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Abstract: We propose an expectation maximization (EM) strategy for improving the precision of
time of flight (ToF) light detection and ranging (LiDAR) scanners. The novel algorithm statistically
accounts not only for the bias induced by temperature changes in the laser diode, but also for the
multi-modality of the measurement noises that is induced by mode-hopping effects. Instrumental to
the proposed EM algorithm, we also describe a general thermal dynamics model that can be learned
either from just input-output data or from a combination of simple temperature experiments and
information from the laser’s datasheet. We test the strategy on a SICK LMS 200 device and improve
its average absolute error by a factor of three.

Keywords: LiDAR; EM; Gaussian mixture model (GMM); mode hopping; ToF; maximum likelihood
(ML); multi-modality; SICK LMS200

1. Introduction

ToF LiDARs estimate distances by emitting short bursts of laser light and by measuring the
time it takes for the reflected photons to arrive back to the device [1]. Despite being based on
a very simple principle, they are very much both accurate and precise devices [2]: for example,
precisions can reach 10 mm of standard error when the object is 10 m away. Due to these favorable
properties, they are commonly used in critical industrial applications where there is the need for high
quality measurements.

It is well known that these devices need temperature compensation mechanisms, since changing
their temperature leads to changes in the statistics of the returned measurements. The effect of
temperature may be huge: experiments by [3] on an amplitude-modulated continuous-wave laser
radar pointing at a target six meters away from the sensor showed that measurements at 21 °C and
measurements at 45 °C were differing by 40 cm. Since thermal stabilization of a laser scanner may take
up to 30 min [4], it is clear that these sensors are affected by a warm-up-induced time drift that must
be compensated. Manufacturers of ToF devices thus usually embed opportune algorithms in their
products that implement this temperature compensation mechanism.

Unfortunately, temperature is not the only physical factor that deserves compensation: as
described in detail in Section 2, lasers can suddenly change their lasing mode. This property, called
the mode-hopping effect, has a substantial impact on the measure returned by ToF devices, since
changing lasing mode means to change the spectral content of the laser burst, i.e., change its time of
flight. Remarkably, to the best of our knowledge, the existing literature does not focus on managing
this effect, but rather, considers only temperature compensation mechanisms.

We would like to mention here that there are also other methods with high temperature
compensation at the nano-scale measurement, such as [5]. The method reduces the offset, the
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temperature characteristic of the main sensing element, the temperature drift and the noise by the
switching method.

1.1. Statement of Contributions

We propose an expectation maximization (EM) algorithm that compensates mode-hopping effects
by modeling the induced measurement noise as a Gaussian mixture. Thus, from the mathematical
perspective, we introduce some latent variables (namely, from which Gaussian the noise comes from)
as additional estimands. This EM algorithm is also coupled to a temperature compensation filter that
is built on a physics-based linear model for the thermal dynamics of the laser scanner. Summarizing,
thus, our contributions are, with respect to the aforementioned literature:

1. A thorough motivation for why it is meaningful to consider mode-hopping effects in laser
scanners, arising from a physical description of the lasing mechanism in laser diodes;

2. A thermodynamical model for the thermal dynamics of a whole laser scanner, needed by the
proposed strategy to account for temperature effects;

3. A statistical model describing the measurement process that decouples the effects of the
mode-hopping from temperature effects;

4. A numerically-efficient EM strategy based on the statistical model above;
5. A validation of the proposed compensation strategy on real devices.

With the validation, we also show that it is possible to improve the absolute error of a SICK LMS
200 device by a factor of three.

1.2. Organization of the Manuscript

Section 2 analyzes the effects of the laser temperature on the measured distance. Section 3
proposes a general model for the thermal dynamics of a pulsed ToF LiDAR. Section 4 presents a
general measurement model accounting for both temperature and mode-hopping effects. Section 5
describes how to train the EM algorithm, while Section 6 describes how to use the same algorithm for
testing purposes. Section 7 then proposes a likelihood ratio test for calibrating the hyperparameters of
the EM algorithm. Section 8 presents some numerical results on commercial devices. Finally, Section 9
draws some conclusions and future research directions.

2. Effects of the Laser Temperature on the Measured Distance

This section lays down interpretations motivating the structure of the novel compensation
procedures. We thus here describe the functioning principle of ToF scanners, explain why the measured
distance depends on the temperature of the device and motivate why the measurement noise of a
LiDAR is intrinsically multi-modal.

