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Abstract: The development of magnetoresistive sensors based on magnetic nanoparticles 

which are immersed in conductive gel matrices requires detailed information about the 

corresponding magnetoresistive properties in order to obtain optimal sensor sensitivities. 

Here, crucial parameters are the particle concentration, the viscosity of the gel matrix and 

the particle structure. Experimentally, it is not possible to obtain detailed information about 

the magnetic microstructure, i.e., orientations of the magnetic moments of the particles that 

define the magnetoresistive properties, however, by using numerical simulations one can 

study the magnetic microstructure theoretically, although this requires performing classical 

spin dynamics and molecular dynamics simulations simultaneously. Here, we present such 

an approach which allows us to calculate the orientation and the trajectory of every single 

magnetic nanoparticle. This enables us to study not only the static magnetic microstructure, 

but also the dynamics of the structuring process in the gel matrix itself. With our hybrid 

approach, arbitrary sensor configurations can be investigated and their magnetoresistive 

properties can be optimized.  
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1. Introduction 

The well-known giant magnetoresistance (GMR) effect is commonly used to design extremely 

sensitive sensors that respond to external magnetic fields with changes in their electrical resistance. The 

GMR effect was originally discovered in magnetic multilayer systems [1,2]. Later it was also found for 

systems that contain magnetic grains in metallic matrices [3,4]. Recently, it could be shown that  

systems made of magnetic particles that are immersed in conductive gel matrices show GMR behavior 

as well. Besides achieving very high GMR effect amplitudes, the use of gel matrices opens up the 

perspective of printable, low-cost, magnetoresistive sensor devices such as sensors for the detection of  

biomolecules [5–7]. The sensor characteristics directly depend on the microscopic behavior of the 

magnetic particles in the gel matrix, i.e., on the dynamics of the magnetic moments of the particles in 

combination with their local positions and motion in the gel. Since such microscopic information cannot 

be directly extracted from experiments, numerical simulations have to be taken into account. In order to 

simulate the magnetodynamics of an ensemble of magnetic nanoparticles that are embedded in a 

conductive gel matrix, two different simulation methods have to be combined in order to simultaneously 

consider both the magnetic and translational degrees of freedom of the magnetic particles. In order to do 

so, one has to consider the time scales of the two classes of degrees of freedom as well as a method to 

control the temperature. Here, we present a hybrid approach that couples molecular dynamics and 

classical spin dynamics methods so as to simulate the structuring process of spherical magnetic 

nanoparticles in a viscous surrounding medium. In contrast to other hybrid molecular and spin dynamics 

algorithms presented in the literature [8–14], a purely classical approach is followed here. Moreover, the 

known methods follow completely different approaches and, therefore, instead of a coupling of the spin 

and mechanical degrees of freedom, couplings of spin and other degrees of freedom are realized. For 

example, in [8,9], a hybrid method is presented that covers the spin and electronic degrees of freedom 

whereas in [13] a coupling between spin and lattice dynamics is introduced. In addition to that, we follow 

a coarse grain approach, whereas the other methods pursue an atomistic model. Our hybrid molecular 

and spin dynamics approach has been introduced in [6] as one part of a simulation tool chain. Therein, 

a basic description is given without computational details. Here, we provide a complete and 

comprehensive derivation of our approach. Starting from the general approach, we briefly describe both 

numerical methods separately. Subsequently, we present the theoretical foundations and introduce our 

hybrid algorithm. Finally, we show one exemplary simulation run for didactic purposes. 

