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Abstract:

 The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts—MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing.
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1. Introduction

The problem of jointly detecting and tracking multiple maneuvering targets in an infrared focal plane array is very challenging and has received great attention in the last several years [1,2,3,4,5,6,7]. In many applications, the estimation is often performed on point measurements after threshold segmentation [8,9,10,11]. However, in situations where the signal-to-noise ratio (SNR) of the infrared sensor is low, threshold segmentation of the sensor output may cause false alarms and missing targets, as the noise level is high enough to generate detections [12,13], so it is necessary to make use of all information in the images to improve the detection and tracking performance. Fortunately, track-before-detect (TBD), or tracking without threshold segmentation is an effective method as shown in [14,15,16]. In addition, in many applications, for example infrared search and track (IRST), precise guidance, and space situation awareness (SSA), the tracking method is required to track all relevant targets which typically exhibit different motion models [6,17,18,19]. This paper investigates the problem of jointly estimating the number of maneuvering targets and their states from infrared image observations.

A recent approach of tracking is to represent the multi-target state as a random finite set (RFS). Based on the RFS framework, the probability hypothesis density (PHD), Cardinalized PHD (CPHD) and multi-target multi-Bernoulli (MeMBer) filters have been proposed [20,21,22,23,24]. The PHD and CPHD recursions propagate the first moment and cardinality distribution of the multi-target random set while the multi-Bernoulli filter propagates the parameters of a multi-Bernoulli distribution that approximates the posterior multi-target density. However, these methods only provide unlabeled point estimates at each time, and additional post-processing is necessary to form tracks. In [25,26], Tuong and Ngu introduced the framework of labeled RFS which augments the state of each target by a track label and the Generalized Labeled Multi-Bernoulli (GLMB) and the δ-GLMB RFS were proposed as the specific subclasses of labeled RFS. The labeled Multi-Bernoulli (LMB) filter proposed in [27], is an efficient approximation of the δ-GLMB filter. For LMB filter, the tracks are supposed to be statistically independent, and the computational cost can be reduced due to partitioning and parallel updates. In [28,29], GLMB TBD and LMB TBD were applied in visual tracking and radar tracking, respectively. In our work, we will extend the LMB TBD filter with a special focus on point target tracking in the infrared focal plane array.

A single-model LMB filter may fail to track maneuvering targets whose motion model may switch between different models, because the motion model of the filter does not match the actual dynamics. It is well known that the Interacting Multiple Models (IMM) approach has been proven to be very effective and has been adopted in many applications to deal with this challenge [30]. Stephan et al. adopted the IMM approach based on LMB filter to tackle maneuvering targets [31]. However, it is only applicable to point measurements after threshold segmentation.

In addition, target intensity may change due to projection location, imaging distance, optic angle of sensor, atmosphere environments, and so on, so in this case, the estimation performance is limited. A delayed decision which incorporates multiple image frames can improve estimation performance, because multiple image frames can provide more information. Recently, smoothing has been adopted within the Bernoulli RFS framework. [12,32] introduced the Bernoulli backward smoothers for point measurements and image observations, respectively. However, they can only smooth single-model single targets.

To solve the aforementioned problems, we propose a novel multiple maneuvering target track-before-detect method within the labeled RFS framework, referred to as multi-model labeled multi-Bernoulli (MM-LMB) TBD method. The MM-LMB TBD method consists of an MM-LMB filter and an MM-LMB smoother. The MM-LMB filter propagates multi-target density in the forward direction, and the MM-LMB smoother optimizes the history multi-target density with current data. Firstly, the original LMB filter is extended to a LMB filter for TBD based on the target and measurement models in the infrared focal plane array. Secondly, by integrating the IMM approach with the LMB filter, a MM-LMB filter for TBD is derived. Thirdly, taking advantage of the track labels provided by labeled RFS and posterior model transition probability, the MM-LMB smoother for TBD is presented, which extends single-model single-target smoothing to multi-model multi-target smoothing. This work also provides an efficient implementation based on particle or Sequential Monte Carlo (SMC) approximation [33,34], and demonstrates significantly improved detection and tracking performance in a typical multiple maneuvering target scenario.