Consider then the basic operation of pulsed ToF LiDARs in Figure 1 and in its caption.
The measurement of the distance derives from ideal considerations: if the temporal width of the

pulse is null, then the distance d between the sensor and the object should satisfy:

d =
c τ

2
(1)

where c is the speed of light and τ is the measured ToF between when the laser pulse is emitted and
when it is received. Assume ideally that the laser pulse contains photons with a unique nominal
wavelength λ0. Since:

c = λ0 f (2)

with f the light frequency and λ0 the nominal wavelength, and since the light frequency f remains the
same through different media, to know c, it is sufficient to know λ0. Thus, from knowing λ0, one can
compute d, since τ is measured.
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Figure 1. Graphical description of the operating principle for pulsed ToF LiDARs. A pulsed infra-red
laser beam is first emitted from the transmitter. The case of the transmitter, in dark gray, encloses a
laser junction and a laser cavity. The emitted laser beam is then deflected by a rotating mirror (resulting
in a fan-shaped scan pattern) and, finally, reflected from the object surface. The time of flight τ between
the transmission and the reception of the laser beam is then used to estimate the distance d between
the scanner and the object.

We can already now notice the first effect of the temperature of the device on the measurement:
according to its datasheet, the nominal wavelength of the laser diode SPL PL90 from OSRAM [6] is
905 nm at 25 °C, and 907.8 nm at 35 °C. Assuming the target to be at a one-meter distance, this 2.8 nm
variation in the wavelength λ then results in a 10.3-ps variation in the ToF τ, i.e., a variation in the
measured distance of approximately 3.1 mm.
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Figure 2. Average spectral distribution for GaAsP lasers at the nominal temperature of 21 °C [7].

The previous consideration is nonetheless simplistic. We can indeed notice another three
distinct effects:

1. In general, lasers do not emit at a unique frequency λ. Indeed, the average spectral distribution
of the laser pulses follows a “comb”-like density, like the one in Figure 2.

2. Lasers are affected by the so-called mode-hopping effect [8] and, indeed, oscillate between
different lasing modes (the teeth of the “comb” of Figure 2), for which two different pulses
generated under the same temperature and external conditions may have different λ’s (e.g.,
referring to the same figure, the first pulse may contain only photons with wavelengths λ1,
while the second pulse may contain only photons with wavelengths λ2). In other words, the
actual distribution of one specific pulse may contain only a subset of the teeth of the average
spectral distribution. Using naively Equations (1) and (2) to estimate d without being aware of
the mode hopping, i.e., assuming a certain λ0 without actually knowing that the average λ jumps
between different lasing modes, reflects thus in a multimodal measurement of d, as clearly shown
in Figure 3.
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3. The average spectral distribution of the laser pulses is not fixed, but rather depends on the
temperature of the transmitter [9]. More precisely, the positions and amplitudes of the modes in
Figure 2 depend on both the current flowing through the laser junction and the geometry of the
laser cavity, but eventually, these two effects are inter-combined: the current flow produces heat
that will modify the geometry of the cavity. Eventually, thus, the temperature affects the position
and amplitude of the modes of the average spectral distribution. This temperature effect can be
clearly seen in Figure 4: even if the device is nominally already compensated in temperature, one
can clearly see two different lasing modes shifting in temperature.
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Figure 3. Histogram of consecutive measurements returned by a SICK 200 device in
thermodynamical and electrical equilibrium pointing at a fixed object and in a controlled environment.
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Figure 4. Dependency of the distance measurements on the device temperature for a SICK 200 device
pointing to a fixed object in a controlled environment. Despite the true distance and other parameters
potentially affecting the measurements being constant in time, the distributions of the measurements
are temperature varying. We can notice how the device compensates for the temperature change by
adding a temperature-varying negative bias, but that it does not compensate the mode-hopping effect.

To summarize, the actual λ of a laser pulse is in general different from the nominal λ0 because
of two effects: first, the laser may oscillate between different modes; second, these positions of these
modes vary with temperature.

3. A General Model for the Thermal Dynamics of a Pulsed ToF LiDAR

Instrumental for compensating the effects of temperature offsets highlighted in the previous
section, we here discuss a general thermodynamic model describing the temperature dynamics of
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the whole laser scanner that will lead us to being able to represent the temperature changes of the
laser cavity.

3.1. Physical Modeling

Just like any power electronic device, LiDARs generate heat that is then exchanged with the
environment, so that the temperature of a scanner depends on the temperature of the environment. The
main sources of heat inside the LiDAR are thus the laser diode, the motor and the electronic components
of the system. The heat generated inside the scanner is then transferred to the surrounding environment
through the case. Since our experience indicates that motors and other electronic components induce
negligible thermal effects, we consider only the heat produced by the laser diode.

We thus represent the thermal model of a generic scanner as the equivalent electrical circuit
shown in Figure 5, interpretable as follows: when the laser is turned on, the heat generated by the
laser junction is dissipated in the surrounding environment through first the transmitter case and then,
second, through the laser scanner case.

tj tc

PC1 R2 C2

1

R2

ṫa
R1

Figure 5. The proposed thermodynamic model for a generic pulsed ToF LiDAR.

