake manifold. In addition, the MAF sensor is also subjected to aging phenomena owing to the accumulation of dust on the sensing element, which causes the deterioration of the measurement accuracy [6,7]. These errors will bring about an inaccurate EGR rate and AFR and have adverse impacts on the emission performance of diesel engine.

It is difficult to accurately establish an analytical model for the MAF sensor error. In view of the relatively low computational load, maps (or lookup tables) have been widely used to characterize systems where the functional relationship is unavailable or too complex to represent analytically [8]. Therefore, the relative error of the MAF sensor is described as a one-dimensional (1D) map taking compressor mass air flow as input [2]. In order to track MAF sensor aging, the extended Kalman filter (EKF) for updating maps is presented in [9,10,11], in which the 1D map is represented as a piecewise linear interpolation model and the map parameters are considered as parameter states. Due to the piecewise linear interpolation model having the characteristic of partition calculation and due to the the map input being able to enter only one input interval of the 1D map at any time, then only two parameter states participating in linear interpolation are observable and the other not. Therefore, the error covariance matrix elements of EKF corresponding to the locally unobservable parameter states will increase linearly. Although the solution is to limit this growth in [9,10,11], the convergence of EKF with a confined covariance matrix cannot be guaranteed. In addition, the measurement error of the MAF sensor depends on the engine operating point, which is usually defined as fuel mass injection quantity and engine speed. The 1D map representing MAF sensor error ignores the engine speed, reducing the accuracy when the diesel engine is run over a wide speed range.

The adaptive observer with the advantage of simple convergence conditions is an alternative method for updating maps. Recursive algorithms designed for joint estimation of states and parameters in state space systems are usually known as adaptive observers, and some early works with adaptive observers to jointly estimate states and parameters in multi-input-multi-output linear time varying systems can be found in [12,13]. In order to estimate sensor faults, adaptive observers for linear time varying systems with unknown parameters in output equations have been studied [14,15]. However, the existing adaptive observers cannot directly update maps.

In this paper, an adaptive observer is developed to update the map, in which the MAF sensor error is described as a two-dimensional (2D) map taking the operating point as the input to improve the model accuracy comparing the 1D map. Then, two problems are studied. First, in order to expediently analyze and design the parameter estimation method, the input-output relationship of the MAF sensor error 2D map is expressed as a dot product between the regression vector and the unknown parameter vector. Second, based on the linear parameter varying (LPV) system of the diesel engine with EGR and variable geometry turbocharger (VGT), a 2D map estimation method with a simple structure and low computational load is designed to facilitate the algorithm implementation.

This paper is organized as follows. In Section 2, the 2D map is expressed as the dot product between the regression vector and the unknown parameter vector, and the estimation problem for a class of LPV systems with an unknown parameter vector is given. In Section 3, the LPV adaptive observer is proposed, as well as the convergence analysis. Simulation results from enDYNA are presented in Section 4, and the conclusions are summarized in Section 5.



2. Problem Formulation


2.1. A Diesel Engine Air Path LPV Model

Figure 1 shows the model structure of a diesel engine with EGR and VGT, and the model can be expressed as [16]:

Figure 1. Schematic of the diesel engine model with exhaust gas recirculation (EGR) and variable geometry turbocharger (VGT).
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where [image: there is no content] is the compressor mass air flow, [image: there is no content] is the EGR mass flow, [image: there is no content] is the cylinder mass flow, [image: there is no content] is the fuel rate injected to cylinder, [image: there is no content] is the turbine mass flow, [image: there is no content] is the turbine power, [image: there is no content] is the compressor power, [image: there is no content] is the turbocharger mechanical efficiency, [image: there is no content] is the intake manifold pressure, [image: there is no content] is the exhaust manifold pressure and [image: there is no content] is the turbine speed.


Meanwhile, [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and Pt[image: there is no content] in Equation (1) can be obtained as follows:



[image: there is no content]=[image: there is no content]πRc3·[image: there is no content][image: there is no content],[image: there is no content][image: there is no content][image: there is no content][image: there is no content],[image: there is no content]=[image: there is no content][image: there is no content]·[image: there is no content][image: there is no content],[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]=[image: there is no content][image: there is no content],[image: there is no content]·[image: there is no content][image: there is no content]120[image: there is no content][image: there is no content][image: there is no content],[image: there is no content]=Avgtmax·f[image: there is no content][image: there is no content]·[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]=10-6120[image: there is no content][image: there is no content][image: there is no content],[image: there is no content]=[image: there is no content][image: there is no content],[image: there is no content]·[image: there is no content][image: there is no content]·Πc1-11[image: there is no content][image: there is no content]-1[image: there is no content][image: there is no content],[image: there is no content][image: there is no content][image: there is no content]=[image: there is no content][image: there is no content],[image: there is no content]·[image: there is no content][image: there is no content],[image: there is no content]·[image: there is no content][image: there is no content]·1-Πt1-11[image: there is no content][image: there is no content]