The remainder of the paper is organized as follows: Section 2 introduces the notation used in this paper and reviews the theories of labeled RFS and labeled multi-Bernoulli RFS. Section 3 proposes the MM-LMB TBD method and presents the derivation of the MM-LMB filter and MM-LMB smoother for TBD in detail. Sequential Monte Carlo implementation is also discussed in Section 3. The results and analysis of the experiments are mainly presented in Section 4. Section 5 draws the conclusions.



2. Background

This section introduces the notation and provides a brief review of labeled RFS and the labeled multi-Bernoulli RFS. For more details, the reader is referred to [27,35].


2.1. Notation

In this paper, small letters (e.g., x) are used to denote single-target states and capital letters (e.g., X) are used to denote multi-target states. Labeled target states are indicated by boldface letters (e.g., x, X). In addition, spaces are represented by blackboard bold letters (e.g., [image: there is no content] denotes the state space). Image observation at time [image: there is no content] is denoted by [image: there is no content]. The inner product is denoted by [image: there is no content]. The multi-target exponential of a real valued function [image: there is no content] raised to a set [image: there is no content] is defined as [image: there is no content], where [image: there is no content] by convention. The generalized Kronecker delta function and inclusion function are denoted by [image: there is no content] and [image: there is no content], respectively.



2.2. Labeled RFS

In order to jointly estimate the targets’ states and their individual tracks, labeled RFS was introduced based on the RFS framework [25]. A label [image: there is no content] is appended to the state [image: there is no content] to enable the estimation of a target track. [image: there is no content] is a discrete space, whose elements are distinct and the space [image: there is no content] denotes the set of positive integers. Hence, a labeled single-target state and a labeled multi-target state can be described by [image: there is no content] and [image: there is no content], respectively.

Let [image: there is no content] be the projection [image: there is no content], the set of track labels of the labeled RFS [image: there is no content] is obtained by [image: there is no content]. The labels are required to be distinct. It means that the cardinalities of the set of labels and the set of state vectors are identical. It is mathematically ensured using the distinct label indicator [image: there is no content].



2.3. Labeled Multi-Bernoulli RFS

The single target density can be modeled by Bernoulli RFS. Conditional on [image: there is no content], the target can re-enter or appear with probability [image: there is no content] and occupy kinematic state [image: there is no content] with probability density [image: there is no content], or remain absent or disappeared with probability [image: there is no content]. It can be described by the Bernoulli RFS as following [32]:



[image: there is no content]



(1)




In addition, conditional on [image: there is no content] , the target can survive and acquire a new state [image: there is no content] with probability density [image: there is no content], or disappear with probability [image: there is no content]. It can be described by the following Bernoulli RFS [12]:



[image: there is no content]



(2)




A multi-Bernoulli RFS [image: there is no content] can be regarded as a union of independent Bernoulli RFSs [image: there is no content] with existence probability [image: there is no content] and probability density [image: there is no content], i.e., [image: there is no content]. Then, parameter set [image: there is no content] is used to represent a multi-Bernoulli RFS.

Like a multi-Bernoulli RFS, a labeled multi-Bernoulli RFS with state space [image: there is no content] and label space [image: there is no content] can be described by the parameter set [image: there is no content]. The components [image: there is no content] are assumed to be statistically independent [27,35]. A label [image: there is no content] is assigned to each target which is a pair of the time of birth [image: there is no content] and a label index [image: there is no content]. Then, the label space for new targets born at time [image: there is no content] is denoted as [image: there is no content], and the new target born at time [image: there is no content] has state [image: there is no content]. The label space for all targets at time [image: there is no content] can be denoted as [image: there is no content], which is constructed recursively by [image: there is no content]. In addition, the LMB RFS can also be represented in the form of GLMB RFS:



[image: there is no content]



(3)




where the weights and the spatial distributions are given as follows [27]:


[image: there is no content]



(4)