2. General Approach 

In this paper we assume magnetically interacting nanoparticles that are free to move in a  

viscous medium. In order to simulate their behavior one has to solve the following sets of coupled  

equations of motion: ݉ ݐ݀(ݐ)࢜݀ = ,ଵ࢘)ℋࡿ,࢘∇− … , ,ே࢘ ,ଵࡿ … , (ேࡿ − )௩௦ࡲ ,ଵ࢜ … , (ே࢜ − ݐ݀(ݐ)࢘݀ℋௐ (1)࢘∇ = ݐ߲ࡿℏ߲(2) (ݐ)࢜ = ,ଵ࢘)ࢌࢌࢋࡴ	 … , ,ே࢘ ,ଵࡿ … , (ேࡿ × ࡿ − ߣ ൫࢘)ࢌࢌࢋࡴଵ, … , ,ே࢘ ,ଵࡿ … , (ேࡿ × ൯ࡿ × (3) ࡿ
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Here, the first and second set of equations is used to compute the velocity ࢜ and position ࢘ of each 

particle in the ensemble. The force ࢉ࢙࢜ࡲ describes the viscous drag of the surrounding fluid. The term ℋ is the magnetic potential due to the dipole-dipole interaction among all particles which depends on 

the positions of the particles as well as on the orientations of their magnetic moments ࡿ. The last term 

of the first equation describes the repulsive force due to the Weeks-Chandler-Andersen potential which 

is necessary in order to simulate hard sphere dynamics. The third set of equations calculates the 
orientations of the magnetic moments ࡿ . Here, ࢌࢌࢋࡴ  denotes an effective magnetic field which  

is generated by the magnetic interactions between the particles. The last term is the so-called  

Landau-Lifshitz damping which is non-conservative and used to find the appropriate magnetic low 

energy configurations for a given particle arrangement (see below). Here, ߣ describes the friction and 

can be adjusted in order to reach a sufficient numerical stability. In summary, there are three important 

potential or force contributions. These contributions are described in detail in Section 2.1.2. 

Although the equations of motion (1–3) are fully coupled by the dipole-dipole potential	ℋܦܦ one  

can show that under certain conditions (see below) it is not necessary to solve these equations 

simultaneously but to separate their calculation leading to a unidirectional consecutive approach. In this 

approach, the magnetic configuration, i.e., the orientation of the magnetic moments, for a given initial 

nanoparticle arrangement is calculated first. This magnetic configuration creates magnetic forces that 

act on the particles inducing their subsequent motion which in turn changes the orientation of the 

magnetic moments and so on, resulting in a hybrid approach. The advantage of our hybrid approach  

is that the calculation of the magnetic low energy configuration and the calculation of the resulting 

translational motion can be executed separately by two different simulation methods which are explained 

in the following. 

2.1. Molecular Dynamics Equations of Motion 

Classical molecular dynamics (MD) provides a method to simulate the motion of atoms, molecules 

or particles due to interactions between the particles or interactions with external fields by solving the 

following set of equations of motion: m୧ ୧∂tܞ∂ = ୧∂tܚ∂Φ (4)ܚ∇ = ୧(t) (5)ܞ

In contrast to ab initio methods which are based on quantum mechanical principles, classical MD is 

based on classical potential formulations ߔ from which the according forces on the particles are derived. 

MD can be applied to a broad range of fields, e.g., theoretical physics, physical chemistry, biophysics 

and materials science. In this work, we have extended the open-source code HOOMD-blue [15–17] with 

the necessary customizations as given below. 

2.1.1. Integration of the Equations of Motion 

Particles in classical MD systems obey the laws of Newtonian mechanics. There exists a multitude of 

standard algorithms to integrate the Newtonian equations of motion (4,5), i.e., the Euler algorithm, 

different types of Runge-Kutta schemes and Verlet-type methods [18]. Here, we use one of the most 
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important algorithms for the integration of the equations of motion, namely the Velocity Verlet algorithm 

which is a variant of the well-known Leapfrog algorithm. In contrast to other integration algorithms, 

positions and velocities are calculated for the same steps in time which is a great advantage of the Velocity 

Verlet algorithm. Moreover, this algorithm exhibits good energy conservation and is time-reversible. 