(2)




However, it is difficult to estimate the measurement error of the MAF sensor based on the complicated nonlinear model Equation (1). In order to simply present the state space equation and the error estimation, define variables:



[image: there is no content]=[image: there is no content]πRc3·[image: there is no content][image: there is no content],[image: there is no content][image: there is no content][image: there is no content],[image: there is no content]=[image: there is no content][image: there is no content]·[image: there is no content][image: there is no content],[image: there is no content][image: there is no content][image: there is no content][image: there is no content]=[image: there is no content][image: there is no content],[image: there is no content]·[image: there is no content][image: there is no content]120[image: there is no content][image: there is no content],[image: there is no content]=Avgtmax·f[image: there is no content][image: there is no content]·[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]=[image: there is no content][image: there is no content]πRc3·[image: there is no content][image: there is no content],[image: there is no content]·Πc1-11[image: there is no content][image: there is no content]-1[image: there is no content][image: there is no content][image: there is no content]·[image: there is no content][image: there is no content],[image: there is no content]



(3)




According to Equation (3), the variables [image: there is no content](i=1,2,3,4,5) are available in real-time since [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] can be measured or estimated online. Therefore, the nonlinear model Equation (1) can be cast into an LPV system:



[image: there is no content]



(4)




where:


ρ=[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content]x=[image: there is no content][image: there is no content][image: there is no content],Aρ=−a1[image: there is no content]a1[image: there is no content]a1[image: there is no content]a2[image: there is no content]−a2[image: there is no content]−a2[image: there is no content]000−[image: there is no content]E=0a2[image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content][image: there is no content],a1=[image: there is no content][image: there is no content][image: there is no content],a2=[image: there is no content][image: there is no content][image: there is no content]



(5)




In order to determine the bounds on the parameter vector ρ, a simulation study is performed using a 1.9 L four-cylinder common rail turbo diesel engine of enDYNA provided by Tesis [17,18]. The bounds of the parameter vector ρ are found using the simulation data from enDYNA over the European Transient Cycle (ETC), Federal Test Procedure 75 (FTP75) and New European Drive Cycle (NEDC) [19,20,21]. Then, the results are listed in Table 1. It follows that each parameter [image: there is no content] from parameter vector ρ is bounded by a minimum and maximum value [image: there is no content] and [image: there is no content].

Table 1. Bounds on the parameter vector ρ under three conditions. ETC, European Transient Cycle; FTP75, Federal Test Procedure 75; NEDC, New European Drive Cycle.


	Parameter
	ETC
	FTP75
	NEDC
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2.2. 2D Map Description for the MAF Sensor Error

The intake manifold pressure [image: there is no content], turbine speed [image: there is no content] and compressor mass air flow [image: there is no content] are the outputs of interest to analyze the MAF sensor error, which is:



y=y1[image: there is no content]=[image: there is no content][image: there is no content][image: there is no content]



(6)




where y1=[image: there is no content][image: there is no content]T,[image: there is no content]=[image: there is no content]. Due to the existence of MAF sensor error, the output Equation (6) becomes:


[image: there is no content]=y1my2m=y1[image: there is no content]+Δ[image: there is no content]



(7)




where [image: there is no content] is the measured value from sensors. [image: there is no content] is the measurement error of the MAF sensor, which depends on the engine operating point (fuel mass injection quantity [image: there is no content] and engine speed [image: there is no content]), i.e., Δ[image: there is no content][image: there is no content].[image: there is no content]. Since it is difficult to accurately build an analytical model for Δ[image: there is no content][image: there is no content].[image: there is no content], a 2D map is adopted in this paper to describe Δ[image: there is no content][image: there is no content],[image: there is no content]. Therefore, define the partition of the 2D map input υ=[image: there is no content],[image: there is no content] as:


[image: there is no content]



(8)




where [image: there is no content] are the minimum and maximum values of [image: there is no content] and [image: there is no content] is the number of the grid points in [image: there is no content]. [image: there is no content] are the minimum and maximum values of [image: there is no content], and [image: there is no content] is the number of the grid points in [image: there is no content].
Assume that the measurement error of the input grid points [image: there is no content] is [image: there is no content], i.e.,



