Pattern Switchable Antenna System Using Inkjet-Printed Directional Bow-Tie for Bi-Direction Sensing Applications
Abstract
:1. Introduction
2. Antenna System Design
2.1. Directional Bow-Tie Antenna Design
W | S | L/2 | Wc | |
---|---|---|---|---|
Antenna #1 | 17.28 mm | 55.75 mm | 28.45 mm | 2.4 mm |
Antenna #2 | 10.75 mm | 58.26 mm | 30.8 mm | 2.8 mm |
2.2. Switching Network Design
3. Fabrication and Measurements
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Qin, P.Y.; Guo, Y.J.; Weily, A.R.; Liang, C.H. A pattern reconfigurable U-slot antenna and its applications in MIMO systems. IEEE Trans. Antenn. Propag. 2012, 6, 516–528. [Google Scholar] [CrossRef]
- Lai, M.I.; Wu, T.Y.; Hsieh, J.C.; Wang, C.H.; Jeng, S.K. Design of reconfigurable antennas based on an L-shaped slot and PIN diodes for compact wireless devices. IET. Micro. Antenn. Propag. 2009, 3, 47–54. [Google Scholar] [CrossRef]
- Baik, J.W.; Pyo, S.; Lee, T.H.; Kim, Y.S. Switchable printed Yagi-Uda antenna with pattern reconfiguration. ETRI J. 2009, 31, 318–320. [Google Scholar] [CrossRef]
- Lim, J.H.; Back, G.T.; Ko, Y.I.; Song, C.W.; Yun, T.Y. A reconfigurable PIFA using a switchable PIN-diode and a fine-tuning varactor for USPCS/WCDMA/m-WiMAX/WLAN. IEEE Trans. Antenn. Propag. 2010, 58, 2404–2411. [Google Scholar]
- Jung, C.W.; Lee, M.J.; Li, G.P.; De Flaviis, F. Reconfigurable scan-beam single-arm spiral antenna integrated with RF-MEMS switches. IEEE Trans. Antenn. Propag. 2006, 54, 455–463. [Google Scholar] [CrossRef]
- Huff, G.H.; Bernhard, J.T. Integration of packaged RF MEMS switches with radiation pattern reconfigurable square spiral microstrip antennas. IEEE Trans. Antenn. Propag. 2006, 54, 464–469. [Google Scholar] [CrossRef]
- Kawase, T.; Moriya, S.; Newsome, C.J.; Shimoda, T. Inkjet printing of polymeric field-effect transistors and its applications. Jpn. J. Appl. Phys. 2005, 44, 3649. [Google Scholar] [CrossRef]
- Cook, B.S.; Tehrani, B.; Cooper, J.R.; Tentzeris, M.M. Multilayer inkjet printing of millimeter-wave proximity-fed patch arrays on flexible substrates. IEEE. Antenn. Wirel. Propag. Lett. 2013, 12, 1351–1354. [Google Scholar] [CrossRef]
- Ahmed, S.; Tahir, F.; Shamim, A.; Cheema, H.M. A compact Kapton-based inkjet printed multiband antenna for flexible wireless devices. IEEE. Antenn. Wirel. Propag. Lett. 2015, 14, 1802–1805. [Google Scholar] [CrossRef]
- Hettak, K.; Ross, T.N.; James, R.; Momciu, A.; Wight, J.S. Flexible plastic substrate-based inkjet printed CPW resonators for 60 GHz ISM applications. In Proceedings of the European Microwave Conference (EuMC), Rome, Italy, 6–9 October 2014; pp. 1194–1197.