[image: there is no content]



(5)







3. The Multi-Model LMB TBD


3.1. Target and Measurement Models

In this paper, the observation is a two-dimensional image generated by infrared focal plane array. The pixel [image: there is no content] of image can be indexed by the row and column coordinates, i.e., [image: there is no content]. The image is regarded as being made up of the sum of target signals and sensor noise signals. For long-range surveillance applications, the target is close to a point source, referred to as point target [36]. Thus, the sampled target spatial signature can be well modeled by the following 2D Gaussian shape [12,37]:



[image: there is no content]



(6)




where [image: there is no content] is blurring factor, [image: there is no content] is the position of the state [image: there is no content], [image: there is no content] is the target intensity. Each cell corresponds to a rectangular region of dimensions [image: there is no content]. [image: there is no content] is the contribution to pixel [image: there is no content] from the state [image: there is no content], which depends on the blurring factor, target position and target intensity.
A target with state [image: there is no content] illuminates a set of pixels denoted by [image: there is no content]. The [image: there is no content] is regarded as the square region whose center is closest to the position of [image: there is no content]. Let the measurement likelihood in pixel [image: there is no content] in the presence of a target with state [image: there is no content] be denoted by [image: there is no content], and the likelihood under the hypothesis of no targets be [image: there is no content], as Equation (7). More details on the measurement likelihood can be found in [38]:



[image: there is no content]



(7)




Then, the point target model is incorporated into the likelihood function. The measurement likelihood is given as follows:



[image: there is no content]



(8)






[image: there is no content]



(9)




Conditioned on the multi-target state [image: there is no content], the multi-target likelihood of [image: there is no content] is the product over all cells [38], i.e.:



[image: there is no content]



(10)




where:


[image: there is no content]



(11)






[image: there is no content]



(12)




Note that the targets are not closely space targets in this paper. We assume they are not very close to each other, so the separable likelihood model is reasonable in this application.



3.2. Multi-Model LMB Filter for TBD

In our method, MM-LMB TBD consists of the MM-LMB filter and MM-LMB smoother for TBD. MM-LMB filter means that the target density is propagated forward from time [image: there is no content] to time [image: there is no content]. MM-LMB smoother means that the target density is propagated backward from time [image: there is no content] to time [image: there is no content]. This subsection gives the derivation of the forward filter. To derive the MM-LMB filter for TBD, the key issue is to construct the LMB parameter set. For multi-model filter, augmented state [image: there is no content] is typically used to represent the target’s state and the according motion model [image: there is no content]. [image: there is no content] denotes the discrete space of all possible motion models. In the context of labeled RFS, the state vector is further augmented by the track label [image: there is no content], as [image: there is no content]. Thus, multi-target state is consequently given by:



[image: there is no content]



(13)




Let [image: there is no content] denotes the probability that a track switches from model [image: there is no content] to model [image: there is no content], where [image: there is no content]. [image: there is no content] denotes the model transition probability matrix, and [image: there is no content].

Each track is represented by its existence probability [image: there is no content] and its joint spatial distribution [image: there is no content]. [image: there is no content] denotes the probability of track [image: there is no content] with model [image: there is no content] and [image: there is no content] denotes the spatial distribution of track [image: there is no content] conditioned on model [image: there is no content].

In order to tackle the problem of maneuvering target TBD, IMM approach is integrated with the LMB filter as MM-LMB filter. Thus, in addition to the prediction stage and update stage, mixing stage is introduced. The recursion of MM-LMB filter for TBD is given as follows:

Step 1. Mixing: If at time [image: there is no content] the posterior density is assumed to be an LMB RFS on the augmented space, which is given by the parameter set as:



[image: there is no content]



(14)




Then, the parameter set after mixing can be expressed by:



[image: there is no content]



(15)