Equations (6) and (7) show how the positions ࢘ and velocities ࢜ are calculated for each particle [18,19]: ࢘(ݐ + (ݐ߂ = (ݐ)࢘ + (ݐ)࢜ ∙ ݐ߂ + 2݉(ݐ)ࡲ ଶ (6)ݐ߂

ݐ)࢜ + (ݐ߂ = (ݐ)࢜ + ݐ)ࡲ + (ݐ߂ + 2݉(ݐ)ࡲ (7) ݐ߂

2.1.2. Force Calculation 

The forces that act on the particles due to particle-particle or particle-field interactions have to be 

calculated in every time step of an MD simulation. The calculation of particle-particle interactions is 

extremely time-consuming because it is of order ܰଶ. In some cases the computational effort can be 

reduced by means of neighbor list or cell computation approaches [18]. In our case we assume that the 

magnetic nanoparticles solely interact by magnetic dipole-dipole interaction which exhibits particular 

long-ranged characteristics. In order to preserve this long-range behavior, methods to reduce the 

computational effort cannot be applied because all of these approaches utilize a potential cut-off. 

Therefore, the full calculation of all pairwise contributions is used here which provides correct forces 

for short and long distances between the particles [18,19]. In order to model magnetic nanoparticles that 

move due to their magnetic interactions while being immersed in a viscous matrix, three contributions 

to the net force must be considered: 

Magnetic Dipole-Dipole Interaction 

Every magnetic particle in the system under consideration creates a magnetic dipole field which exerts 

a torque on the dipole field of every other particle. The pairwise potential contributions can be calculated 

according to the following Equation (8): ℋ,, = − μ4ݎߨଷ ൣ3൫ࡿ ∙ ࡿ൯൫ො࢘ ∙ ൯ො࢘ − ࡿ ∙ ൧ (8)ࡿ

Therein, ࡿ and ࡿ represent the magnetic moments of two particles i and j while ࢘ො describes the unit 

vector that connects the centers of the particles. The distance between the centers of the particles is given 
by ݎ. The magnetic dipole-dipole interaction causes a force that acts along ࢘ො. Depending on the relative 

orientations of the magnetic moments of the particles, it can be attractive or repulsive. An example of 

the distance dependence of the magnetic dipole-dipole interaction energy of two interacting cobalt 

particles with diameters of 10 nm is depicted in Figure 1. It is evident that a well-defined cut-off radius 

does not exist due to the long-range character of the interaction.  
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Figure 1. Magnetic dipole-dipole energy curves for the case of two interacting cobalt 

particles with diameters of 10 nm. The magnetic dipole-dipole energy is plotted vs. the 

center-to-center distance of the particles. For the case of particles with magnetic moments 

aligned in parallel, negative energy values are obtained (black curve), resulting in particle 

attraction. In contrast to this, for an antiparallel alignment of the magnetic moments, positive 

energy values are obtained (red curve), resulting in particle repulsion. It becomes apparent 

that the magnetic dipole-dipole potential contribution cannot be cut off due to its long-range 

character over a distance of several particle diameters even for small particles. 

Hard Particle Approach 

In general, point masses are used in MD simulations. However, this means for the particle positions 
that they can become identical or that distances ݎ can become infinitesimally small, i.e., ݎ → 0. In such 

cases the dipole-dipole potential Equation (8) diverges which would lead to numerical instabilities and 

unphysical behavior. In order to avoid this, potential functions for molecular dynamics simulations of 

hard particles have to be used which are based on a combination of attractive and repulsive contributions. 

The so-called Weeks-Chandler-Andersen (WCA) potential provides a force-shifted formulation of the 

well-known Lennard-Jones potential which provides the required short-range repulsion [20]. Above a 
distance of two particle diameters ݎ 	≥ 	2భలߪ , the WCA potential is cut off. Below this distance, a 

Lennard-Jones type repulsion is modeled: 

ℋௐ = ۔ە
ߝ4ۓ ቆ ቇଵଶݎߪ − ቆ ቇ൩ݎߪ + ,ߝ if ݎ < 2ଵߪ
0,			 if ݎ ≥ 2ଵ(9) ߪ

Here, the parameter σ is given in units of distance and ε is given in units of energy. Figure 2 illustrates 

the WCA potential for the case σ = ε = 1. 
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Figure 2. Comparison of attractive and repulsive Lennard-Jones (LJ) potential (magenta) 

and short-range repulsive Weeks-Chandler-Andersen (WCA) potential (blue) together with 

the dominating contributions 4 × ଵଶିݎ  (red) and −4 × ିݎ  (black). Here, the respective 

potential ℋ which is given in units of energy is plotted as a function of the distance between 

two fictitious particles ݎ given in units of distance.  

