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Abstract: Multicasting is a fundamental network service for one-to-many communications in
wireless sensor networks. However, when the sensor nodes work in an asynchronous duty-cycled
way, the sender may need to transmit the same message several times to one group of its neighboring
nodes, which complicates the minimum energy multicasting problem. Thus, in this paper, we study
the problem of minimum energy multicasting with adjusted power (the MEMAP problem) in the
duty-cycled sensor networks, and we prove it to be NP-hard. To solve such a problem, the concept
of an auxiliary graph is proposed to integrate the scheduling problem of the transmitting power
and transmitting time slot and the constructing problem of the minimum multicast tree in MEMAP,
and a greedy algorithm is proposed to construct such a graph. Based on the proposed auxiliary
graph, an approximate scheduling and constructing algorithm with an approximation ratio of 4lnK
is proposed, where K is the number of destination nodes. Finally, the theoretical analysis and
experimental results verify the efficiency of the proposed algorithm in terms of the energy cost and
transmission redundancy.

Keywords: multicasting; energy optimization; power aware; Steiner tree; duty cycle; wireless
sensor networks

1. Introduction

In recent years, wireless sensor networks (WSNs) have been used in monitoring and retrieving
sensory data from the physical world [1–11], which are usually expected to last over several months
or years. Therefore, it is very necessary to design an energy conservation mechanism for WSNs
to extend the network lifetime [12–14]. Thus, a schema of the duty-cycle is proposed in WSNs.
According to the duty-cycle schema, each node switches between the active and the dormant state
periodically; the period of the dormant state is much longer than that of the active state in order to
save energy. According to the works in [15–19], the duty-cycled schema has high performance in
terms of energy savings.

Multicasting is a fundamental component service for one-to-many communications in wireless
sensor networks, such as to support data dissemination [20–22] for distributed data management
and remote network configuration (e.g., [23–25]). Therefore, developing an energy-efficient multicast
protocol is very meaningful in WSNs. Due to this consideration, the minimum energy multicasting
(MEM) problem is proposed, which seeks to disseminate the messages from the source node to all
of the destination nodes with minimum energy cost. Nowadays, the MEM problem has attracted
extensive attentions from the research community, and it is studied in both nodes always-awake
sensor networks [26–32] and duty-cycled sensor networks [33–36]. In the nodes always-awake sensor
networks, where each node can deliver the massages to one group of its neighboring nodes by only
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one transmission, the MEM problem is proven to be NP-hard, and some approximation algorithms
have been proposed [26–32].

However, in the duty-cycled sensor networks, the MEM problem becomes more complicated.
Since the nodes can only receive the messages in the active state, the sender may need to transmit the
same message several times to one group of its neighboring nodes. Therefore, the methods for the
MEM problem in the nodes always-awake sensor networks are not suitable for duty-cycled sensor
networks. In such networks, designing the minimum energy multicasting algorithm requires us not
only to select appropriate forwarding nodes, but also to schedule the transmitting time slot optimally.
Considering this, several methods are proposed by [33–36], which seek to minimize the transmission
redundancy and the number of transmissions during multicasting. However, they all assumed the
energy cost for all of the transmissions is equivalent and did not consider the case that the transmitting
power of the sensor nodes can be adjusted. According to [37], the sensor nodes can transmit at six
different power levels, which range from 1 MW to 100 MW. In this case, the senders need not only to
choose their transmitting time slot intelligently, but also schedule their transmitting power optimally
to construct the multicast tree.

Therefore, in this work, we study the problem of minimum energy multicasting with adjusted
power (MEMAP) in duty-cycled sensor networks, and it is proven to be NP-hard. To solve such a
problem, an approximate scheduling and constructing algorithm is proposed.

In summary, the contributions of the paper are as follows.

(1) The MEMAP problem in the duty-cycled sensor networks is proposed to minimize the energy
cost during multicasting, and its NP-hardness is proven.

(2) In order to solve the MEMAP problem, an auxiliary graph is defined, and a greedy algorithm
is given to construct such a graph.

(3) Based on the proposed auxiliary graph, an approximation algorithm is proposed for the
MEMAP problem, and its approximation ratio is proven to be 4lnK, where K is the number of
destination nodes.

(4) Extensive simulations are carried out, which verify that the proposed algorithm has high
performance in terms of energy cost.

The rest of this work is organized as follows. Section 2 surveys the related work. In Section 3,
we present the preliminaries, including the network model and the problem definition. Section 4
proposes the algorithm design in detail. Simulation results are discussed in Sections 5. Section 6
concludes the paper.

2. Related Works

In recent years, there has been a tremendous amount of studies for the MEM problem in
both nodes always-awake networks and duty-cycled sensor networks. In the nodes always-awake
networks, the main works that studied the MEM problem are [26–32]. In [26], the author firstly
studied the problem of constructing the minimum power broadcast/multicast tree in the wireless
sensor network where each node can adjust its transmission power continuously, and three greedy
heuristic algorithms were proposed. On the basis of [26], Wan et al. proved that the method in [26]
has a linear approximation ratio, and then, they proposed several approximation algorithms with a
constant approximation ratio for the min-power multicast routing problem [27]. In [28], the minimum
energy broadcasting problem was proven to be NP-complete, and there is no polynomial algorithm
with an approximation ratio better than Ω(logn) until NP = P. In [29], the author proposed a
centralized approximation algorithm with at most 8lnK-times the optimum when the wireless nodes
can adjust their transmitting power discretely. The minimum energy all-to-all multicasting problem
was studied in [30], which tries to build a shared multicast tree to reduce the energy consumption.
Recently, Qiu et al. [31] studied the minimum energy cooperative broadcasting problem where
receivers can combat transmission errors by combing the received packets from different senders.
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Baghaie et al. [32] try to formulate the optimal tradeoff between the energy cost and broadcast
latency in the cooperative communication scheme. However, these methods were not suitable for
the duty-cycled sensor networks.