Considering the notation:

P Heat power generated by the junction (equal to zero when the device is off)
tj Temperature of the junction
tc Temperature of the transmitter case
ta Temperature of the external ambient
ts Noisy measurement of the temperature of the transmitter case
C1 Thermal inertia of the transmitter case
C2 Thermal inertia of the laser scanner case
R1 Thermal resistance between the transmitter case and the laser scanner case
R2 Thermal resistance between the laser scanner case and the ambient

It follows that the dynamics for the temperatures of the laser junction and scanner case when the
laser is on are thus: 




ṫc =
tj

R1C2
− tc

(
1

R2C2
+

1
R1C2

)
+

1
C2R2

ṫa

ṫj =
P
C1

+
tc

R1C1
− tj

R1C1

(3)

Discretizing the previous dynamics with a discretization step of T s and letting:

tk :=

[
tc
k

tj
k

]
uk :=

{
P if on,
0 if off,

νk := ta
k − ta

k−1 (4)

implies the following discrete-time state-space representation of the model:

{
tk+1 = Atk + Buk + B′νk
ts
k = Ctk + µk

(5)
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where ts
k is a noisy temperature measurement of the case at time k, νk and µk are independent process

and measurement noises, and where:

A =




1− T
R2C2

− T
R1C2

T
R1C2

T
R1C1

1− T
R1C1


 B =




0

T
C1


 B′ =




T
R2C2

0


 C =

[
1 0

]
(6)

Notice that through Equation (5), we introduce ts
k, i.e., a noisy measurement of the temperature of

the transmitter case. This correspond to the practical assumption that perfect knowledge of the actual
case temperature tc

k is in general unavailable, since temperature sensors attached to the case of the
scanner will never give noiseless recordings.

3.2. Identifying Model Equation (5)

If one has a dataset of recorded temperatures tj
k, tc

k and ta
k, then one may identify Equation (5)

using standard system identification approaches, e.g., a prediction error method (PEM) as in [10]. For
the common case where it may be difficult to obtain direct measurements of the quantities, we propose
to resort to the following general strategy that uses the datasheet of the laser scanner in conjunction
with noisy case temperature measurements ts

k.

Algorithm 1 Identification of model Equation (5) starting from the datasheet of a laser scanner.

1: From the datasheet of the laser scanner infer:

• its thermal resistance R1 (directly from the datasheet);

• its thermal capacity C1 (by estimating the volume of the laser diode from the datasheet and

multiplying it for the heat capacity of the material, also indicated in the datasheet);
2: From measuring the weight and material of the case, infer its thermal capacity C2;
3: Estimate the generated heat power P by measuring the electrical power absorbed by the device

and multiplying this quantity by 0.5 (for the estimated efficiency of generic laser diodes [11]);
4: From situations where the scanner is in thermal equilibrium, calculate R2 by calculating the

difference between the measured case temperature ts
k and the ambient temperature ta

k divided by

the estimated generated heat power P.

3.3. Estimating tj from ts

Assume that model Equation (5) has been identified, either from measured data or using
Algorithm 1, and observe that the thermal model is observable, reachable and has stable dynamics.
Due to their favorable theoretical and numerical properties, we thus devise to estimate tj

k from noisy
measurements of the case temperature ts

k via Kalman smoothers/filters, as in [12], i.e., to let:

[
t̂j
1, . . . , t̂j

K

]
= W [ts

1, . . . , ts
K] (7)

for an opportune (and potentially time varying) matrix W. As before, notice that the filtering starts
from noisy measurements of the case temperature ts

k, rather than from perfect measurements tc
k.

4. A General Measurement Model Accounting for Temperature and Mode Hopping Effects

We recall that our aim is to model the effect of the temperature of the laser junction tj
k on the

measured distance d and understand how noisy case temperature measurements ts
k help improving

the accuracy on the final estimate of d. To this aim, we propose the following measurement model at
the generic time instant k:
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yk = d + H
(

tj
k

)
θ+ (1− ∆k)w1

k + ∆kw2
k (8)

where:

• yk is the distance returned by the sensor;
• d is the true distance from the object (assumed deterministic);

• tj
k is the temperature of the laser cavity at time k;

• The two modes w1
k ∼ N

(
µ1, σ2

1
)

and w2
k ∼ N

(
µ2, σ2

2
)

account for a bimodal Gaussian and
white additive measurement noise. The Bernoulli random variable (r.v.) ∆k ∼ B (π) selects the
active mode at time k, so that π reflects the relative importance of the modes. Intuitively, ∆k
represent which lasing mode has been active during measurement yk. We notice that here, we
consider bimodal noises (i.e., only two lasing modes) just for notational simplicity. It is nonetheless
immediate to generalize the subsequent findings for an M-modal case;

• H (·) θ is a non-linear transformation of the temperature of the laser junction tj
k in a measurement

bias. In the following Examples 1 and 2, we show how different H (·)’s and θ’s express different
maps from the junction temperature tj

k to the measurement bias.