[image: there is no content]=Δ[image: there is no content][image: there is no content]i=1,2,⋯[image: there is no content];j=1,2,⋯[image: there is no content]



(9)




Then, for [image: there is no content], ∀i∈1,2,⋯,[image: there is no content]−1 and ∀j∈1,2,⋯,[image: there is no content]−1, we can hold the [image: there is no content] value fixed and apply one dimensional (1D) linear interpolation in the [image: there is no content] direction. Using the Lagrange form, the result is:



q[image: there is no content]j[image: there is no content]=uδi+1−[image: there is no content]uδi+1−uδi[image: there is no content]+[image: there is no content]−uδiuδi+1−uδiθi+1,j[image: there is no content]∈uδi,uδi+1,i=1,2,⋯[image: there is no content]−1



(10)




Equation (10) can then be used to linearly interpolate along the [image: there is no content] dimension to yield the piecewise bilinear interpolation model of the measurement error ΔWc,T[image: there is no content],υ as:



ΔWc,T[image: there is no content],υ=nej+1−[image: there is no content]nej+1−nejq[image: there is no content]j[image: there is no content]+[image: there is no content]−nejnej+1−nejq[image: there is no content]j+1[image: there is no content]υ∈uδi,uδi+1×nej,nej+1,i=1,⋯[image: there is no content]−1;j=1,⋯[image: there is no content]−1



(11)




For the undefined region υ∈R×R\[image: there is no content]×[image: there is no content], we extend Equation (11) to the final result:



ΔWc,T[image: there is no content],υ=q[image: there is no content]1[image: there is no content],u∈R×R[image: there is no content]0nej+1−[image: there is no content]nej+1−nejq[image: there is no content]j[image: there is no content]+[image: there is no content]−nejnej+1−nejq[image: there is no content]j+1[image: there is no content],u∈R×R[image: there is no content]jq[image: there is no content][image: there is no content][image: there is no content],u∈R×R[image: there is no content][image: there is no content]



(12)




where:


q[image: there is no content]j[image: there is no content]=θ1,j,[image: there is no content]∈R[image: there is no content]0uδi+1−[image: there is no content]uδi+1−uδi[image: there is no content]+[image: there is no content]−uδiuδi+1−uδiθi+1,j,[image: there is no content]∈R[image: there is no content]iθ[image: there is no content],j,[image: there is no content]∈R[image: there is no content][image: there is no content]i=1,2,⋯[image: there is no content]−1;j=1,2,⋯[image: there is no content]−1



(13)




and:


R[image: there is no content]k=−∞,uδ1,k=0uδk,uδk+1,k=1,…,[image: there is no content]−1uδ[image: there is no content],+∞,k=[image: there is no content]



(14)






R[image: there is no content]l=−∞,ne1,l=0nel,nel+1,l=1,…,[image: there is no content]−1ne[image: there is no content],+∞,l=[image: there is no content]



(15)




For the purposes of estimating unknown parameter [image: there is no content] in ΔWc,T[image: there is no content],υ expediently, Equation (12) in vector-vector form is needed. According to the input interval Equations (14) and (15), we define membership function as:



δ[image: there is no content]k=1,[image: there is no content]∈R[image: there is no content]k0,otherk=0,1,⋯,[image: there is no content]



(16)




and:


δ[image: there is no content]l=1,[image: there is no content]∈R[image: there is no content]l0,otherl=0,1,…,[image: there is no content]



(17)




Using membership function Equations (16) and (17), Equation (12) becomes:



ΔWc,T[image: there is no content],υ=δ[image: there is no content]0q[image: there is no content]1[image: there is no content]+∑j=1[image: there is no content]−1δ[image: there is no content]jnej+1−[image: there is no content]nej+1−nejq[image: there is no content]j[image: there is no content]+[image: there is no content]−nejnej+1−nejq[image: there is no content]j+1[image: there is no content]+δ[image: there is no content][image: there is no content]q[image: there is no content][image: there is no content][image: there is no content]=Ψ[image: there is no content]·q[image: there is no content][image: there is no content]



(18)




where:


Ψ[image: there is no content]=δ[image: there is no content]0+δ[image: there is no content]1ne2−[image: there is no content]ne2−ne1δ[image: there is no content]1[image: there is no content]−ne1ne2−ne1+δ[image: there is no content]2ne3−[image: there is no content]ne3−ne2⋮δ[image: there is no content][image: there is no content]−2[image: there is no content]−ne[image: there is no content]−2ne[image: there is no content]−1−ne[image: there is no content]−2+δ[image: there is no content][image: there is no content]−1ne[image: there is no content]−[image: there is no content]ne[image: there is no content]−ne[image: there is no content]−1δ[image: there is no content][image: there is no content]−1[image: there is no content]−ne[image: there is no content]−1ne[image: there is no content]−ne[image: there is no content]−1+δ[image: there is no content][image: there is no content]T,q[image: there is no content][image: there is no content]=q[image: there is no content]1[image: there is no content]q[image: there is no content]2[image: there is no content]⋮q[image: there is no content][image: there is no content]−1[image: there is no content]q[image: there is no content][image: there is no content][image: there is no content]



(19)




and:


q[image: there is no content]j[image: there is no content]=δ[image: there is no content]0θ1,j+∑i=1[image: there is no content]−1δ[image: there is no content]iuδi+1−[image: there is no content]uδi+1−uδi[image: there is no content]+[image: there is no content]−uδiuδi+1−uδiθi+1,j+δ[image: there is no content][image: there is no content]θ[image: there is no content],j=Ψ[image: there is no content]·θ[image: there is no content]j



(20)




where:


Ψ[image: there is no content]=δ[image: there is no content]0+δ[image: there is no content]1uδ2−[image: there is no content]uδ2−uδ1δ[image: there is no content]1[image: there is no content]−uδ1uδ2−uδ1+δ[image: there is no content]2uδ3−[image: there is no content]uδ3−uδ2⋮δ[image: there is no content][image: there is no content]−2[image: there is no content]−uδ[image: there is no content]−2uδ[image: there is no content]−1−uδ[image: there is no content]−2+δ[image: there is no content][image: there is no content]−1uδ[image: there is no content]−[image: there is no content]uδ[image: there is no content]−uδ[image: there is no content]−1δ[image: there is no content][image: there is no content]−1[image: there is no content]−uδ[image: there is no content]−1uδ[image: there is no content]−uδ[image: there is no content]−1+δ[image: there is no content][image: there is no content]T,θuδj=θ1,jθ2,j⋮θ[image: there is no content]−1,jθ[image: there is no content],j



(21)




and Ψ[image: there is no content]∈R1×[image: there is no content],Ψ[image: there is no content]∈R1×[image: there is no content],θuδj∈R[image: there is no content]×1,q[image: there is no content][image: there is no content]∈R[image: there is no content]×1.
Now, following Equations (18)–(21), ΔWc,T[image: there is no content],υ can be written as a dot product between regression vector [image: there is no content] and unknown parameter vector θ as follows:



[image: there is no content]



(22)




where:


Ψυ=Ψ[image: there is no content]·Ψ[image: there is no content]0⋯00Ψ[image: there is no content]⋯0⋮⋮⋱⋮00⋯Ψ[image: there is no content],θ=θ[image: there is no content]1θ[image: there is no content]2⋮θ[image: there is no content][image: there is no content]



(23)




and Ψυ∈R1×p,θ∈Rp×1,p=[image: there is no content]·[image: there is no content].
With the combination of Equations (4), (7) and (22), the diesel engine air path LPV model can be described by the following state space equation:



x˙=Aρx+E[image: there is no content]=Cρx+GΨυθ



(24)




where:


Cρ=10000100[image: there is no content],G=001



(25)




Equation (24) indicates that the estimation of the MAF sensor error Δ[image: there is no content][image: there is no content],[image: there is no content] becomes joint estimation of state x and parameter θ for LPV system Equation (24).




3. Adaptive Observer Design

The observer to estimate state x and parameter θ jointly for the LPV system Equation (24) is given:



x^˙=Aρx^+E+L[image: there is no content]−Cρx^−GΨυ[image: there is no content][image: there is no content]˙=ΓΨυT[image: there is no content]−C2ρx^−Ψυ[image: there is no content]



(26)




where C2ρ=00[image: there is no content], [image: there is no content] is the state estimate, [image: there is no content] is the parameter estimate, gain [image: there is no content] is the positive definite diagonal matrix and [image: there is no content] is the feedback gain matrix.
The asymptotical stability of the proposed algorithm Equation (26) is analyzed in the following theorem.


Theorem 1. 
If the following Conditions (1) and (2) hold, then LPV adaptive observer Equation (26) is asymptotically stable, i.e., for any initial conditions [image: there is no content]and parameter vector θ, the errors [image: there is no content] and [image: there is no content] tend to zero asymptotically when [image: there is no content].