In duty-cycled sensor networks, the main works that studied the energy-efficient multicasting
problem are [18,19,33–36]. In [18,19], Feng and Guo et al. proposed an opportunistic forwarding
scheme for reliable flooding and broadcasting by considering unreliable links in duty-cycled sensor
networks. Lai et al. [33] proposed a broadcasting protocol to achieve a better tradeoff between
the broadcast latency and transmission redundancy in the duty-cycled sensor networks. In [34],
the authors studied the minimum transmission problem for broadcasting, and they proposed a
centralized algorithm with an approximation ratio of 3ln(∆ + 1), where ∆ denotes the maximum
node degree in the network. However, they adopted a restricted duty-cycling model where there is
only one active time slot existing in the working schedule of each node. In [35], Su et al. proposed two
optimal algorithms for the minimum energy multicasting problem and the delay-bounded minimum
energy multicasting problem when the number of destinations (e.g., K) is small in the multicast
session. Han et al. [36] removed the limitation of the size of destinations and proposed a polynomial
time complexity approximation algorithm with an approximation ratio of 6ρH(∆ + 1) + 2ρ, where
H(.) denotes the harmonic number and ρ is the approximation ratio of the minimum Steiner tree
problem [38,39]. However, they assumed the energy cost to be equivalent for all of the transmissions.
Therefore, their problem is actually to minimize the number of transmissions in the multicast session,
and their method is not suitable for the case when the transmitting power can be adjusted.

Due to the above limitations, we consider the problem of minimum energy multicasting
with adjusted power in duty-cycled sensor networks, in which we need to not only schedule the
transmitting power optimally to construct the multicast tree, but also choose the transmitting time
slot for each node intelligently.

3. Models and Problem Definition

Before presenting our algorithms in detail, we depict the models used in this work and the formal
definition of the MEMAP problem.

3.1. Network Model

We assumed a multihop duty-cycled sensor network G = (V, E), where V is the set of sensor
nodes and E denotes the set of edges. There exists an edge between two sensor nodes if they are
within each other’s transmission range. So as to conserve energy, each sensor node works between
two states, e.g., the dormant state and the active state. In the dormant state, the sensor node turns
off all of its functional models (i.e., sensing the environment, sending and receiving packets) and just
waits to be scheduled. The node switches between the active state and the dormant state periodically.

Let T denote one working cycle for each node, which is divided into multiple time slots with
equal lengths. The length of each time slot (e.g., τ) can be determined according to [40] to guarantee
that the data packet can de delivered to the neighbor successfully in one time slot. Since each sensor
node has two states, all time slots in one working cycle, i.e., {1, 2, ..., T /τ}, can be separated into two
disjointed subsets for any u ∈ V. We letW(u) = {t1

u, t2
u, ..., tk

u} denote the working schedule of node
u, which contains all active time slots of u. Then, {1, 2, ..., T /τ} −W(u) contains all dormant time
slots of u. As the same setting in [35], we assume t1

u, t2
u, ...tk

u are consecutive in this paper, and they
can be set up according to the requirement of coverage or connectivity [41]. Nodes can switch to the
active state according to their working schedule or when they have packets to be sent, but they can
only receive the packets when they are in the active state. To deliver the data, the sender can switch
to the active state when the receiver wakes up. Additionally, node u’s duty cycle can be calculated as
|W(u)| × τ/T .

In addition, we assumed that each sensor node is equipped with an omnidirectional antenna,
and the transmission power of each sensor node can be adjustable. There are L power levels at
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each node, i.e., P = {p1, p2, ...pL}, where pi(1 ≤ i ≤ L) denotes the transmitting power of the i-th
power level. Without loss of generality, P is sorted ascendingly, that is pi ≤ pj if 1 ≤ i ≤ j ≤ L.
For each neighboring node v of u, there exists a minimum transmitting power required to guarantee
v is under the transmission range of u, and we assume that the transmission power is symmetric.
Let the Euclidean distance between u and v be d(u, v). According to the path loss model, u can
communicate with v with power level l only if:

pl/d(u, v)α

N(1 + φ)
≥ β (1)

where α is the pass loss exponent, β is the minimum SINR value (signal to interference plus noise
ratio) to guarantee successful reception and N(1 + φ) is the background noise. In these parameters,
β > 1 and α usually belong to [2, 4].

3.2. The MEMAP Problem in Duty-Cycled Sensor Networks

Given a multicast request, which includes a source node s and a set of destination nodes D(D ⊆
V − {s}), the MEM problem in the nodes always-awake sensor networks is to construct a multicast
tree that satisfies that: (1) it is rooted at the source node s and spanning all of the nodes in D; (2) the
sum of the transmission power at the non-leaf nodes is minimized. This problem involves selecting
the nodes to transmit the message and scheduling the transmitting power, as well.

However, multicasting in the duty-cycled sensor networks is quite different. According to the
discussion in the above section, the working schedule of receivers decides the time slot for which the
sender can transmit the packet. Then, in such a network, the broadcasting character can only be used
when the receivers wake up simultaneously. In other words, as for a node u with multiple children in
the multicast tree, it would need to transmit the same packet several times if the working schedules
of all of the children are not overlapped. Therefore, the MEM problem in such a network not only
involves selecting the transmitting nodes, but also the transmitting time slot and the transmitting
power for each non-leaf node. We call the transmitting power and the transmitting time slot the
transmitting schedule, which is defined as follows:

Definition 1. (Transmitting schedule) Given a node u ∈ V, a transmitting power
p(p ∈ {p1, p2, ..., pL}) and a time slot t(t > 0), then the transmitting schedule (u, p, t) means node
u can transmit the packet at time slot t with transmitting power p.

By exploiting the definition of the transmitting schedule, the MEMAP problem in duty-cycled
sensor networks is then to construct a multicast tree T and determine the transmitting schedules for
each non-leaf node, while the total energy cost is minimized. Before we present the formal definition
of the MEMAP problem, we need to give some notations here.

We use NB(u) to denote the set of neighboring nodes of u in G, which means the set of nodes u
can communicate with the maximal transmitting power. As for an arbitrary multicast tree T, we use
nl(T) to denote the set of non-leaf nodes in T and use f a(u) to denote u’s father and ch(u) to denote
the set of u’s children for any node u ∈ T. Let (u, v) be a tree edge in T; then, u denotes the father
node of v, and v is a child node of u.