- Yang, L.; Rida, A.; Vyas, R.; Tentzeris, M.M. RFID tag and RF structures on a paper substrate using inkjet-printing technology. IEEE Trans. Microw. Theory Technol. 2007, 55, 2894–2901. [Google Scholar] [CrossRef]
- Shaker, G.; Safavi-Naeini, S.; Sangary, N.; Tentzeris, M.M. Inkjet printing of ultrawideband (UWB) antennas on paper-based substrates. IEEE. Antenn. Wirel. Propag. Lett. 2011, 10, 111–114. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, R.; Staiculescu, D.; Wong, C.P.; Tentzeris, M.M. A novel conformal RFID-enabled module utilizing inkjet-printed antennas and carbon nanotubes for gas-detection applications. IEEE. Antenn. Wirel. Propag. Lett. 2009, 8, 653–656. [Google Scholar] [CrossRef]
- McKerricher, G.; Perez, J.G.; Shamim, A. Fully inkjet printed RF inductors and capacitors using polymer dielectric and silver conductive ink with through vias. IEEE Trans. Electron Dev. 2015, 62, 1002–1009. [Google Scholar] [CrossRef]
- Zabri, S.N.; Cahill, R.; Conway, G.; Schuchinsky, A. Inkjet printing of resistively loaded FSS for microwave absorbers. Electron. Lett. 2015, 51, 999–1001. [Google Scholar] [CrossRef]
- Choi, S.; Su, W.; Tentzeris, M.M.; Lim, S. A novel fluid-reconfigurable advanced and delayed phase line using inkjet-printed microfluidic composite right/left-handed transmission line. IEEE Microw. Wirel. Compon. Lett. 2015, 25, 142–144. [Google Scholar] [CrossRef]
- Kim, H.K.; Ling, K.; Kim, K.; Lim, S. Flexible inkjet-printed metamaterial absorber for coating a cylindrical object. Opt. Express 2015, 23, 5898–5906. [Google Scholar] [CrossRef] [PubMed]
- Walther, M.; Ortner, A.; Meier, H.; Löffelmann, U.; Smith, P.J.; Korvink, J.G. Terahertz metamaterials fabricated by inkjet printing. Appl. Phys. Lett. 2009, 95, 251107. [Google Scholar] [CrossRef]
- Cook, B.S.; Shamim, A. Utilizing wideband AMC structures for high-gain inkjet-printed antennas on lossy paper substrate. IEEE. Antenn. Wirel. Propag. Lett. 2013, 12, 76–79. [Google Scholar] [CrossRef]
- Durgun, A.C.; Balanis, C.; Birtcher, C.R.; Allee, D.R. Design, simulation, fabrication and testing of flexible bow-tie antennas. IEEE Trans. Antenn. Propag. 2011, 59, 4425–4435. [Google Scholar] [CrossRef]
- George, J.; Deepukumar, M.; Aanandan, C.K.; Mohanan, P.; Nair, K.G. New compact microstrip antenna. Electron. Lett. 1996, 32, 508–509. [Google Scholar] [CrossRef]
- Blech, M.D.; Eibert, T.F. A dipole excited ultrawideband dielectric rod antenna with reflector. IEEE Antenn. Propag, Trans. 2007, 55, 1948–1954. [Google Scholar] [CrossRef]
- Sinton, S.; Rahmat-Samii, Y. Random surface error effects on offset cylindrical reflector antennas. IEEE Trans. Antenn. Propag. 2003, 51, 1331–1337. [Google Scholar] [CrossRef]
- Garibello, B.E.; Barbin, S.E. A single element compact printed bowtie antenna enlarged bandwidth. In Proceedings of the 2005 SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics, Brasilia, Brazil, 25–28 July 2005; pp. 354–358.
- Kim, S.G.; Chang, K. Ultrawide-band transitions and new microwave components using double-sided parallel-strip lines. IEEE Trans. Microw. Theory Techn. 2004, 52, 2148–2152. [Google Scholar] [CrossRef]
- Wheeler, H. Transmission-line properties of parallel strips separated by a dielectric sheet. IEEE Trans. Microw. Theory Techn. 1965, 13, 172–185. [Google Scholar] [CrossRef]
- Park, J.A.; Cho, C.S.; Lee, J.W. A new design approach for asymmetric coupled-section Marchand balun. J. Electromagn. Eng. Sci. 2014, 14, 54–60. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eom, S.-H.; Seo, Y.; Lim, S. Pattern Switchable Antenna System Using Inkjet-Printed Directional Bow-Tie for Bi-Direction Sensing Applications. Sensors 2015, 15, 31171-31179. https://doi.org/10.3390/s151229851
Eom S-H, Seo Y, Lim S. Pattern Switchable Antenna System Using Inkjet-Printed Directional Bow-Tie for Bi-Direction Sensing Applications. Sensors. 2015; 15(12):31171-31179. https://doi.org/10.3390/s151229851
Chicago/Turabian StyleEom, Seung-Hyun, Yunsik Seo, and Sungjoon Lim. 2015. "Pattern Switchable Antenna System Using Inkjet-Printed Directional Bow-Tie for Bi-Direction Sensing Applications" Sensors 15, no. 12: 31171-31179. https://doi.org/10.3390/s151229851
APA StyleEom, S. -H., Seo, Y., & Lim, S. (2015). Pattern Switchable Antenna System Using Inkjet-Printed Directional Bow-Tie for Bi-Direction Sensing Applications. Sensors, 15(12), 31171-31179. https://doi.org/10.3390/s151229851