Stokes Drag 

To take into account the surrounding medium that affects the motion of the particles due to its 

viscosity, a third force contribution must be included. Stokes’ law describes the force that acts on a small 
spherical particle with a radius ݎ and with a given velocity ݒ that is embedded in a viscous medium 

with kinematic viscosity	ߟ. The resulting drag force acts in the direction opposite to the particle’s 

motion and it is proportional to its velocity and the viscosity of the medium. ܨ௩௦ =   (10)ݒߟݎߨ6

2.2. Classical Spin Dynamics Simulations 

Classical spin dynamics is a proven method for the numerical analysis of the static and dynamic 

thermodynamic properties of microscopic and mesoscopic ensembles of classical magnetic moments. 

Here, we use a spin dynamics algorithm that involves solving the Landau-Lifshitz equation. A Langevin 

approach is utilized to model the contact to an external heat bath. Moreover, the particles are assumed 

to be homogeneously magnetized and therefore modeled by a single magnetic moment. A detailed 

description of the algorithm is presented in [21]. 

Spin Equations of Motion: A magnetic moment ࡿ  that is subject to an external magnetic field 

precesses around the external field direction. In a classical picture this precession is given by:  ℏ߲ݐ߲ࡿ = ߲ℋ߲ࡿ ×  (11) ࡿ

where ℋ is the Hamiltonian that contains the magnetic interactions, i.e., exchange, Zeeman, anisotropy 

and dipole-dipole interactions. In this paper we only consider the dipole-dipole interaction. For systems 

of magnetic nanoparticles that are exposed to a homogeneous external magnetic field, the Zeeman 
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contribution has to be included as well [21]. It is convenient to use the partial derivative of the 
Hamiltonian H, i.e., డℋడࡿ =  caused by all interactions that ࢌࢌࢋࡴ which is the effective magnetic field ࢌࢌࢋࡴ

act on the spin under consideration. Equation (11) gives rise to a conservative dynamics. In order to be 

able to calculate low energy configurations, Equation (11) needs to be extended by a damping term 

which allows the system to relax towards its ground state. This is commonly done by adding a damping 

term as proposed by Landau and Lifshitz: ߲ݐ߲ࡿ = 	 1ℏࢌࢌࢋࡴ × ࡿ − ࣅ 1ℏ ൫ࢌࢌࢋࡴ × ൯ࡿ ×  (12) ࡿ

In doing so, the spins relax until they are oriented parallel to the effective field direction. The damping 

force which is proportional to the positive damping constant ߣ, acts in the direction of the effective  

field [21]. By solving Equation (12) it is not guaranteed that the system’s ground state is found. In fact, 

for more complex systems the algorithm “gets stuck” in the local energy minimum that is first reached 

in phase space and there is no way to get out of this. In order to overcome this problem one can extend 

Equation (12) by a heat bath coupling. Here, we use a Langevin approach in which the heat bath acts on 

the system by means of stochastic forces. Hence, the classical spins fluctuate due to forces that are driven 

by the temperature of the heat bath and “kick” the system out of local minima. The fluctuations are 

introduced into the equations of motion by the additional term: (ݐ)ࢌ ×  (13) ࡿ

with (ݐ)ࢌ representing the undirected fluctuations that have a white noise characteristic. As a result one 

obtains the following stochastic differential equation of motion for the spin degrees of freedom: ߲ݐ߲ࡿ = 	 1ℏࢌࢌࢋࡴ × ࡿ − ࣅ 1ℏ ൫ࢌࢌࢋࡴ × ൯ࡿ × ࡿ + (ݐ)ࢌ ×  (14) ࡿ

In order to integrate Equation (14) we have used a fourth-order Runge-Kutta scheme as proposed by 

Milstein and Tretyakov [21,22]. 