(1) There exist matrices L, [image: there is no content], [image: there is no content] and constant [image: there is no content], such that the following set of linear matrix inequalities (LMIs) is feasible for ∀[image: there is no content]∈[image: there is no content],[image: there is no content], [image: there is no content]:



[image: there is no content]



(27)






[image: there is no content]



(28)




where [image: there is no content] .
(2) There exists map input υ, such that the regression vector [image: there is no content] is persistently exciting, i.e., [image: there is no content]:



[image: there is no content]



(29)





Proof. 
Set the estimation error [image: there is no content]. Notice that [image: there is no content]; the error dynamic system between Equations (24) and (26) is:



[image: there is no content]



(30)






A valid Lyapunov function candidate is considered as [image: there is no content]. For [image: there is no content], the derivative of V along with the error dynamic system Equation (30) is:



V˙=2x˜TPx˜˙+2θ˜TΓ−1θ˜˙=2x˜TPAclρx˜−2θ˜TΨυTΨυθ˜−2x˜TPLGΨυθ˜−2θ˜TΨυTC2ρx˜



(31)




There exist [image: there is no content], such that the following inequalities hold:



[image: there is no content]








According to Condition (1) and Equation (31), the following inequality holds:



V˙≤x˜TAclρTP+PAclρ+1ε1PLGGTLTP+1ε2C2TρC2ρx˜−2−ε1−ε2θ˜TΨυTΨυθ˜<−x˜TQx˜<0








That is [image: there is no content], for ∀[image: there is no content]∈[image: there is no content],[image: there is no content],i=1,2,3,4,5, where [image: there is no content]. Based on the Lyapunov stability theory, we know that the equilibrium [image: there is no content] and [image: there is no content] are stable. Now, integrating [image: there is no content] from zero to t yields:



[image: there is no content]



(32)




and this means that [image: there is no content] since [image: there is no content]. Therefore, we have lim[image: there is no content]∫0tωτdτ≤V0, and this implies that lim[image: there is no content]∫0tωτdτ exists and is finite. By Barbalat’s Lemma [22], we know that lim[image: there is no content]ωt=0, and this leads to lim[image: there is no content]x˜t=0.
Under Condition (2), the vector [image: there is no content] is persistently exciting, that is we have lim[image: there is no content]θ˜t=0 [22]. ☐


Remark 1. 
With the concept of multi-convexity [23], the solution of the infinite LMI Equation (27) can be reduced to be a solution of the finite LMIs for the vertex set, that is:



Mw<0,∀w∈V=w1,⋯,w5wi∈[image: there is no content],ρ¯i,i=1,2,3,4,5



(33)






Therefore, feedback gain L can be obtained by the solution of inequality Equations (28) and (33).


Remark 2. 
With the membership function δ[image: there is no content]k,δ[image: there is no content]l in Equations (16) and (17), we know that δ[image: there is no content]k = δ[image: there is no content]l = 1 when υ∈R[image: there is no content]k×R[image: there is no content]l and δ[image: there is no content]k=δ[image: there is no content]l=0 when υ∉R[image: there is no content]k×R[image: there is no content]l. Therefore, the regression vector [image: there is no content] is a sparse vector.



According to the partition of the map input υ=[image: there is no content],[image: there is no content] defined in Equation (8) and the piecewise bilinear interpolation model Equation (12), the input υ (engine operating point) moves in only one region R[image: there is no content]k×R[image: there is no content]l at any time, and only the parameters [image: there is no content] corresponding to the region R[image: there is no content]k×R[image: there is no content]l can participate in the interpolation. That is, for ∀υ∈R[image: there is no content]k×R[image: there is no content]l:

Case 1: k,l∈0,[image: there is no content]×0,[image: there is no content]. Only one parameter [image: there is no content],i,j∈1,[image: there is no content]×1,[image: there is no content] takes part in the interpolation, i.e., ΔWc,T[image: there is no content]i,j,υ=[image: there is no content].