Notice that, induced by our experience, we let the measurement noise modes w1
k and w2

k be

independent from the laser junction temperature tj
k. Our experiments indeed indicated that the

moments of the noises are not affected by changing temperatures (at least for a range between 0 °C and
40 °C). Notice moreover that model Equation (8) is linear in θ; this restrictive assumption is nonetheless
essential for building distance estimation algorithms that are numerically fast.

Example 1 (Polynomial model). Let:

Hk = H
(

tj
k

)
:=
[

tj
k,
(

tj
k

)2
, . . . ,

(
tj
k

)N
]

(9)

and θ := [θ1, . . . , θN ]. Then, the generic model Equation (8) specializes into:

yk = d +
N

∑
n=1

(
tj
k

)n
+ (1− ∆k)w1

k + ∆kw2
k (10)

i.e., a measurement model where the temperature plays the role of an N-th order polynomial bias (see Figure 6).
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Figure 6. Potential temperature-bias dependencies for the polynomial model of Example 1.
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Example 2 (Fourier expansion model). Let:

Hk = H
(

tj
k

)
:=
[
cos

(
2π f0tj

k

)
, sin

(
2π f0tj

k

)
, . . . , cos

(
2Nπ f0tj

k

)
, sin

(
2Nπ f0tj

k

)]
(11)

and θ :=
[
θ′1, θ′′1 , . . . , θ′N , θ′′N

]
, where the fundamental frequency f0 is assumed to be known. Then, the generic

model Equation (8) specializes into:

yk = d +
N

∑
n=1

(
θ′n cos

(
2nπ f0tj

k

)
+ θ′′n sin

(
2nπ f0tj

k

))
+ (1− ∆k)w1

k + ∆kw2
k (12)

i.e., a measurement model where the temperature plays the role of a bias that is periodic with frequency f0 (see
Figure 7).
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Figure 7. Potential temperature-bias dependencies for the Fourier expansion model of Example 2.

We then use model Equation (8) for practical purposes following the classical scheme:

• Design the model, i.e., decide the structure for H (·) (e.g., between Example 1, Example 2 or also
different ones depending on the need) starting from data collected in a controlled environment
(see Section 7);

• Train the model, i.e., estimate θ and the statistics of w1
k , w2

k and ∆k from data collected in a
controlled environment (see Section 5);

• Test the model, i.e., use the previous estimated quantities during the normal operation of the laser
scanner, so as to improve the estimation of d from data collected in a non-controlled environment
(see Section 6).

The following sections are dedicated in detail to how to implement the previous three
points. Notice that Section 7, on the design of the model, is presented after Sections 5 and 6 for
notational convenience.

5. Training Model Equation (8)

In this section, we devise a numerical algorithm for learning θ (i.e., the coefficients multiplying
H(·)), µ1, µ2, σ2

1 , σ2
2 , π (i.e., the statistics of the noises w1

k , w2
k and of the random variables ∆k) and the

values of the mode selection variables ∆k starting from a dataset containing:

• yk for k ∈ {1, . . . , K};
• d, i.e., the real distance;
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• ts
k, i.e., measurements of the temperature of the laser scanner case (to be transformed into estimates

of tj
k through Equation (7)).

Let then:
y :=

[
y1 · · · yK

]T

ts :=
[
ts
1 · · · ts

K

]T

t j :=
[
tj
1 · · · tj

K

]T

∆ :=
[
∆1 · · · ∆K

]T

θ :=
[
θT µ1 µ2 σ2

1 σ2
2 π

]T
.

(13)

Given the frequentist assumptions on the unknowns, we would like to perform maximum
likelihood (ML) estimation for θ, i.e., seek for:

arg max
θ,∆

P
[
y, t j ; d, θ, ∆

]
(14)

Since the laser junction temperature t j is unavailable, Equation (14) cannot be solved. We thus
resort to solving the approximated problem:

(
θ̂, ∆̂

)
:= arg max

θ,∆
P
[
y, t̂ j ; d, θ, ∆

]
(15)

where t̂ j is the estimate of t j given ts as in Equation (7). We also notice that, instead of considering the
joint density of y and t̂ j, it is sufficient to consider the conditional density of y given t̂ j:

Proposition 1. (
θ̂, ∆̂

)
= arg max

θ,∆
P
[
y
∣∣∣ t̂ j ; d, θ, ∆

]
(16)

It is important to notice that the ML problem in Equation (16) contains the latent variables
∆; to estimate them, we thus resort to a tailored EM approach [13]. To this aim, define then the
auxiliary variables:

Σ1 := diag
(

1− ∆̂k

)

Σ2 := diag
(

∆̂k

)
ỹk := yk − d

ỹ := y− d1
H :=




H1
...