3. Hybrid Molecular and Spin Dynamics Simulations 

As pointed out in Section 2, the simulation of interacting magnetic nanoparticles in a viscous medium 

generally requires solving the system of coupled differential Equations (1)–(3) for the translational and 

magnetic degrees of freedom. However, this is only necessary if the time scales of the dynamics for the 

translational degrees of freedom and magnetic degrees of freedom are of the same order. If this is not the 

case the magnetic and translational degrees of freedom can be treated separately, leading to a simple 

coupling scheme reminiscent of the method proposed by Dünweg and Ladd for the numerical simulation 

of colloidal dispersions [23]. In order to validate this assumption for our problem, the relaxation times of 

the two types of degrees of freedom are determined in the following. 

3.1. Translational Relaxation Time  

In order to determine the time scale of the translational relaxation of a particle of spherical shape, the 

configurational relaxation time [23] must be evaluated. The configurational relaxation time, or Brownian 
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relaxation time, is the time that the particle needs to diffuse across its own radius and can be evaluated 

according to: ߬ =  ଷ݇ܶ (15)ܴߟ

Here, ߟ represents the kinematic viscosity of the matrix material, ܴ is the particle diameter, ݇ is the 

Boltzmann constant and ܶ represents the temperature [24]. 

3.2. Magnetic Relaxation Time  

The magnetization of a colloidal magnetic particle relaxes due to two different mechanisms. First,  

the relaxation can occur via rotation of the particle in the liquid. The characteristic time associated with 

this mechanism is called Brownian rotational diffusion time and can be calculated according to  

Equation (16) with ܸ representing the particle volume: ߬ =  ܶ (16)݇ߟ3ܸ

The second mechanism is the so-called Néel rotation where the magnetization of the particle  

relaxes due to the coherent rotation of atomic magnetic moments within the particle. For a uniaxial,  

single-domain, ferromagnetic particle, the associated time can be calculated by: ߬ே = 1݂ exp ൬ܸ݇ܭܶ൰ (17) 

where, ܭ represents the magnetic anisotropy constant of the particle material and ݂ is a characteristic 

frequency [25]. 

As shown in Figure 3, for small particles the Néel relaxation dominates whereas for larger particles, the 

Brown relaxation dominates. In addition to that, a transition regime can be identified around particle 

diameters of about 20 nm. Because both mechanisms contribute to the relaxation behavior of ensembles 

of magnetic particles, an effective relaxation time can be defined according to the following Equation [26]: ߬ = ߬߬ே߬ + ߬ே (18)

3.3. Comparison of Translational and Magnetic Relaxation Times  

In order to check whether the translational and the magnetic degrees of freedom can be separated, the 

time scales have been evaluated for cobalt particles with diameters up to 100 nm that are immersed in 

agarose gel matrices with a common concentration. In our current algorithm we do not consider a 

difference between Brownian and Néel rotation but will address this in further studies. Thus, the  

relevant time scales are set by the configurational relaxation time ߬ and both the Néel rotation diffusion 
time ߬ே and the Brownian relaxation time ߬ that are combined to the effective relaxation time ߬.  

For ߬ே  we have chosen a characteristic frequency of ݂ = 	 10ଽ	Hz  and an anisotropy constant of  ܭ = 10ହ	J ∙ mିଷ [6,27]. For ߬we have used ߟ = 0.017		Pa ∙ s for the kinematic viscosity of the gel 

matrix which corresponds to a 2% agarose gel matrix as it is used in [5,7]. The results are shown in 

Figure 3. Here, it becomes apparent that the Néel relaxation time is very small for small particle 
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diameters and rapidly increases with increasing particle diameter. In contrast to that, the Brown 

relaxation time slowly increases with increasing particle diameter. By combining both relaxation times 

according to Equation (18), the relevant effective magnetic relaxation time is obtained. A comparison of 

this effective relaxation time and the mechanical, configurational relaxation time shows that a separation 

of the time scales exists for all particle diameters except for very small diameters up to around 3 nm. 

The smallest difference between the time scales for larger particles can be identified around the transition 

regime for particle diameters of about 20 nm. Nevertheless, even at this point, the time scales are clearly 

separated by at least one order of magnitude. 