Case 2: k,l∈1,2,⋯[image: there is no content]−1×0,[image: there is no content]. Two parameters [image: there is no content],[image: there is no content],i,j∈1,2,⋯[image: there is no content]−1×1,[image: there is no content] take part in the interpolation, i.e.,



ΔWc,T[image: there is no content]i,j,υ=uδi+1−[image: there is no content]uδi+1−uδi[image: there is no content]+[image: there is no content]−uδiuδi+1−uδi[image: there is no content]








Case 3: k,l∈0,[image: there is no content]×1,2,⋯[image: there is no content]−1. Two parameters [image: there is no content],[image: there is no content],i,j∈1,[image: there is no content]×1,2,⋯[image: there is no content]−1 take part in the interpolation, i.e.,



ΔWc,T[image: there is no content],υ=nej+1−[image: there is no content]nej+1−nej[image: there is no content]+[image: there is no content]−nejnej+1−nej[image: there is no content]








Case 4: k,l∈1,2,⋯[image: there is no content]−1×1,2,⋯[image: there is no content]−1. Four parameters [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], i,j∈1,2,⋯[image: there is no content]−1×1,2,⋯[image: there is no content]−1 take part in the interpolation, i.e.,



ΔWc,T[image: there is no content]i,j,υ=nej+1−[image: there is no content]nej+1−nejuδi+1−[image: there is no content]uδi+1−uδi[image: there is no content]i,j+nej+1−[image: there is no content]nej+1−nej[image: there is no content]−uδiuδi+1−uδi[image: there is no content]i+1,j+[image: there is no content]−nejnej+1−nejuδi+1−[image: there is no content]uδi+1−uδi[image: there is no content]i,j+1+[image: there is no content]−nejnej+1−nej[image: there is no content]−uδiuδi+1−uδi[image: there is no content]i+1,j+1








In order to expediently discuss the convergence of the parameter estimate [image: there is no content] corresponding to different regions R[image: there is no content]k×R[image: there is no content]l, a local regression vector [image: there is no content] is defined based on the above four classifications of the region partition as follow:



Ψlυ=1if υ∈R[image: there is no content]0∪R[image: there is no content][image: there is no content]×R[image: there is no content]0∪R[image: there is no content][image: there is no content]1−η1η1if υ∈R[image: there is no content]i×R[image: there is no content]0∪R[image: there is no content][image: there is no content]1−η2η2if υ∈R[image: there is no content]0∪R[image: there is no content][image: there is no content]×R[image: there is no content]j1−η11−η2η11−η21−η1η2η1η2Tif υ∈R[image: there is no content]i×R[image: there is no content]j



(34)




where:


η1=[image: there is no content]−uδiuδi+1−uδi,η2=[image: there is no content]−nejnej+1−neji=1,2,⋯[image: there is no content]−1;j=1,2,⋯[image: there is no content]−1



(35)




When υ∈R[image: there is no content]k×R[image: there is no content]l, regression vector [image: there is no content] in Equation (26) can be replaced by local regression vector [image: there is no content]; then, observer Equation (26) can be replaced by:



x^˙=Aρx^+E+L[image: there is no content]−Cρx^−GΨlυ[image: there is no content][image: there is no content]˙li,j=[image: there is no content]ΨlυT[image: there is no content]−C2ρx^−Ψlυ[image: there is no content]



(36)




where [image: there is no content] is the local parameter estimate of appropriate size and [image: there is no content] is a local positive definite diagonal matrix of appropriate size.
According to Theorem 1, the local parameter estimate [image: there is no content] is convergent if local regression vector [image: there is no content] is persistently exciting. Meanwhile, the parameter estimate [image: there is no content] is also convergent if the trajectory of the map input υ passes through all of the interpolation regions R[image: there is no content]k×Ru2l.

There are heavy matrices calculated in real time for the covariance matrix equation of EKF in [9,10,11], preventing it from being implemented in commercial electronic control units (ECUs) for map adaptation. Nevertheless, the computational burden of the proposed observer Equation (26) without the additional matrix equation is lower. Moreover, the number of parameter estimates [image: there is no content] updated in Equation (26) is no more than four at any time; then, the computational load can be further reduced by stopping estimating [image: there is no content] corresponding to υ∉R[image: there is no content]k×R[image: there is no content]l.


Remark 3. 
For the area S where the trajectory of the map input υ does not move, the parameters [image: there is no content] corresponding to the interpolation region belonging to S cannot be estimated by observer Equation (26). In order to get the map parameters corresponding to S, an extrapolation model can be taken as follows:



ΔWc,e[image: there is no content],[image: there is no content]=a2uδ2+a1[image: there is no content]+b2ne2+b1[image: there is no content]+c2[image: there is no content][image: there is no content]+c1



(37)




 where [image: there is no content] are polynomial parameters. Based on the data from the estimated map parameters, extrapolation model Equation (37) can be fitted by polynomial fitting approach, and then map parameters corresponding to S can be obtained.