For the IMM approach, the motion model transition is assumed to be independent of the target’s state transition. It is only decided by motion model transition probability. Thus, [image: there is no content] can be calculated by:



p˜k−1(ℓ)(xk−1(ℓ),τk(ℓ)=t)=∑s=1Mτpk−1(ℓ)(xk−1(ℓ),τk(ℓ)=t,τk−1(ℓ)=s)=∑s=1Mτpk−1(ℓ)(τk(ℓ)=t|xk−1(ℓ),τk−1(ℓ)=s)pk−1(ℓ)(xk−1(ℓ),τk−1(ℓ)=s)=∑s=1Mτhstpk−1(ℓ)(xk−1(ℓ),τk−1(ℓ)=s)



(16)




Step 2. Prediction: Then, the predicted LMB RFS of the multi-model LMB filter is given by the parameter set:



[image: there is no content]



(17)




where:


[image: there is no content]



(18)






[image: there is no content]



(19)






η(ℓ)=∑τ∈T∫pS(ℓ,τ)(x,τ)p˜k−1(ℓ)(x,τ)dx=∑τ∈Tp˜k−1(ℓ)(τ)∫pS(ℓ,τ)(x,τ)p˜k−1(ℓ)(x|τ)dx



(20)




The terms [image: there is no content] and [image: there is no content] denote the survival probability and single-target transition density of track [image: there is no content] at model [image: there is no content], respectively. In most applications, the survival probability of the tracks can be assumed to be independent of the current motion model, i.e., [image: there is no content]. [image: there is no content] and [image: there is no content] denote the model probability and conditional spatial distribution of track [image: there is no content] after mixing at time [image: there is no content]. As shown in Equation (17), the LMB parameter set for the predicted multi-target density [image: there is no content] is formed by the union of LMB parameter sets for the survival targets and birth targets. The first term in Equation (17) represents survival targets and the second one denotes birth targets. [image: there is no content] is the label space of birth targets, and [image: there is no content].

Step 3. Update from image observation: We rewrite the predicted multi-target density as a typical LMB RFS, which is given by the parameter set:



[image: there is no content]



(21)




Reference [29] derived the update procedure for single-model TBD. For the case with multiple motion models, the existence probability [image: there is no content] and spatial density [image: there is no content] can be updated by Equations (22) and (23), respectively:



[image: there is no content]



(22)






[image: there is no content]



(23)




where [image: there is no content] has been given in Section 3.1, and:


[image: there is no content]



(24)






ηz(ℓ,τ)=∫γz(x,ℓ)pk|k−1(ℓ)(x,τ)dx=pk|k−1(ℓ)(τ)∫γz(x,ℓ)pk|k−1(ℓ)(x|τ)dx,



(25)




where [image: there is no content] and [image: there is no content] represent the model probability and conditional spatial distribution of track [image: there is no content] with model [image: there is no content]. In fact, the Equation (22) can be interpreted as the union of two cases: target appears and target disappears. [image: there is no content] denotes the probability when target appears. [image: there is no content] denotes the probability when target disappears.


3.3. Multi-Model LMB Smoother for TBD

In the backward smoothing, the smoothed target density is propagated backward from time [image: there is no content] to time [image: there is no content]. In essence, we want to optimize the history target density by the measurement data up to time [image: there is no content]. Taking advantage of the target labels, the multi-target backward smoothing can be realized with an approach similar to that of single-target backward smoothing. Multiple targets are independent, and can be smoothed respectively. More details on single-target backward smoothing can be found in [12]. The recursion is initialized with [image: there is no content]. The smoothed LMB density of track [image: there is no content] from time [image: there is no content] to [image: there is no content] is denoted by [image: there is no content]. Then the smoothed LMB density [image: there is no content] can be calculated by:



[image: there is no content]



(26)






[image: there is no content]



(27)




where:


[image: there is no content]



(28)






[image: there is no content]



(29)






[image: there is no content]



(30)






[image: there is no content]



(31)




[image: there is no content] is the augmented states of smoothing from [image: there is no content] to [image: there is no content], [image: there is no content] is single target transition density at time [image: there is no content], given target state [image: there is no content] and motion model [image: there is no content]. The model transition is independent of the state transition, i.e., [image: there is no content].