In the following, we firstly give the definition of a feasible solution.
Definition 2. (Feasible solution) Given a source node s and a set of destination nodes

D = {d1, d2...dK}, a multicast tree T and the transmitting schedules on multicast tree T, denoted
byM(T), whereM(T) = {(u, p, t)|u ∈ nl(T)}. T andM(T) are called a feasible solution for the
MEMAP problem if they satisfy the following conditions:

1. T is rooted at s and spans all of the nodes in D;
2. For any two nodes u ∈ nl(T), v ∈ ch(u), there exists a transmitting schedule (u, p, t) ∈ M(T),

where v is under the transmission range of u with transmitting power p and t ∈ W(v).

According to the above definition, the definition of the MEMAP problem is presented as follows:
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Input:

1. A duty-cycled sensor network G = (V, E);
2. A source node s and a set of destination nodes D = {d1, d2...dK}.

Output: A multicast tree T and the transmitting schedules on the multicast tree T, denoted by
M(T). The multicast tree T andM(T) satisfy the following conditions:

1. T andM(T) are a feasible solution for the MEMAP problem;
2. For any feasible solution for the MEMAP problem, denoted by T′ and M(T′), we have

∑
(u′ ,p′ ,t′)∈M(T′)

p′ ≥ ∑
(u,p,t)∈M(T)

p.

In the following, we will prove that the MEMAP problem in the duty-cycled sensor networks is
NP-hard in Theorem 1.

Theorem 1. The MEMAP problem in the duty-cycled sensor network is NP-hard.

Proof. Let the working schedule of all of the nodes be the same, then the MEMAP problem in the
duty-cycled sensor networks is converted to the MEM problem in the nodes always-awake sensor
networks. Since the MEM problem in the nodes always-awake sensor networks is proven to be
NP-hard by reducing the set cover problem to it, there is no polynomial-time algorithm with an
approximation ratio better than Ω(logK) for it unless NP = P [28]. Therefore, the MEMAP problem
is also NP-hard, as it is a general case of MEM problem.

Based on Theorem 1, there is no polynomial time algorithm for the MEMAP problem unless
NP = P, so that we study the approximate method to solve it, which is discussed in the next section.

4. Approximation Algorithms for MEMAP Problem

4.1. An Overview of the Proposed Algorithms

Since the above problem is NP-hard, we propose an approximate algorithm with an
approximation ratio of 4lnK. The proposed algorithm mainly includes four steps. Firstly, we
construct a weighted auxiliary graph based on the original graph G, which is used to integrate the
transmitting power and transmitting time slot scheduling problem and the minimum multicast tree
constructing problem. Secondly, We derive the MEMAP problem from the minimum node-weighted
Steiner tree problem on the auxiliary graph and exploited approximation algorithms for the minimum
node-weighted Steiner tree problem. Thirdly, we transform the obtained approximate minimum
node-weighted tree T in the auxiliary graph into a valid multicast tree T′, which can be mapped into
a feasible solution for the MEMAP problem through a series of transformations. Finally, according
to the valid multicast tree T′ in the auxiliary graph, we obtain the multicast tree T′′ on the original
graph and the transmitting schedules for each non-leaf node.

4.2. The Auxiliary Graph

To clarify, G = (V, E) is referred to as the original graph, and u ∈ V is referred to as the original
node. The first step of our approach is to transform the original graph into a weighted auxiliary
graph G′ to assist in building the node-weighted Steiner tree. Before we introduce the definition of
the auxiliary graph, we need to give two concepts used in the auxiliary graph.

Generation node: For any node u ∈ V, we use ug to denote u’s generation node in the auxiliary
graph G′.

Schedule node: For any node u ∈ V, we use us to denote u’s schedule node in the auxiliary
graph G′. Each schedule node us owns three properties, i.e., (us.g, us.p, us.t), which denote its
corresponding generation node, transmitting power and transmitting time slot, respectively. For any
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node u ∈ V, we call ug the corresponding generation node of us, and us is derived from ug in this
paper. Obviously, we can get us.g = ug.

Definition 3. (Auxiliary graph) Given a duty-cycled sensor network G = (V, E), its auxiliary
graph G′ = (V′, E′) denotes the graph containing the scheduling information, where V′ and E′ denote
the set of nodes and edges. V′ and E′ are constructed as follows:

(i) Initially, V′ = ∅, E′ = ∅;
(ii) For each node u ∈ V, we add a generation node ug in the auxiliary graph G′, i.e.,

V′ = {ug |u ∈ V};
(iii) For each node u ∈ V, we then add L schedule nodes in G′, i.e., us1, us2, ...usL, where the three

properties of usl(1 ≤ l ≤ L) are set as usl .g = ug, usl .p = pl and usl .t = 0, respectively. It is to
be noticed that the transmitting time slot of us is initialized as zero, and we will introduce the
method to determine usl .t later. Let the set of all of the schedule nodes of u be denoted by Υ(u).
Then, we can have V′ = V′

⋃
u∈V

Υ(u).

(iv) For each node u ∈ V, we create an edge between ug and each schedule node us ∈ Υ(u), which
means node u can transmit with power us.p on time slot us.t. Let E′u = {(ug, us)|us ∈ Υ(u)},
then we can have E′ =

⋃
u∈V

E′u;

(v) Let v be a neighboring node of u in the original graph G, and vg is the generation node of v. For
any schedule node us ∈ Υ(u), we add an edge (us, vg) in G′ if only if v is under the transmission
range of u with transmitting power us.p, and we use R(us) to denote the set of such nodes v of
us. After then, E′ can be updated as E′ = E′

⋃
u∈V
{ ⋃

us∈Υ(u)
E′us}, where E′us = {(us, vg)|v ∈ R(us)}.