4. Simulation Results

In this section, the simulation study of 2D map estimation is presented in the environment of a 1.9 L four-cylinder common rail turbo diesel engine of enDYNA, in which the ETC and FTP75 are used as test conditions, respectively. The observer architecture is illustrated in Figure 2, where Δ[image: there is no content][image: there is no content],[image: there is no content] is the additive reference error as the true measurement error from enDYNA.

Figure 2. Schematic diagram of the adaptive observer.
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Bounds on the parameter vector ρ are presented in Table 1. When the inequality Equations (28) and (33) are solved with [image: there is no content] and [image: there is no content], the gain matrix L can be given by:



[image: there is no content]



(38)




The initial values of observer Equation (26) used in the simulation are x^0=9.8×1059.8×1050T,[image: there is no content]0=0, and the parameter gain is [image: there is no content]. Here, the reference error Δ[image: there is no content][image: there is no content],[image: there is no content] assumed as MAF sensor measurement error is depicted in Figure 3, which is superimposed on the signal [image: there is no content] in enDYNA as the measured value [image: there is no content] in the simulation.

Figure 3. Reference error Δ[image: there is no content][image: there is no content],[image: there is no content] used as the mass air flow (MAF) sensor error in enDYNA.



[image: Sensors 15 27142 g003 1024]








4.1. 2D Map Estimation under ETC

There are three parts of the ETC representing three different driving conditions, including urban, rural and motorway driving. Due to the engine speed range from ETC Part 1 covering the other two parts, ETC Part 1 is employed as the test condition in this section. Accordingly, the fuel mass injection quantity [image: there is no content] and engine speed [image: there is no content] from ETC Part 1 are plotted in Figure 4a, and the trajectory of the operating point υ=[image: there is no content],[image: there is no content] is depicted in Figure 4b, in which the trajectory does not move in area [image: there is no content]. According to the range [image: there is no content]∈0,56 and [image: there is no content]∈0,3100 from Figure 4a, an average partition can be respectively given as [0:4:56] and [0:250:3000].

Figure 4. Evolution of operating point υ=[image: there is no content],[image: there is no content] during ETC part one. (a) Evolution of [image: there is no content] and [image: there is no content]. (b) Trajectory of operating point υ=[image: there is no content],[image: there is no content].
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The estimation results of the MAF sensor error using observer Equation (26) under ETC Part 1 are shown in Figure 5a, in which the map parameters have been estimated, except area S. According to Remark 3, the map parameters corresponding to area S can be obtained from the extrapolation model Equation (37). Based on the estimated map parameters from Figure 5a, the polynomial parameters in Equation (37) can be fitted as follows:

Figure 5. The estimated 2D map for the MAF sensor error. (a) Estimation results of the 2D map under ETC Part 1; (b) Extrapolation results based on the estimated 2D map.
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[image: there is no content]



(39)




The parameters corresponding to area S obtained from Equation (37) are presented in Figure 5b, which can roughly reflect the trend of the map.

In order to evaluate the accuracy of the estimated 2D map shown in Figure 5a, the comparison between the reference error Δ[image: there is no content][image: there is no content],[image: there is no content] and the estimated 2D map during the ETC segment is presented in Figure 6a. Accordingly, the true mass air flow [image: there is no content], measured mass air flow [image: there is no content] and map compensation are shown in Figure 6b. The mean relative error between reference error Δ[image: there is no content][image: there is no content],[image: there is no content] and estimated 2D map is [image: there is no content], which demonstrates that the measured output [image: there is no content] of the MAF sensor after map correction can approximate the true value of [image: there is no content] acceptably.

Figure 6. 2D map compensation during the ETC segment. (a) Simulation results between reference error Δ[image: there is no content][image: there is no content],[image: there is no content] and the estimated 2D map; (b) Simulation results of true mass air flow [image: there is no content], measured mass air flow [image: there is no content] and the map compensation.
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4.2. 2D Map Estimation under FTP75

In order to verify the effectiveness of the proposed method under different conditions, the cold start transient phase of the FTP75 is used in this section. Accordingly, [image: there is no content] and [image: there is no content] are plotted in Figure 7a, and the trajectory of υ is depicted in Figure 7b, in which the trajectory does not move in area [image: there is no content].