Like the analysis above, the motion model transition probability has an important influence on target state estimation. Backward smoothing makes it possible to get more accurate posterior model transition probability. The posterior model transition probability of track [image: there is no content] from [image: there is no content] to [image: there is no content], i.e., [image: there is no content], is calculated as Equation (32). The posterior model transition probability, rather than the prior one, is used to calculate smoothed target density:



[image: there is no content]



(32)






3.4. Sequential Monte Carlo Implementation

In this subsection, we use the SMC approach to implement the MM-LMB TBD. The single target density at time [image: there is no content] is given by a labeled Bernoulli RFS with existence probability [image: there is no content] and spatial density [image: there is no content]. The spatial density is approximated using a set of weighted particles [image: there is no content], i.e., [image: there is no content]. [image: there is no content] is the number of particles. Notice that the particles consist of the state and model information with associated weights.

Mixing and Prediction: The model samplings for survival targets and birth targets are performed based on the proposals [image: there is no content] and [image: there is no content]. Weights are calculated based on the model transition probability and birth model, respectively. Thus, the model values and corresponding weights can be obtained by:



[image: there is no content]



(33)






[image: there is no content]



(34)




where, [image: there is no content] and [image: there is no content] are the model transition probability of survival targets and the model distribution of birth targets. [image: there is no content] denotes the number of particles of the birth target. Note that the predicted motion models are sampled from discrete space [image: there is no content].
Then, the particles [image: there is no content] and weights [image: there is no content] can be generated as follows. The particles and weights for survival targets are drawn conditioned on model [image: there is no content], and those for birth targets are obtained based on birth model:



[image: there is no content]



(35)






[image: there is no content]



(36)




where, [image: there is no content] and [image: there is no content] are the proposals for the survival target and the birth target.
Update: Suppose the predicted density is given as [image: there is no content], align where the spatial density [image: there is no content]. The updated density is given as [image: there is no content], where [image: there is no content] and [image: there is no content]. The normalizing constant [image: there is no content] used in Equations (22) and (23) for update can be calculated by:



[image: there is no content]



(37)




where the [image: there is no content] covers all particles of track [image: there is no content] with different motion models.
Then, the updated existence probability, i.e., [image: there is no content], can be obtained as Equation (22), and the weight for each particle, i.e., [image: there is no content], can be calculated by:



[image: there is no content]



(38)




Backward Smoothing: The backward smoothing uses the target density at time [image: there is no content] to smooth the particle approximation of the target density and existence probability at time [image: there is no content]. Suppose the smoothed density from [image: there is no content] to [image: there is no content] is given as [image: there is no content], where [image: there is no content]. The posterior model transition probability of track [image: there is no content] from [image: there is no content] to [image: there is no content] can be calculated by:



[image: there is no content]



(39)




The smoothed multi-target LMB density can be calculated by:



[image: there is no content]



(40)






[image: there is no content]



(41)




where:


[image: there is no content]



(42)






[image: there is no content]



(43)






[image: there is no content]



(44)




In addition, the resampling, pruning and state extraction are same as the SMC-CBMeMBer [23]. For any two tracks, if the extracted target states are within a given distance threshold [image: there is no content] the two corresponding LMB components are merged. If the existence probability of [image: there is no content] th track is below a threshold [image: there is no content], the corresponding LMB component is discarded. A target is declared present if the estimated existence probability is greater than threshold [image: there is no content], otherwise no target is declared. At each time, a maximum of [image: there is no content] and minimum of [image: there is no content] particles per-hypothesized track are imposed so that the number of particles representing each hypothesized track is proportional to its existence probability after resampling in the update step.




4. Results


4.1. Scenario Description

A scenario containing multiple maneuvering targets is used to evaluate the performance of proposed method. The scenario is 30 frames long with period [image: there is no content]. There are three point targets in this scenario. The point spread function of the simulated sensor has a blurring factor [image: there is no content] and sensor noise variance is set to [image: there is no content]. The image observation consists of 512 × 512 pixels. Each pixel representing one unit of physical distance: [image: there is no content]. The [image: there is no content] is [image: there is no content] square region whose center is closest to the position of [image: there is no content].