HK


 =




H
(

t̂j
1

)

...

H
(

t̂j
K

)


 (17)

with 1 being a vector of K ones. The computation of
(

θ̂, ∆̂
)

is performed through the iteration up to
convergence (stopping criteria for EM algorithms are usually based on relative or absolute changes in
the parameter estimate or in the value of the log likelihood; see, e.g., [14]; in our implementations, we
used the absolute changes in the parameter estimate π̂ < ε; where ε is a small number 1× 10−5 in the
implementation) of the following two steps:

E-step

δk = (1− π̂) N
(

ỹk − Hkθ̂− µ̂1, σ̂2
1

)
+ π̂ N

(
ỹk − Hkθ̂− µ̂2, σ̂2

2

)
, k = 1, . . . , K

∆̂k =
π̂N

(
ỹk − Hkθ̂− µ̂2, σ̂2

2

)

δk
, k = 1, . . . , K

(18)
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M-step
C = σ̂2

1 Σ1 + σ̂2
2 Σ2

θ̂ =
(

HTC−1H
)−1

HTC−1ỹ

µ̂i =
1TΣi

1TΣi1

(
ỹ− Hθ̂

)
i = 1, 2

σ̂2
i =

(
ỹ− Hθ̂

)T
Σi

(
ỹ− Hθ̂

)

1TΣi1
i = 1, 2

π̂ =
1
K ∑

k
∆̂k

(19)

In our numerical experiments, we empirically found it convenient to use the following
initial conditions:

θ̂ = 0, µ̂1 = 0.1, µ̂2 = −0.1, σ̂2
1 = 0.1, σ̂2

2 = 0.1, π̂ = 0.5 (20)

As for the convergence of the EM to the true ML estimate, we notice that EM algorithms are not
in general ensured to have convergence properties. A sufficient condition for convergence is in [15],
where the authors show that EM algorithms are convergent if the maximizer of the M-step is unique (a
condition that is almost always satisfied in practice). In our case, the M-step maximizer is unique as
long as in the update for θ̂ in Equation (19), the matrix HTC−1H admits the inverse. In general, e.g., in
both the polynomial case of Example 1 and in the Fourier expansion case of Example 2, this translates
into the need for at least N samples associated with N different laser junction temperatures tj

k.

6. Testing Model Equation (8)

We now devise a numerical algorithm for estimating d and the values of the lasing mode
selection variables ∆k starting from the model trained in Section 5 (i.e., an estimated vector

θ̂ :=
[
θ̂T , µ̂1, µ̂2, σ̂2

1 , σ̂2
2 , π̂

]T
and the statistics of w1

k , w2
k and ∆k) and a set of measurements yk and ts

k
for k = 1, . . . , K.

Assuming once again to transform the temperature sensor measurements ts into estimated laser
junction temperatures t̂ j = Wts through Equation (7), the problem of estimating d and the ∆ks can be
cast as: (

d̂, ∆̂
)
= arg max

d,∆
P
[
y
∣∣∣ t̂ j ; d, θ̂, ∆

]
(21)

As before, we compute this ML estimate through an EM approach:

E-step

δk = (1− π̂)N
(

yk − d̂− Hkθ̂− µ̂1, σ̂2
1

)
+ π̂N

(
yk − d̂− Hkθ̂− µ̂2, σ̂2

2

)
, k = 1, . . . , K

∆̂k =
π̂N

(
yk − d̂− Hkθ̂− µ̂2, σ̂2

2

)

δk
, k = 1, . . . , K

(22)

M-step
C = Σ1σ̂2

1 + Σ2σ̂2
2

d̂ =
(
1TC−11

)−1
1TC−1

(
y− Hθ̂

) (23)

The same values of µ1, µ2, σ2
1 and σ2

2 at the end of the training step will be used in the testing step.
There is no need to recompute them again. In our experiments, we found it beneficial to start from the

initial conditions d̂ =
1Ty

K
and ∆̂k = 0.5. The convergence properties of this EM procedure are then

very similar to the EM in Section 5.
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7. Designing Model Equation (8)

This section is divided into two parts:

1. Section 7.1, suggesting some hints for designing different structures for H (·) (e.g., choosing the
order for Example 1, for Example 2 or also designing different functional structures depending
on the collected information);

2. Section 7.2, suggesting a numerical algorithm for discriminating between different competing
structures for H starting from data collected in a controlled environment.