 

Figure 3. Relaxation times of the translational and the magnetic degrees of freedom of 

ensembles of magnetic cobalt particles that are immersed in an agarose matrix. The 

translational relaxation is dominated by the configurational relaxation time (black) whereas 

the magnetic relaxation can be dominated by Brownian rotation (red) or Néel rotation (blue). 

Within our algorithm, a difference between Brown and Néel relaxation cannot be addressed 

and hence, both mechanisms result in a change of the magnetic moment orientation without 

changing the orientation of the particle itself. Hence, the configurational relaxation time must 

simultaneously be compared to the magnetic relaxation times that are combined to the 

effective magnetic relaxation time (orange) according to Equation (18). There is a significant 

difference between the magnetic and mechanical relaxation over all particle diameters except 

for very small particle and one small window around the particle diameter of 20 nm. 

3.4. Hybrid Molecular and Spin Dynamics Coupling Scheme 

In our hybrid coupling scheme which is depicted in Figure 4, we start from an initial random magnetic 

moment configuration ሼࡿሽ . In principle, the magnetic moments are three-dimensional vectors. 

However, due to their initial coplanar arrangement the dipole-dipole interaction leads to a coplanar 

orientation of the magnetic moments as well. The initial particle positions ሼ࢘ሽ	 are taken from 

experimental data, e.g., microscopic images. Using ሼࡿሽ and ሼ࢘ሽ the magnetic moment orientations 

are relaxed towards a low energy state by means of spin dynamics (SD) simulations. Hence, the magnetic 

moment orientations are updated while the particle positions are fixed. This procedure leads to a new set 
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of data, i.e., ሼࡿሽଵ and ሼ࢘ሽ which is used as input data for the subsequent MD simulation. As presented 

in Section 2.1, the MD algorithm first calculates the net force that acts on every particle according to 

Equation (1). In a second step, the equations of motion are integrated over a time step ݐ߂ according to 

Equations (6) and (7) leading to the new positions ሼ࢘ሽଵ while the magnetic moment orientations are 

kept unchanged. The new set of data ሼࡿሽଵ  and ሼ࢘ሽଵ  is used as input data for the subsequent SD 

simulation. As shown in Figure 4, this process is repeated until a predefined number of total time steps 

is reached.  

3.5. The Role of Temperature 

In general, both methods MD and SD work in the canonical ensemble, i.e., the temperature is kept 

constant during the simulation. In order to avoid conflicts between the two heat baths, the temperature 

of the SD part of the simulation is set to 0 K whereas the MD simulations are performed at room 

temperature. As explained in [28], it is common practice for the simulation of macromolecules in 

solution to couple separate thermostats to the subsystems. This practice is based on ab initio methods 

such as the Car-Parrinello approach [29] where the nuclear and electronic subsystems are separated 

dynamically. Whereas the slow nuclei are connected to a “physical” temperature, the fast electronic 

degrees of freedom are assumed to be linked to a “fictitious” temperature. According to [30], the “cold” 

electronic subsystem is assumed to be close to its instantaneous minimum energy. In analogy to that, 

here, we assume that the “cold” magnetic degrees of freedom are close to their minimum energy 

configuration. Hence, it is justified to set the temperature of the SD simulation to 0	ܭ. However, as 

pointed out in Section 2.2. we use a finite spin bath temperature during the SD simulation step in order 

to find configurations of lowest energy.  

 

Figure 4. Schematic representation of the hybrid algorithm that couples spin dynamics (SD) 

and molecular dynamics (MD) simulations in order to calculate trajectories of magnetic 

nanoparticles that interact via magnetic dipole-dipole interaction. Starting from a random 

initial configuration ሼܑ܁ሽ୲ୀሼܑܚ ሽ୲ୀ, the first magnetic low energy state is calculated by means 

of SD. Therein, the particle positions are retained whereas the orientations of the magnetic 

moments are changed to ሼܑ܁ሽ୲ାଵ . The new orientations together with the fixed particle 

positions are then passed over to the MD algorithm. Within MD, the magnetic moment 

orientations are maintained while the particles are moved forward for a small step in time due 

to the forces that act on the particles. The resulting particle positions ሼܑܚ ሽ୲ାଵare then passed 

over to SD again in order to calculate the magnetic low energy state of the new configuration. 