As the example in Figure 1, there is an original graph in Figure 1a, where the number in the
braces denotes the working schedules. There are two power levels {p1, p2} for each node, and
p1 < p2. As for the forwarder f , it can reach a and c with transmission power p1 and a, b, c with
transmission power p2. As for the above original graph, we do as follows according to Definition
3, where the result is shown in Figure 1b. Firstly, the generation nodes are created for each original
node, i.e., the blue nodes in Figure 1b, which are fg, ag, bg and cg, respectively. Then, we create two
schedule nodes fs1 and fs2 with transmitting power p1 and p2, respectively, and their three properties
are ( fg, p1, 0) and ( fg, p2, 0). According to the above discussion, we connect ag and cg to fs1 and
connect ag, bg and cg to fs2.

Figure 1. An example of constructing the auxiliary graph. (a) The original graph; (b)The intermediate
auxiliary graph; (c) The final auxiliary graph.

In the following, we will introduce the transmitting time slot-determining algorithm to
determine the transmitting time slot for each schedule node us in the constructed auxiliary graph
G′. Before that, we need to give some notations.
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Let start(u) = min{tu |tu ∈ W(u)} and end(u) = max{tu |tu ∈ W(u)} denote the first active
time slot and the last active time slot of node u, respectively. Since the sensor nodes can only receive
the data message when it is in the active state, the transmitting time slot must be assigned as the
slot that all of its reaching nodes are active. For a schedule node us and all of the reaching nodes in
R(us), it may require several slots to deliver the message to all of them. For this case, the schedule
node us may be split into multiple schedule nodes with the same generation node and transmitting
power (e.g., us.g and us.p), but different transmitting time slots (e.g., us.t). In addition, for any
transmission schedule (u, p, t) in the optimal schedule, we should find a corresponding schedule
node in the auxiliary graph.

For any schedule node us in Definition 3, the transmitting time slot-determining algorithm
exploits a greedy strategy, which mainly works as follows:

Firstly, all of the nodes in R(us) are sorted by their ending time slots in ascending order.
Secondly, we greedily choose the last active time slot of the first node in R(us) to create a

new schedule node. Let v1 be such a node, and then, we create a new schedule node usL+1 and
set usL+1.t = end(v1). For any node v ∈ R(us), we connect it to the new schedule node usL+1 if
start(v) ≤ usL+1.t. After that, we remove v1 from R(us). For the nodes left in R(us), we repeat the
same procedure, until all of the nodes in R(us) are handled.

Finally, since the original schedule node us will not be used afterwards, we delete it from G′

directly. The detailed procedure of the transmitting time slot-determining algorithm is shown in
Algorithm 1.

Algorithm 1 Transmitting time slot-determining algorithm.

Input: A schedule node us, the set of its reaching nodes R(us);
Output: The set of splitting schedule nodes usj and its transmitting time slot usj.t;

1: Sorting the nodes in R(us) according to their last active time slot;
2: j← L+ 1;
3: while R(us) is not empty do

4: v1 ← the first node in R(us);
5: Create a new schedule node usj identical to us;
6: usj.t← end(v1);
7: Add edge (ug, usj) and (usj, v1) in G′;
8: for i = 2 to |R(us)| do

9: vi ← the i-th node in R(us)
10: if start(vi) ≤ usj.t then

11: add edge (usj, vi);
12: else

13: break;
14: end if
15: end for
16: j← j + 1;
17: Remove v1 from R(us);
18: end while
19: Delete us from G′;
20: return the set of splitting schedule nodes of us;

As shown in the above example, since the working schedules of nodes a and c are not
overlapped, we split the schedule node fs1 into two schedule nodes fs3 and fs4 to connect to ag and cg,
respectively. The transmitting time slot for fs3 and fs4 are set as 4 and 7 respectively, since end(a) = 4
and end(c) = 7. As for the schedule node fs2, its reaching node R( fs2) = {a, b, c}. We first choose
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the minimal last active time slot from {end(v)|v ∈ R( fs2)}, e.g., end(a) = 4, to create a new schedule
node fs5 with fs5.t = 4. Then, we connect fs5 to node ag and bg. After that, we remove a from R( fs2).
For the rest of nodes in R( fs2), we do similarly and choose Time Slot 6 to create a new schedule node
to connect node bg and node cg. The complete auxiliary graph is shown in Figure 1c, and the three
properties for each schedule node are shown in the brackets above the node.

Through the above procedure, we can see that the original schedule node is “split” into several
schedule nodes with different transmitting time slots. The above greedy strategy can guarantee that
for any transmission schedule (u, p, t) in the optimal solution, we can find a corresponding schedule
node in the auxiliary graph, which is shown in Theorem 2.

Theorem 2. Assuming Topt and Mopt(Topt) are the optimal multicast tree and its transmitting schedules.
Then, for any (u, p, t) ∈ Mopt(Topt), we can find a schedule node in the auxiliary graph G′.

Proof. Let Ch(u, p, t) denote the set of the children of u in the multicast tree Topt where u can
communicate with at time t by transmitting power p, and v is the node of the minimum last active
time slot in Ch(u, p, t). In the following, we will prove this from two aspects.

(1) We will firstly prove that all of the working schedules of nodes in Ch(u, p, t) contain the time
slot end(v). Assuming there is at least one node whose working schedule does not contain time slot
end(v), since the working schedules are consecutive, then there must exist a node v′(v′ 6= v

∧
v′ ∈

Ch(u, p, t)) that end(v′) < end(v) or start(v′) > end(v). As v denotes the node with the minimum last
active time slot in Ch(u, p, t), so we have end(v′) ≥ end(v). In addition, according to the definition of
the MEMAP problem, the working schedules of all of the nodes in Ch(u, p, t) are overlapped, and all
contain time slot t. Then, we can have t ≤ end(v) and start(v′) ≤ t, which result in start(v′) ≤ end(v).
Combining the two reasons, we can get end(v′) ≥ end(v) and start(v′) ≤ end(v), which contradicts
that end(v′) < end(v) or start(v′) > end(v). Therefore, all of the working schedules of nodes in
Ch(u, p, t) contain the time slot end(v).