Figure 7. Evolution of operating point υ=[image: there is no content],[image: there is no content] FTP75 cold start transient phase. (a) Evolution of [image: there is no content] and [image: there is no content]; (b) Trajectory of operating point υ=[image: there is no content],[image: there is no content].
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The estimation results of the MAF sensor error under the cold start transient phase of the FTP75 are shown in Figure 8a, and the polynomial parameters in Equation (37) are fitted as follows:

Figure 8. The estimated 2D map for the MAF sensor error. (a) Estimation results of the 2D map under FTP75 cold start transient phase; (b) Extrapolation results based on the estimated 2D map.
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[image: there is no content]



(40)




The map added the parameters corresponding to area S are shown in Figure 8b, which can also roughly reflect the trend of the map. Under the FTP75 segment, the comparison between the reference error Δ[image: there is no content][image: there is no content],[image: there is no content] and the estimated 2D map from Figure 8a is shown in Figure 9a. Accordingly, the MAF sensor measured value [image: there is no content] using map compensation is presented in Figure 9b. The mean relative error between reference error Δ[image: there is no content][image: there is no content],[image: there is no content] and the estimated 2D map is [image: there is no content], demonstrating that the measured output [image: there is no content] after map correction can approximate the true value of [image: there is no content] acceptably.

Figure 9. 2D map compensation during the FTP75 segment. (a) Simulation results between reference error Δ[image: there is no content][image: there is no content],[image: there is no content] and the estimated 2D map; (b) Simulation results of true mass air flow [image: there is no content], measured mass air flow [image: there is no content] and the map compensation.
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5. Conclusions

A method for updating and storing sensor bias from different operating points is developed and investigated. This method achieves simultaneous estimation of model states and map parameters and applies to updating the MAF sensor error 2D map in the engine. The map in the form of a vector-vector dot product is given to conveniently analyze and design the parameter estimation method. An LPV adaptive observer to estimate map parameters is designed, which has the advantage of a simple structure and low computational load. Under ETC Part 1 and the cold start transient phase of the FTP75, the effectiveness of the presented algorithm is verified and validated in the engine software enDYNA. The results demonstrate that the proposed method can estimate the MAF sensor error acceptably.
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Nomenclature




	
[image: there is no content]

	
ambient pressure (Pa)

	
[image: there is no content]

	
intake manifold pressure (Pa)




	
[image: there is no content]

	
exhaust manifold pressure (Pa)

	
[image: there is no content]

	
turbine speed (rad/s)




	
[image: there is no content]

	
engine speed (rpm)

	
[image: there is no content]

	
compressor mass air flow (kg/s)




	
[image: there is no content]

	
EGR mass flow (kg/s)

	
[image: there is no content]

	
cylinder mass flow (kg/s)




	
[image: there is no content]

	
fuel rate injected to cylinder (kg/s)

	
[image: there is no content]

	
turbine mass flow (kg/s)




	
[image: there is no content]

	
compressor power (W)

	
[image: there is no content]

	
turbine power (W)




	
[image: there is no content]

	
volumetric flow coefficient

	
[image: there is no content]

	
energy transfer coefficient




	
[image: there is no content]

	
volumetric efficiency

	
[image: there is no content]

	
turbine efficiency




	
[image: there is no content]

	
turbocharger mechanical efficiency

	
[image: there is no content]

	
compressor efficiency




	
[image: there is no content]

	
ambient temperature (K)

	
[image: there is no content]

	
intake manifold temperature (K)




	
[image: there is no content]

	
exhaust manifold temperature (K)

	
[image: there is no content]

	
intake manifold volume (m3)




	
[image: there is no content]

	
exhaust manifold volume (m3)

	
[image: there is no content]

	
displaced volume (m3)




	
[image: there is no content]

	
air gas constant (J/(kg·K))

	
[image: there is no content]

	
exhaust gas constant (J/(kg·K))




	
[image: there is no content]

	
compressor blade radius (m)

	
[image: there is no content]

	
air specific heat capacity ratio




	
[image: there is no content]

	
exhaust specific heat capacity ratio

	
[image: there is no content]

	
compressor pressure quotient




	
[image: there is no content]

	
turbine pressure quotient

	
[image: there is no content]

	
turbine inertia (kg·m2)




	
[image: there is no content]

	
number of cylinders

	
[image: there is no content]

	
EGR valve effective area (m2)




	
[image: there is no content]

	
VGT nozzle maximum effective area (m2)

	
f[image: there is no content]

	
choking function




	
[image: there is no content]

	
effective area ratio function

	
[image: there is no content]

	
EGR valve opening percentage (%)




	
[image: there is no content]

	
VGT vane opening percentage (%)

	
[image: there is no content]

	
injected amount of fuel (mg/cycle)




	
[image: there is no content]

	
air specific heat capacity at constant pressure (J/(kg·K))




	
[image: there is no content]

	
exhaust specific heat capacity at constant pressure (J/(kg·K))
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