7.1. Designing H (·)
The proposed EM algorithms have the numerically-favorable property of having both the E and

the M steps solvable in closed form. It is important to notice that this is induced by the fact that model
Equation (8) is linear in θ, i.e.,

H
(

tj
k

)
θ =

[
H1

(
tj
k

)
, . . . , HN

(
tj
k

)]



θ1
...

θN


 =

N

∑
n=1

Hn

(
tj
k

)
θn (24)

Thus, with this structure, the designer can model the effect of the temperature tj
k on the

measurement yk as the sum of N independent effects, each one represented as an opportune generic
function of tj

k (the weight of which is actually assumed unknown before the training phase).
As shown in Figures 6 and 7, the structures proposed in Examples 1 and 2 have quite general

generalization capabilities. Nonetheless, the designer can tailor H so that it resembles other structures;
our suggestion is to start from raw measured data spanning different temperatures, check visually how
the macroscopic temperature trend behaves and then decompose this trend as the sum of different
functions that will become the various Hn (·) in model Equation (8).

7.2. Determining the Best H (·) among Different Competing Potential Structures

The process described in Section 7.1 may lead to different competing structures for
H (·). In other words, the designer may propose different structures H(1), H(2), etc., and would like to
choose the “best” H(i) given a dataset containing y, ts and the true distance d.

We propose to use the classical approach of discriminating the various H(i)’s considering their
goodness of fit, i.e., to use generalized likelihood ratios (GLRs) [16], for which we first estimate the best

estimates θ̂
(i)

and ∆̂(i) for each H(i) given the dataset and then select the best hypothesis considering
their resulting log-likelihoods. More formally, the suggested procedure is as in Algorithm 2.

Algorithm 2 Selection of the best H(i).

1: for i = 1, 2, . . . do
2: Compute θ̂

(i)
and ∆̂(i) as in Section 5;

3: Compute

`(i) := log(σ̂2
1 )1

TΣ11+ log(σ̂2
2 )1

TΣ21

+
1

2σ̂2
1

(
y− d1− H(i)θ̂(i) − µ̂

(i)
1 1
)T

Σ(i)
1

(
y− d1− H(i)θ̂(i) − µ̂

(i)
1 1
)

+
1

2σ̂2
2

(
y− d1− H(i)θ̂(i) − µ̂

(i)
2 1
)T

Σ(i)
2

(
y− d1− H(i)θ̂(i) − µ̂

(i)
2 1
)

(25)

where Σ(i)
1 := diag

(
1− ∆̂(i)

k

)
and Σ(i)

2 := diag
(

∆̂(i)
k

)
;

4: end for
5: Select that H(i) that corresponds to the maximal `(i).

31215



Sensors 2015, 15, 31205–31223

8. Experiments

We now validate the proposed thermal model and estimation strategy on real data, aiming to
show their effectiveness. We thus consider the simple scenario where a target is fixed in front of a
sensor, under constant light and electrical conditions, so that the actual distance between the sensor
and the target d is fixed. We consider a SICK LMS 200 LiDAR, one of the most widely-used LiDARs in
industry and robotics applications.

8.1. Training and Validation of the Thermal Model Equation (5)

To train and validate the thermal model Equation (5), we conducted the experiment summarized
in Figure 8: in a thermally-controlled room at 22°, we performed several on-off cycles of the device and
measured the corresponding case temperature ts

k. We then used the data represented as “training data”
in the figure, the data-sheet of the SICK LMS 200 LiDAR and Algorithm 1 to train model Equation (5).
After that, we drove the trained model with the uk in the “test data” as inputs and obtained a predicted
temperature ŷs

k. The goodness of fit of the predicted temperatures, computed as:

100

(
1− ∑k

(
ŷs

k − ys
k
)2

∑k
(
ys

k
)2

)
(26)

is then 92.79%. This indicates a very good fit, i.e., a good approximation capability of our proposed
thermal model (and associated learning algorithm).
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Figure 8. Validation of the thermal model Equation (5) on a SICK 200 LiDAR.

8.2. Selection of the Optimal H(·) for the SICK 200 LiDAR

We used Algorithm 2 on real data from a SICK LMS 200 to discriminate between different H(i)’s
in Examples 1 and 2, i.e., the hypotheses:

Hi : y ∼ (1− ∆)N
(

d + H(i)θ+ µ1, σ2
1

)
+ ∆N

(
d + H(i)θ+ µ2, σ2

2

)
(27)

against the null hypothesis:
H0 : y ∼ N

(
d, σ2

)
(28)

so that the log likelihood ratio test between two hypotheses can be defined as:

Λi(y) =
`
(

d̂, σ̂2|y
)

`
(

d̂, σ̂2
1 , σ̂2

2 , µ̂1, µ̂2, θ̂, ∆̂|y, H(i)
) (29)
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where we explicitly mention the dependence of the log likelihood ` from the various parameters of the
considered model.