(2) Now, we will prove that the schedule node us is the target node in two cases:

• If t = end(v), us is the correspondent schedule node obviously.
• If t < end(v), since all of the working schedule of the nodes in Ch(u, p, t) contains the time slot

end(v), so (u, p, end(v)) is also a feasible schedule that u can communicate with all of the nodes
in Ch(u, p, t) with transmitting power p at time slot end(v). In this case, we can just map the
transmitting schedule (u, p, t) to the schedule node us, as well.

Combing the above two reasons, the theorem is proven.

So far, the auxiliary graph has been constructed. We can find that V′ in the auxiliary graph can
be partitioned into two subsets Vg and Vs, where Vg is the set of all generation nodes and Vs is the
set of all of the schedule nodes. In order to exploit the node-weighted Steiner tree algorithm, we set
the weight of each generation node ug as w(ug) = 0 and set the weight of each schedule node us as
w(us) = us.p.

The size of the auxiliary graph is analyzed in Theorem 3.

Theorem 3. The number of nodes and edges in the auxiliary graph G′ are at most n + n × L × ∆ and
(1 + ∆)× (n×L× ∆), respectively, where ∆ denotes the maximum degree and n = |V| denotes the number
of nodes in the original graph.

Proof. Firstly, as in Definition 3, for each generation node ug in the auxiliary graph G′, there is only
one schedule node us with power level l in Υ(u), where Υ(u) denotes all of the schedule nodes of u.
Then, the schedule node us is split into several schedule nodes with power level l after executing the
transmitting time slot-determining algorithm. Let Υ(us, l) denote the set of schedule nodes derived
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from ug, and its power level is l. In the worst case, we can have |Υ(us, l)| = |NB(u)| ≤ ∆. Then, for
each node u ∈ V, we can have:

|Υ(u)| =
L
∑
1
|Υ(us, l)| ≤

L
∑
1
|NB(u)| ≤ L × ∆ (2)

Thus, according to Equation (2), the total number of nodes in the auxiliary graph G′ can be
calculated as:

|V′| = |Vg|+ |Vs| = |Vg|+ ∑
u∈V
|Υ(u)| ≤ n + n×L× ∆ (3)

where |Vg| = |V| = n denotes the number of nodes in the original graph.
Secondly, according to Definition 3 and Algorithm 1, for each generation node ug, there exists an

edge between ug and us(us ∈ Υ(u)). For each schedule node us ∈ Υ(u), there exists at most |NB(u)|
edges from us to its neighboring generation nodes. Then, we can have:

|E′| = ∑
u∈V
|E′u|+ |

⋃
u∈V
{ ⋃

us∈Υ(u)
E′us}| ≤ ∑

u∈V
|Υ(u)|+ ∑

u∈V
(|Υ(u)| × ∆) ≤ (1 + ∆)× (n×L× ∆) (4)

As we can see, compared to the original graph, the nodes in the auxiliary graph increased
L × ∆ times and the edges increased L × ∆2 times. Since L and ∆ are usually constant, the size
of the auxiliary graph is controlled. In addition, we can notice that the auxiliary graph G′ has the
following properties:

(1) Given two nodes in G′, there are no edges between them if they are both schedule nodes or
generation nodes. In other words, the neighbors of a schedule node are all generation nodes, and the
neighbors of a generation node are all schedule nodes. Two generation nodes are connected through
a schedule node.

(2) R(usi) ⊆ R(usj), if 1 ≤ usi.p ≤ usj.p ≤ L and usi.t = usj.t, where usi and usj are two schedule
nodes derived from the same generation node ug.

(3) For any two generation nodes ug and vg, which are connected to a same schedule node ws,
then the working schedules of node u are overlapped with v, which means they can receive the
packet simultaneously.

4.3. Minimum Node-Weighted Steiner Tree

Given a multicast request that includes a source node s and a set of destination nodes D in
the duty-cycled sensor network G, let sg be the generation node of s in the auxiliary graph G′, and
Dg = {d1g, d2g, ..., dKg} are the set of the generation nodes of the destination nodes. Now, our objective
is to find a minimum node-weighted Steiner tree in G′, which is rooted at sg and spanning all of the
nodes in Dg. The minimum node-weighted Steiner tree was used to help us obtain a feasible solution
for the MEMAP problem, which includes a multicast tree T and the transmitting schedules M(T).

However, it is unlikely to have a polynomial-time algorithm to find such a minimum
node-weighted tree in the auxiliary graph G′ unless P = NP. Thus, a approximation algorithm [38] is
exploited to obtain the near optimal minimum node-weighted Steiner tree with approximation ratio
of 2lnK.

Let Tapp
ag denote the obtained approximate minimum node-weighted Steiner tree in the auxiliary

graph G′. In the following, we will introduce the method to map Tapp
ag to a feasible solution for the

MEMAP problem, which is guaranteed by the following theorem.

Theorem 4. Let Tag be a node-weighted Steiner tree, which is rooted at sg and spans all of the nodes in Dg

in the auxiliary graph G′; Tag can be mapped to a feasible solution for the MEMAP problem if it satisfies the
following conditions:
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1. For any leaf node i ∈ Tag, i must be a generation node in Dg;
2. For each schedule node us in the node-weighted Steiner tree Tag, there exists a generation node ug in Tag,

where ug is the corresponding generation node of us;
3. For any non-leaf generation node ug in the tree Tag and any node i ∈ ch(ug), node i must be a schedule

node derived from ug.

Proof. In the following, we will prove the theorem by constructing a feasible solution for the MEMAP
problem with the node-weighted Steiner tree Tag.

Firstly, the multicast tree T in the original graph is constructed by the following three steps:

Step 1. For any schedule node in Tag, we create an edge between its father and all of its
child nodes;

Step 2. Remove all of the schedule nodes from Tag;
Step 3. Replace all of the generation nodes with their original nodes.

As we can see, for any tree edge ( f a(u), u) ∈ T, there exists a schedule node between f a(u)
and u in the node-weighted Steiner tree Tag, which means that f a(u) can communicate with u with a
certain power. Additionally, sg and Dg are all in Tag, then s and D are in T accordingly. Therefore, the
source node s can deliver the messages to all of the destination nodes by the tree T.