Each of the targets may move at a constant velocity, performing a coordinated turn or under constant acceleration in the surveillance region. Therefore, the motion model set for this example can be composed of a constant velocity (CV) model, a coordinated turn (CT) model and a constant acceleration (CA) model. More details on the motion models can be found in [39]. Let [image: there is no content] denote the CV model, [image: there is no content] denote the CT model and [image: there is no content] denote the CA model. The turn rate of coordinated turn model is set to 1 rad/s, and the acceleration is set to 2.3 pixel/s. The target tracks are shown in Figure 1. “◯” denotes the locations at which targets are born and “□” denotes the locations at which targets die. A typical observation with [image: there is no content] ([image: there is no content]) is shown in Figure 2. The SNR can be calculated by [34]:

Figure 1. True target trajectories.



[image: Sensors 15 29829 g001 1024]





Figure 2. Typical target in image observation at [image: there is no content].



[image: Sensors 15 29829 g002 1024]







[image: there is no content]



(45)








For the IMM approach, the motion models are initialized with probabilities [image: there is no content] and the model transition matrix is set to:



[image: there is no content]



(46)




The performance of the algorithm is evaluated using the Optimal Sub-Pattern Assignment (OSPA) metric [40], which is recently developed and defined as:



[image: there is no content]



(47)




where [image: there is no content] and [image: there is no content] are arbitrary finite subsets, [image: there is no content], [image: there is no content]. We use the parameters [image: there is no content] and [image: there is no content] in this paper.
The results are divided into two parts: Firstly, multiple maneuvering targets are detected and tracked by TBD-based algorithms, including CV-LMB filter, MM-PHD filter [34,41] and MM-LMB filter. This is used to illustrate the effectiveness of MM-LMB filter for multiple maneuvering targets TBD. Additionally, the performance of MM-LMB TBD with forward-backward combination is compared with the forward MM-LMB filter. It demonstrates the optimization ability of backward smoothing. These TBD methods are implemented using SMC approach. The parameters used in SMC application are listed in Table 1.

Table 1. Parameters for SMC TBD.


	Variable
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]
	[image: there is no content]





	Value
	0.03
	0.99
	1200
	1000
	3
	10−6
	0.5












4.2. Multiple Maneuvering Target TBD Experiment

The results obtained from CV-LMB filter, MM-PHD filter and MM-LMB filter for a single run at [image: there is no content] is shown in Figure 3. As indicated by this figure, the tracking performance is quite different. When the motion model switch occurs or the selected model is not consistent with the true model, the CV-LMB filter fails to estimate the targets. The estimation error of MM-PHD filter is also large, because of the inaccuracy in estimating the number of targets. However, the MM-LMB filter can track all targets from birth to end in the above defined scenario.

Figure 3. The estimated tracks of multiple targets: (a) x-coordinate; (b) y-coordinate.



[image: Sensors 15 29829 g003 1024]







The true motion model and estimated model probability in MM-LMB filter at different times is depicted by Figure 4 and Figure 5, respectively. As expected, the MM-LMB filter can adaptively capture model transition. For example in Target 3, the probabilities of CV, CT and CA at [image: there is no content] are 0.53, 0.01, and 0.46, respectively. However, at [image: there is no content], the probabilities of CV, CT and CA become 0.005, 0.005 and 0.99. It’s obvious that motion model transition is achieved successfully in MM-LMB filter.

Figure 4. The true motion models of targets.



[image: Sensors 15 29829 g004 1024]





Figure 5. The estimated model probabilities in MM-LMB filter for TBD.
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To provide a performance comparison of the methods in sense of statistical evaluation, the average cardinality and average OPSA distance over 50 Monte Carlo runs at different SNR are shown in Figure 6 and Figure 7. Figure 6a and Figure 7a give the results at [image: there is no content]. Figure 6b and Figure 7b give the results at [image: there is no content], respectively.