Figures 9 and 10 show the likelihood ratios obtained for different candidates for polynomial and
Fourier expansions, respectively. For the polynomial case, we obtained the highest likelihood for the
polynomial order N = 16, while for the Fourier case, we obtained the optimal value for N = 180. We
motivate this latter order, much higher than that of the polynomial case, to be due to the periodic
nature of the Fourier model.
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Figure 9. Generalized likelihood ratio (GLR) for Example 10 (polynomial model). The vertical axis
values represent the likelihood ratio, and the horizontal axis represents the polynomial order used for
generating the H(i) matrix.
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Figure 10. GLR for Example 12 (Fourier model) with different orders. The vertical axis values represent
the likelihood ratio and the horizontal axis represents the Fourier series order used for generating the
H(i) matrix.

8.3. Assessment of the Performance Improvement for the SICK 200 LiDAR

Assume considering the best model order as in Section 8.2 and applying the main EM estimation
algorithm for testing purposes. Figure 11 then shows an example of the outcome of this test on real
data: first, the figure plots for each raw measurement the associated lasing modes detected by the EM
testing procedure. The same plot shows also the bias induced by the temperature, i.e., Hθ̂.

Once the raw measurements have been associated with the corresponding lasing modes, it is then
possible to subtract from them the corresponding noise bias µ̂1 or µ̂2; in other words, it is possible to
remove a certain lasing mode-dependent bias from each of the various measurements. This leads to
a new distribution of the measurements, as shown in Figure 12. This figure shows the cumulative
distribution of the measurements that we plotted in Figure 11 before and after subtracting the biases
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induced by the lasing modes. It is clearly visible that after this removal, the cumulative distribution
becomes sharper, indicating that the novel dataset has a smaller variance.
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temperature [°C]

y k

∆̂k = 0 ∆̂k = 1 Hθ̂ d̂

Figure 11. Application of the EM testing algorithm on real data, where the raw measurements are
plotted versus the temperature of the device. The black dots are the raw measurements that have
been associated with lasing Mode 1, while the gray dots are the measurements associated with lasing
Mode 2. The solid line denotes the temperature-induced bias on the measured distance.
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Figure 12. Effects of compensating some raw data with the biases corresponding to the lasing mode of
each sample.

8.4. Convergence Properties for the EM Algorithms

We now report some numerical results for the convergence properties of the EM training and
test algorithms. More precisely, Figure 13 shows the evolution of the estimates during the training
phase, while Figure 14 shows the same evolution for the testing phase. We also plot in Figure 15 the
computational burden of performing a fixed number of EM test steps for different measurement vector
lengths and show empirically how the computational efforts for testing some points are quadratic with
the number of samples. Importantly, this computational effort does not depend heavily on the order of
the model.

We show in Figure 16 how the precision and accuracy of the estimate d̂ changes with the number
of samples in the test set. More precisely, we show the following cumulative distribution: given the
set of 20,000 raw measurements, extract every subset of 200, 400 or 800 consecutive measurements
and, for each of these subsets, compute an estimate d̂. The result is intuitive: estimating from more
measurements leads to a better estimator (i.e., a cumulative distribution that steepens in correspondence
of the true distance).
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Figure 13. Convergence of the estimated means to their final estimates during the training phase for a
training set containing 4000 raw measurements.
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Figure 14. Convergence of the estimated distance to its final estimate during the test phase for a test
set containing 4000 raw measurements.
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Figure 15. Dependence of the computational complexity for the EM testing phase for two different
Fourier order models as a function of the number of samples in the test set.
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Figure 16. Cumulative distributions of the estimate d̂ for different testing sample sizes. The device
temperature ranged in these experiments between 24.8 °C and 28.8 °C.

We show in Figure 17 the realizations of the errors committed by three different estimators: d̂ (our
estimator), y (the sample average of a window of measurements) and y− Hθ̂ (the sample average
of a window of measurements corrected by the temperature compensation term Hθ̂). We notice that
d̂ commits the smallest errors almost everywhere. To integrate the information, we also plot the
temperature of the device in the lower plot. This helps with recognizing that d̂ has better performance,
especially where the effect of the temperature is higher.
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Figure 17. Realizations of the errors committed by the three estimators d̂, y and y− Hθ. In this
experiment, the temperature of the device ranged between 24.8 °C and 28.8 °C; the sample size is
1000 points.