Secondly, we will show how to determine the transmitting schedules for T, i.e., M(T). For each
node u in T, ug is its corresponding generation node in Tag. Then, for each schedule node us ∈ ch(ug)

in Tag, we add a transmitting schedule (u, us.p, us.t) in M(T). Since for each non-leaf node u and
its child node v ∈ T, there exists a schedule node between them, then we can have a transmitting
schedule (u, us.p, us.t) with which u can communicate with v with transmitting power us.p at time
slot us.t.

Combining the above two reasons and Definition 2, a feasible solution for the MEMAP problem
is obtained. The theorem is proven.

In this paper, we call a node-weighted Steiner tree a valid multicast tree if it satisfies the three
conditions in Theorem 4.

As the example shown in Figure 2, there is a calculated Steiner tree in Figure 2a, where the pink
node denotes the source node and the destination nodes. We can find that the tree in Figure 2a is a
valid multicast tree since it satisfies the conditions in Theorem 4. According to the above method, then
we can obtain the corresponding multicast tree and transmitting schedules on the original graph. The
results are shown in Figure 2b, where the three tuple along the links denotes a transmitting schedule.

Figure 2. An example of a valid multicast tree.(a) A valid multicast tree; (b) The corresponding
multicast tree and transmitting schedules.
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4.4. Constructing a Valid Multicast Tree

However, the obtained approximate minimum node-weighted Steiner tree Tapp
ag on the auxiliary

graph G′ may not satisfy the three conditions in Theorem 4. There exist three violations.

(a) Violation 1. Tapp
ag contains a leaf node i, and i does not belong to Dg. This violets Condition 1 in

Theorem 4.
(b) Violation 2. Tapp

ag contains a schedule node, which is not derived from any of its neighboring
generation nodes in the tree Tapp

ag . This violets Condition 2 in Theorem 4.
(c) Violation 3. Tapp

ag contains a generation node ug (ug 6= sg), but ug cannot be reachable by the
source node sg, which means that there exist the tree edges (vg, us) and (us, ug) in Tapp

ag , where
us is the father node of ug and a child node of vg. This violets Condition 3 in Theorem 4.

In order to eliminate the three violations in the approximate minimum node-weighted Steiner
tree Tapp

ag , we introduce three correcting operations as follows.
For Violation 1: For any leaf node i that does not belong to Dg, we just delete it from Tapp

ag . This
procedure continues until all of the leaf nodes satisfy Condition 1 in Theorem 4.

For Violation 2: Assume us is the schedule node, which is not derived from any of its neighboring
generation nodes. Let ug be the generation node of us, then we do as follows:

1. if ug /∈ Tapp
ag , then the generation node ug and the edge (ug, us) are added in the tree Tapp

ag ;
2. if ug ∈ Tapp

ag , but ug /∈ NB(us), where NB(us) denotes the set of neighbors of us in the tree Tapp
ag ;

in this case, we delete the tree edge ( f a(us), us) from Tapp
ag firstly, and then, we would add the

tree edge (ug, us) in the current tree Tapp
ag .

For Violation 3: This correcting operation is done by checking all of the nodes in the tree Tapp
ag

through a breadth-first search. All of the nodes in the tree have two states, e.g., “uncheck” and
“checked” states. Let the queue Q store the set of current nodes needed to be checked. Initially, all
of the nodes in Tapp

ag are marked “uncheck”, and the root sg is pushed into Q. The correcting process
works as follows:

Let the first node in Q be i; we first marked node i “checked” and pop it from Q. Then, we handle
i according to the following two cases:

Case 1: i is a generation node. Then, for each schedule node js ∈ ch(i), we do as follows:

1. If js is not derived from i, let jg denote the corresponding generation node of js. We then check
for any schedule node cs(cs ∈ ch(i)), whether there exists an edge between cs and jg in the
auxiliary graph G′. If yes, add an edge (cs, jg) in Tapp

ag . Otherwise, we choose the schedule node
cs = argmin{w(is)|is ∈ Υ(i)

∧
(is, jg) ∈ E′} to add into the current tree Tapp

ag , and then, the tree
edges (i, cs) and (cs, jg) are added. After that, we delete the tree edge (i, js) from Tapp

ag . Finally,
the new added schedule node cs is pushed into Q.

2. If js is derived from i, we just push it into Q;

Case 2: i is a schedule node. Then, for any generation node ug ∈ ch(i), we just push it into Q for
the following computing.

The correcting operation for Violation 3 ends when Q is empty, and all of the nodes in Tag are
marked “checked”.

In the following, we will prove that the tree after the above three correcting operations can satisfy
the three conditions in Theorem 4, which means it is a valid multicast tree.

Theorem 5. Let the tree after the three correcting operations be Tc
ag; then, Tc

ag is a valid multicast tree.

Proof. In order to guarantee the correctness of Theorem 5, we just need to prove that the above
three operations can eliminate the violations successfully, that is the three conditions in Theorem 4
are satisfied.
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As for Condition 1 (for any leaf node i ∈ Tc
ag, i must be a generation node in Dg), according

to correcting Operation 1, any leaf node i that is not a generation node in Dg is pruned. Then,
Condition 1 is satisfied.

As for Condition 2 (for each schedule node us in the node-weighted Steiner tree Tc
ag, there exists

a generation node ug in Tc
ag, where ug is the corresponding generation node of us), according to

correcting Operation 2, for any schedule node us in Tc
ag, its generation node ug and the tree edge

(ug, us) are added in the tree. Then, Condition 2 is also satisfied.
As for condition 3 (for any non-leaf generation node ug in the tree Tc

ag, then for any node,
i ∈ ch(ug) must be a schedule node derived from ug), according to correcting Operation 3, for each
generation node i in Tc

ag and any schedule node js that is not derived from i, we delete the tree
edge (i, js) in the obtained approximate minimum node-weighted Steiner tree and add a schedule
node is, which is chosen to connect to js’s corresponding generation node jg. Obviously, Condition 3
is satisfied.