Figure 6. The estimated cardinalities of CV-LMB filter, MM-PHD filter and MM-LMB filter for TBD: (a) SNR = 6.8; (b) SNR = 5.



[image: Sensors 15 29829 g006 1024]





Figure 7. The OSPA distances of CV-LMB filter, MM-PHD filter and MM-LMB filter for TBD: (a) SNR = 6.8; (b) SNR = 5.
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From Figure 6, we can see that MM-LMB filter converges to the ground truth. However, the CV-LMB filter and MM-PHD filter produce bias in estimating the target number. MM-LMB filter can effectively capture the model switching property of the maneuvering targets, so its performance is significantly better than that of the other two methods. The average OSPA distances derived by the three methods are shown in Figure 7. From this figure, we can see that CV-LMB filter and MM-PHD filter perform significantly worse than the MM-LMB filter in the term of target localization and detection. In addition, the MM-LMB filter is more effective for dim targets. As shown in Figure 6 and Figure 7, the estimation error may increase as SNR decreases. However, MM-LMB filter still outperforms the other two methods.



4.3. Backward Smoothing Experiment

To provide a performance comparison of forward method and forward-backward method, an example simulation is given with target intensity fluctuation. As shown in Figure 8, target intensity degrades significantly at some time, which may lead to significant estimate errors. Besides, 1-lag smoother is adopted in this experiment, it means that the target density at time [image: there is no content] is used to smooth the particle approximation of the target density and existence probability at time [image: there is no content].

Figure 8. Target intensity variation.
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In this experiment, the posterior model transition probabilities at some representative times are listed in Table 2. [image: there is no content] represents the model transition from [image: there is no content] to [image: there is no content] at time [image: there is no content]. [image: there is no content] and [image: there is no content] represent the prior and posterior model transition probabilities, respectively. As shown in Table 2, posterior model transition probabilities conform to actual motion models better, especially when motion model switches. For example, Target 3 switches from CV to CT at [image: there is no content]. The prior transition probability is 0.1, but the posterior one is about 0.8. In addition, Target 3 switches from CT to CV at [image: there is no content]. The prior transition probability is 0.15, but the posterior one is about 0.85. It proves that the model transition probabilities have been optimized based on posterior target density in smoother.


Table 2. Comparison of prior and posterior model transition probabilities.



	
Target No.

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]

	
[image: there is no content]






	
1

	
16

	
(1,1)

	
0.8

	
0.98




	
26

	
(1,1)

	
0.8

	
0.99




	
2

	
11

	
(1,1)

	
0.8

	
0.94




	
22

	
(1,3)

	
0.1

	
0.98




	
3

	
9

	
(1,2)

	
0.1

	
0.80




	
12

	
(2,1)

	
0.15

	
0.85











Figure 9 and Figure 10 show the smoothed cardinality and smoothed OSPA distance over 50 Monte Carlo runs. Figure 9 indicates that our method provides accurate cardinality estimation. In Figure 10, the OSPA peaks of filter appear at time [image: there is no content], which are related to target intensity fluctuation. However, the result of our method is more stable. This phenomenon indicates that our method is more robust, especially when the target intensity may fluctuate. It’s because that the smoother can exploit current observation to optimize the history result.

Figure 9. The estimated cardinalities of forward filter and forward-backward combination.
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Figure 10. OSPA distances of forward filter and forward-backward combination.
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5. Conclusions

In this paper, we have proposed a labeled RFS-based method, MM-LMB TBD, to detect and track multiple maneuvering targets from raw image observation of infrared focal plane arrays. A forward filter and backward smoother are jointly used to estimate the multi-target states. Simulation results show that the MM-LMB TBD method is capable of tracking maneuvering targets using raw image data. It has better adaptation to maneuvers and provides an overall lower estimate errors compared with the CV-LMB filter and MM-PHD filter. In addition, the smoother of MM-LMB TBD can backwardly optimize the history target state estimation by the current measurement. Thus, MM-LMB TBD is more robust against the target intensity fluctuation problem, which is common in practical applications.
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