We also plot in Figures 18 and 19 how the statistical moments of the empirical error and of the
empirical absolute error of these estimators behave with the test sample size. Each point in the plot
represents the mean or the variance of an error (or absolute error) sequence similar to those shown in
Figure 17. We see that the performance of d̂ improves monotonically, while for the other estimators,
this does not happen. Similar results happen also in the plots for the variances, where the proposed
estimator outperforms the other two.
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Figure 18. Dependency of the statistical moments of the various estimators on the test sample size.
The upper plot shows the mean error, while the lower plot shows the variance of the error. In these
experiments, the temperature of the device ranged between 24.8 °C and 28.8 °C.
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Figure 19. Dependency of the statistical moments of the absolute error of the various estimators on
the test sample size. The upper plot shows the mean absolute error, while the lower plot shows the
variance of the absolute error. In these experiments, the temperature of the device ranged between
24.8 °C and 28.8 °C.

9. Conclusions

Physical considerations on the mode-hopping effect lead to the consideration that the
measurement noise of time of flight (ToF) laser scanners is intrinsically multi-modal. In its turn,
this implies that estimating the actual distance between scanners and the surrounding objects should
be performed using latent variable-based statistical models, where the latent variables correspond to
the lasing modes of the laser. Since no literature seems to account for this multi-modality, we aimed at
closing this gap.
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We thus proposed an expectation maximization (EM) algorithm on top of a model that captures
biases on the measured distance induced by temperature changes, plus mode-hopping effects through
an opportune Gaussian mixture on the measurement noise. Importantly, thanks to a separable
model, the EM iterations can be performed analytically. The computational advantages are clear:
non-separable models may indeed need to perform the EM iterations numerically, and this would
lead to a computational burden hindering the usability of mode-hopping correction procedures in
on-line settings.

The proposed strategy incorporates an accurate model of the temperature dynamics of the laser
diode. Moreover, to account for the fact that it may be difficult to collect temperature data on the laser,
we proposed a strategy for the identification of the parameters of this model that exploit the datasheet
of the laser device and some very simple experiments.

Overall, the proposed temperature compensation strategy led to diminishing the spread of the
distribution of real measurements from a SICK LMS 200 around the true value d, as shown in Figure 12,
with corresponding decays of the variance of the absolute error from 2.0 mm2 to 0.68 mm2 and shift of
the expected absolute error from 3 mm to 1 mm, as shown in Figure 19.

We eventually notice that the proposed strategy is still in its infancy: indeed, we considered
a frequentist case for which the actual distance d is a deterministic and fixed quantity, aiming at
showing that it is possible to improve the overall precision of a laser scanner through accounting for
mode-hopping effects. Nonetheless, in real scenarios, d will vary; we thus devise future efforts focusing
on strategies for which d is a stochastic process that varies according to some given a priori distribution.
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Appendix

Proof of Proposition 1. By the definition of conditional probability,

P
[
y, t̂ j ; d, θ, ∆

]
= P

[
y
∣∣ t̂ j ; d, θ, ∆

]
P
[
t̂ j ; d, θ, ∆

]

= P
[
y
∣∣ t̂ j ; d, θ, ∆

]
P
[
t̂ j] (30)

since t̂ j does not statistically depend on the (deterministic) parameters d, θ and ∆.

Proof of the structure of the EM training algorithm. The probability density of y given t̂ j (and thus
H) is:

p
(
y
∣∣ t̂ j ; d, θ, ∆

)
=

(1− π)N
(

y− d1− Hθ− µ11, σ2
1

)

+πN
(

y− d1− Hθ− µ21, σ2
2

) (31)

Knowing the latent variables ∆ leads thus to the log-likelihood:

`
(
θ ; y, t̂ j, d, ∆

)
=

(y− d1− Hθ− µ11)
T Σ1 (y− d1− Hθ− µ11)

+ (y− d1− Hθ− µ21)
T Σ2 (y− d1− Hθ− µ21)

(32)

Calculating the zero of the score with respect to µi and then calculating the zero of the score with
respect to θ leads to the update rules for both µ̂i and θ̂i.
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As for the update rule for σ̂2
i , we notice that it derives immediately from the fact that the score

with respect to σi is:

− K
σ2

i
+

1
σ4

i

(
(y− d1− Hθ+ µ11)

T Σ1

K
(y− d1− Hθ+ µ11)

+ (y− d1− Hθ− µ21)
T Σ2

K
(y− d1− Hθ− µ21)

) (33)

Proof of the structure of the EM testing algorithm. The update rules come directly from the
structure of the log-likelihoods in the proof of the structure of the EM training algorithm.
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