Combining the above three reasons, the theorem is proven.

After the approximate minimum node-weighted Steiner tree Tapp
ag has been corrected to a valid

multicast tree in the auxiliary graph, then we can transform it into a feasible solution for the MEMAP
problem according to Theorem 4. So far, the complete approximate scheduling and constructing
algorithms have all been introduced, which is shown in Algorithm 2.

Algorithm 2 Approximate scheduling and constructing algorithm.

Input: A duty-cycled network G, a source node s and a set of destination nodes D;
Output: A multicast tree T and the set of transmitting schedules M(T) for the multicast tree T;

1: Construct the auxiliary graph G′ according to Definition 3;
2: for all schedule node us in G′ do

3: Call Algorithm 1 to determine the transmitting time slot for each schedule node;
4: end for
5: Call the Steiner tree algorithm to get a multicast tree Tapp

ag on G′;
6: Correct Tapp

ag to a valid multicast tree Tc
ag on G′ by using the three correction operations in

Section 4.4;
7: Map the valid multicast tree Tc

ag into a feasible solution for MEMAP using the method in

Theorem 4, including the multicast tree T and the set of transmitting schedule M(T);
8: return the multicast tree T and the set of transmitting schedule M(T);

4.5. Approximation Ratio Analysis

In the following, we give the approximation ratio analysis of the proposed algorithm in Lemma
1 and Theorem 6 below.

Lemma 1. Given a multicast request (s:D) in the duty-cycled network, the weighted sum of the minimum
node-weighted Steiner tree is the lower bound for the MEMAP problem.

Proof. Let (Topt, Mopt) denote the optimal result for the MEMAP problem in the duty-cycled network
G. Following the construction of the auxiliary graph G′, (Topt, Mopt) can be mapped into a
node-weighted Steiner tree T′ag in G′, which is rooted at sg and spanning all of the nodes in Dg,
and the transmitting schedule (u, p, t) ∈ Mopt is mapped to a schedule node of us in T′ag. Then, the
total transmission power in Mopt is equal to the weighted sum of the tree T′ag.

Assume Topt
ag is the minimum node-weighted Steiner tree in the auxiliary graph G′, which spans

all of the nodes in Dg ∪ {sg}. Obviously, we can get W(Topt
ag ) ≤ W(T′ag), where W(Topt

ag ) denotes the

weighted sum of all of the nodes in Topt
ag . The lemma is proven.
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Theorem 6. The approximation ratio of our method is 4lnK, where K is the number of the destination nodes.

Proof. Let Tapp
ag be the obtained approximate minimum node-weighted Steiner tree through [38].

According to [38], we have W(Tapp
ag ) ≤ 2lnKW(Topt

ag ), where Topt
ag is the minimum node-weighted

Steiner tree.
Let T1

ag, T2
ag and T3

ag denote the node-weighted Steiner tree after correcting Operations 1, 2 and 3,
respectively. In the following, we will prove W(T3

ag) ≤ 2W(Tapp
ag ).

Firstly, in correcting Operation 1, we remove the leaf nodes that does not belong to Dg; obviously,
we can have:

W(T1
ag) ≤W(Tapp

ag ) (5)

Secondly, in correcting Operation 2, we add the generation node of the schedule node us, of
which the generation node is not in the tree T. Since the weight of all of the generation nodes is zero,
we can have:

W(T2
ag) = W(T1

ag) ≤W(Tapp
ag ) (6)

Thirdly, in correcting Operation 3, let us be the schedule node that is not derived from its father
ig. We handle this case in the following two aspects:

1. If we can find a schedule node is ∈ ch(ig) to reach the generation node ug of us, then we add an
tree edge (is, ug). No schedule node is added in this case. Thus, the weighted sum of the tree is
not changed.

2. If we cannot find such a power, we need to add a schedule node i′s with i′s = argmin{w(is)|is ∈
Υ(i)

∧
(is, ug) ∈ E′} in the correcting tree T2

ag. Since we assume that the transmission is
symmetric, so the weight of added schedule node i′s is not larger than w(us).

Therefore, for each schedule node us ∈ T2
ag, at most a schedule node with weight w(us) is added

in the correcting tree T3
ag. Therefore, we can have:

W(T3
ag) ≤ 2W(T2

ag) (7)

According to Equations (5)–(7), we can have W(T3
ag) ≤ 2W(Tapp

ag ). In addition, according to

Lemma 1, we can have W(Tapp
ag ) ≤ 2lnKW(Topt

ag ) and W(Topt
ag ) ≤ W(T′ag), where T′ag denotes the

corresponding node-weighted Steiner tree for the optimal result for the MEMAP problem. Therefore,
we can have W(T3

ag) ≤ 4lnKW(T′ag), and the approximation ratio is 4lnK. The theorem is proven.

Additionally, the time complexity of the proposed algorithm can be proven to be polynomial by
Lemma 2 and Theorem 7.

Lemma 2. The time complexity of Algorithm 1 is O(∆2).

Proof. In Algorithm 1, since the number of nodes of R(us) is less than ∆, then
Step 1 would take O(∆× log∆) time. In addition, we can see Steps 4–17 would take
O(|R(us)|) = O(∆) time obviously. Therefore, the time complexity from Steps 3–18 is
O(|R(us)| × |R(us)|) = O(∆2). Therefore, combining the above analysis, the time complexity of
Algorithm 1 is O(|R(us)| × |R(us)| = O(∆2).

Theorem 7. The time complexity of the approximate scheduling and constructing algorithm is
O(K2L∆nlog(L∆n)).