This procedure is repeated until a predefined number of time steps is reached. 



Sensors 2015, 15 28836 

 

 

Here, slowly cooling down from a high initial temperature to 0	K during the simulation leads in most 

cases to configurations of lowest energy. If this method is not applicable we use more sophisticated 

strategies that are based on experimental demagnetization protocols which involve rotating and damped 

external magnetic fields for finding lowest energy configurations in spin ice systems [27].  

3.6. Calculation of Qualitative GMR Curves 

We use our hybrid SD-MD algorithm in order to predict the particle arrangements in the liquid state 

of the gel which corresponds to the experimental preparation stage. After the particle-gel mixture is put 

on a substrate, the structuring process with or without an external magnetic field takes place. Afterwards, 

the gel matrix is dried out and the particle structure is preserved. For the application in a sensor device, 

the actual measurement takes places in the solid state of the gel. Therefore, the magnetoresistive 

properties in the solid state of the gel are of great importance. In order to determine the magnetoresistive 

properties in a qualitatively way we use the SD algorithm alone which corresponds to the solid state of 

the gel with mechanically frozen particles. By means of further spin dynamics simulations, 

magnetization curves can be calculated. Finally, qualitative GMR curves can be calculated from the 

magnetization curves by: ܴܯܩ = ெோீܣ ቈ1 − ൬ܯܯௌ൰ଶ (19) 

Therein, ܴܯܩ is the GMR effect given in percent, ீܣெோ is the GMR effect amplitude that has to be 

extracted from experimental data or further numerical investigation [6,31], ܯ is the magnetization and ܯௌ represents the material’s saturation magnetization. The resulting GMR curves lead to a qualitative 

estimate of the magnetoresistive properties of a particular particle-gel combination which provides 

useful information for the actual sensor development. 

4. Application: Magneto-Dynamics of Interacting Magnetic Nanoparticles in Gel Matrices for 

the Efficient Design of Magnetoresistive Systems 

The hybrid SD-MD algorithm can be used for the investigation of the magneto-dynamics of magnetic 

nanoparticles that are used in combination with conductive gel matrices to build nanoparticular 

magnetoresistive sensor devices. As presented in [6], this type of sensor can be used for the detection of 

biomolecules. Therefore, the GMR sensor is covered with antibodies that are chosen for a specific 

analysis purpose, i.e., the biomolecules under consideration in a sample solution bind to the sensor 

surface. In order to utilize the GMR effect for the measurement of the biomolecule concentration, 

magnetic marker particles have to be used. The binding of the marker particles to the biomolecules is 

realized by using antibodies as well. As a result, the stray field of the magnetic marker particles changes 

the initial configuration of the magnetic particles and therefore the magnetoresistive properties. Thus, a 

change in the electrical resistance of the structure can be measured. The sensitivity of such a sensor is 

related to its magnetoresistive properties which are defined by the microstructure, i.e., the arrangement 

of the magnetic nanoparticles. Here, we show simulations of the structuring process of an ensemble of 

magnetic nanoparticles in a viscous matrix. In addition to that, we show how the magnetoresistive 

properties can be obtained from simulated magnetization curves. 
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4.1. Model System 

In general, the hybrid SD-MD algorithm presented in Section 3 can be applied to arbitrarily large 

systems and is only limited by computational resources. In order to demonstrate its applicability we have 

modeled a section of a real system made of cobalt nanoparticles [5,7] with a broad size distribution as 

shown in Figure 5. It can be considered as a small region of a magnetoresistive sensor structure. Here, 

50 cobalt particles with diameters in the range between 10 nm and 80 nm are distributed over an area of 

350 nm × 350 nm. The particles are immersed in a 4% agarose gel matrix, i.e., we assume a viscous 

surrounding medium with a kinematic viscosity of ߟ = 0.11	Pa∙s [7].  

 

Figure 5. Model structure consisting of 50 cobalt nanoparticles with diameters in the range 

between 10 nm and 80 nm (a). The particles are distributed over an area of 350 nm × 350 nm. 

The size distribution (b) is taken from experimental studies on particle-based GMR sensors [5,7].  

4.2. Structuring Process 

The structuring process of the cobalt nanoparticle ensemble has been simulated by our hybrid  

SD-MD method. In order to reach a stable end configuration, a MD run with a total number of  

3 × 107 time steps and time step length ݐ߂ = 1 × 10−14 (in reduced Lennard-Jones units) has been carried 

out with one SD run every 104 time steps. Every SD run took 1 × 104 time steps with a step length of ݐ߂ = 1 × 10−15 s. Due to significant changes of the magnetic moment orientations in the beginning of 

the simulation, the structural changes are much larger in the beginning and become slower in the end of 

the simulation. The simulation results are shown in Figure 6. In agreement with previous theoretical  

and experimental studies [5–7], the self-assembly process of the cobalt particles leads to a configuration 

that consists of parallel aligned areas, antiparallel chains and particle islands that contain magnetic 

moment vortices. 

4.3. Estimation of GMR Properties 

As presented above, the hybrid SD-MD algorithm considers the particle-gel systems in the liquid 

states of the gel. By switching off the MD algorithm, the magnetization curve of the system in the solid 

state of the gel can be calculated by means of spin dynamics simulations alone. The resulting 

magnetization curves and the GMR calculated using Equation (19) are shown in Figure 7. Furthermore, 

we show in Figure 7, the corresponding magnetization and GMR curve of the initial particle 
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configuration in order to emphasize the difference of the magnetic properties of the initial configuration 

and the final configuration that results from the hybrid molecular and spin dynamics trajectory 

calculation. The GMR effect amplitude is assumed to be 20% in agreement with previous experimental 

investigations on similar structures [5–7]. 

 

Figure 6. Results of a hybrid SD-MD simulation run of the model structure shown in  

Figure 5 in zero external magnetic field. The magnetic particles are shown in grey whereas 

the effective magnetic moments of the particles are represented by colored arrows. The 

colors of the arrows represent the horizontal, in-plane component of the magnetic moment. 

Starting from a random initial magnetic configuration with coplanar particle positions and 

random three-dimensional effective magnetic moment orientations (a), a stable final 

structure is reached after 3 × 107 hybrid SD-MD time steps (c). An intermediate configuration 

after 3 × 106 steps in time is shown in (b). 

 

Figure 7. Simulated magnetization curves of the final configuration of the hybrid SD-MD 

simulation presented in Figure 6c (black line) and, for comparison, the magnetization curve 

of the initial configuration shown in Figure 6a (black dots). A rough estimate of the GMR 

properties of the system has been calculated by means of equation 12 (initial configuration 

with blue dots and final configuration with blue line) for an effect amplitude ீܣெோ of 20% 

according to previous experimental investigations [5–7]. 

The GMR curves can only be considered a first rough estimate for the magnetoresistive properties of 

the complete structure since we have only calculated a small section of it. This section contains a few 
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rather large cobalt particles with large magnetic moments that dominate the total magnetization 

calculation. As a result of this the curves are rather bumpy which would disappear if one simulates larger 

sections. Nevertheless, even by simulating small sections of a sensor structure different particle 

materials, size distributions and gel matrices can be investigated in order to optimize parameters for 

future GMR sensor systems. 

5. Conclusions/Outlook 

GMR sensor devices based on magnetic nanoparticles immersed in conductive gel matrices show 

promising features for the development of disposable low-cost devices for the detection of biomolecules. 

In order to optimize the magnetoresistive properties of such sensors it is necessary to know detailed 

information about the magnetic microstructure. Since this information is not accessible by experimental 

techniques we provide a novel simulational approach based on hybrid spin dynamics and molecular 

dynamics methods that allows one to simulate the structuring process of the particles in the liquid state 

of the gel. Moreover, we have shown that our approach can be used to characterize the GMR properties 

of a sensor structure. Future enhancements of the hybrid algorithm will include inhomogeneous magnetic 

fields for the structuring process as well as non-spherical particles such as nanorods and nanocubes.  
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