Proof. Firstly, according to Definition 3, Step 1 would take O(Ln) time to create the schedule nodes
and O(L∆n) time to create the edges. Then, the time complexity for Step 1 is O(L∆n). As for Step 2,
there are O(Ln) schedule nodes, and the time complexity of Algorithm 1 is ∆2 according to Lemma 1,
so the time complexity for Step 2 is O(L∆2n). In Step 3, since the number of nodes and edges are
n + nL∆ and (1 + ∆) × (nL∆) according to Theorem 3, then the time complexity of Step 3 is
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O(K2L∆nlog(L∆n)) according to [38]. In Step 4, we need to correct the obtained Steiner tree with
three correction operations, where correction Operations 1 and 2 take O(L∆n) time by examining the
tree once and correction Operation 3 would take O(L∆n) time by a breadth-first search. Therefore,
the time complexity for Step 4 is O(L∆n). In Step 5, the time complexity is also O(L∆n) by visiting
the corrected tree once. In summary, the time complexity of Algorithm 2 is O(K2L∆nlog(L∆n)).

5. Experimental Results

In this section, we study the empirical performance of the proposed algorithm. In the
experiments, we randomly deploy the wireless nodes in a 300 m × 300 m field, where the number
of nodes ranges from 100–200. The duty cycle is set from 5%–25%, and one time slot is set 50 ms.
The working schedule of each node is generated randomly to test a wide range of configurations. In
addition, each node in the experiments can transmit at five power levels, which are 1 MW, 10 MW,
15 MW, 20 MW and 50 MW respectively. The bandwidth is set to 40 kbps, and the size of the
data is 100 bytes. All experiments are repeated 100 times with different node deployments and
working schedules.

Since most existing methods are not suitable for minimum-energy multicasting with adjusted
power in the duty-cycled sensor networks, we compare our algorithm (denoted as ASC) with the
following baseline methods: the minimum spanning tree (MST) method and the shortest path tree
(SPT) method. The SPT method calculates the shortest paths from the source node to each destination
node, and then, all of the shortest paths form a multicast tree. As for the MST method, the leaf nodes
that are not destination nodes are removed. This method is most widely used to approximate the
Steiner tree. Additionally, in order to use the multicast tree constructed by the MST and SPT methods
in the duty-cycled sensor networks, the transmitting schedules, including the transmitting time slot
and the transmitting power for each non-leaf node, should also be determined. In the experiments,
we exploit the enumerating method to find the best transmitting schedules for the multicast tree
constructed by the MST and SPT methods.

5.1. Performance of Energy Cost

Firstly, we compare the total energy cost of three algorithms under different numbers of
destination nodes. We conduct the experiments mainly in two network scenarios, while the number
of nodes is set to 100 and 200, respectively, and the results are shown in Figure 3a,b. In Figure 3a, the
x-coordinate denotes the percentage of the destination nodes of all nodes, which ranges from 5%–25%.
As we can see, the total energy cost produced by our method is the lowest, which is about 20% lower
than the MST method, and when the number of destination nodes is greater, the ratio can even reach
30%. This is because our method considers the working schedule and the transmitting power of
each node in constructing the multicast tree, which can reduce the energy cost and the number of
transmissions at the same time. Although the MST and SPT method determine the transmission
schedule optimally in a localized way, they construct the multicast tree regardless of the node’s
working schedule and cannot optimize the multicast tree in a global manner. It’s to be noticed that
in Figure 3a, the total energy cost of the SPT method is a little lower than the MST method; this is
because the SPT method reduces the number of transmissions through adjusting the transmitting
power. In Figure 3b, the total energy cost of three methods is increased compared to Figure 3a; this
is because the number of nodes and the destination nodes increased. However, our algorithm still
generates the lowest energy cost compared to the other two methods. Additionally, we can see that
the total energy cost of the three algorithms grows with the number of destination nodes increasing
in both experiments.
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(a)

(b)

Figure 3. Total energy cost. (a) |V| = 100; (b) |V| = 200.

5.2. Performance of Total Transmissions

In this group of experiments, we analyzed the total number of transmissions of three methods in
the multicasting process. In the duty-cycled sensor networks, besides the transmitting power of all of
the nodes in the multicast tree, the total number of transmissions is also an important factor for the
total energy cost. As shown in Figure 4a,b, the total number of transmissions of the the SPT method
is far less than the MST method. This results in that the energy cost of the SPT method is less than
the MST method (which has been demonstrated in Figure 3a,b), despite that the SPT method exploits
higher transmitting power in multicasting. However, both the total number of transmissions of the
MST method and the SPT method are larger than our method. Additionally, as shown in Figure 4a,b,
the total number of transmissions of three methods increases with the number of destination nodes.
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(a)

(b)

Figure 4. The total number of transmissions. (a) |V| = 100; (b) |V| = 200.

5.3. Performance under Different Duty Cycles

Finally, we investigate the influences of different duty cycles on the performance of the three
methods, and the results are shown in Figure 5a,b. In this group of experiments, the duty cycle of each
node varies from 5%–20%, and the percentage of the destination node is set as 15%. As we can see in
Figure 5a,b, the total energy cost and the number of transmissions of our method are both the lowest,
which demonstrates the high performance of our method in terms of energy cost. Additionally, in
Figure 5a, we can find that the total energy cost of our method decreases slightly with the duty cycle
increasing. This may be because our method has exploited the working schedule of each node in
constructing the multicasting tree, and the common active slots of the neighboring nodes do not
vary much when the duty cycle increases 5%, which results in the total number of transmissions not
reducing obviously. This can be illustrated in Figure 5b, where the number of transmissions of the
three methods decrease slightly when the duty cycle of each node increases 5%.
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(a)

(b)

Figure 5. Performance under different duty cycles. (a) Total energy cost; (b) Total transmissions.

6. Conclusions

In this paper, the problem of minimum energy multicasting with adjusted power (MEMAP)
in duty-cycled sensor networks was proposed, and it was proven to be NP-hard. To solve such
a problem, an auxiliary graph was proposed to integrate the transmitting power and time slot
scheduling problem and the minimum multicast tree constructing problem in MEMAP, and a
greedy algorithm was exploited to construct such a graph. Based on the proposed auxiliary graph,
an approximate scheduling and constructing algorithm with an approximation ratio of 4lnK was
proposed, where K is the number of destination nodes. Finally, we perform extensive simulations,
and the results verify the high performance of the proposed algorithm in terms of the energy cost and
transmission redundancy.
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