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Abstract: This paper presents a study of the frequency response and the scale-factor of a 

tuning fork micro-gyroscope operating at atmospheric pressure in the presence of an 

interference sense mode by utilizing the approximate transfer function. The optimal 

demodulation phase (ODP), which is always ignored in vacuum packaged micro-gyroscopes 

but quite important in gyroscopes operating at atmospheric pressure, is obtained through 

the transfer function of the sense mode, including the primary mode and the interference 

mode. The approximate transfer function of the micro-gyroscope is deduced in 

consideration of the interference mode and the ODP. Then, the equation describing the 

scale-factor of the gyroscope is also obtained. The impacts of the interference mode and Q-factor 

on the frequency response and the scale-factor of the gyroscope are analyzed through 

numerical simulations. The relationship between the scale-factor and the demodulation 

phase is also illustrated and gives an effective way to find out the ODP in practice. The 

simulation results predicted by the transfer functions are in close agreement with the results 

of the experiments. The analyses and simulations can provide constructive guidance on 

bandwidth and sensitivity designs of the micro-gyroscopes operating at atmospheric pressure. 

Keywords: MEMS gyroscope; frequency response; scale-factor; atmospheric pressure; 

interference mode; demodulation phase 
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1. Introduction 

In recent years, MEMS inertial devices have been widely adopted for many types of consumer 

electronic products, including phones, tablets, gaming system, toys and emerging wearable gadgets [1]. 

The micro-gyroscopes used in these consumer electronics are generally classified as rate-grade devices [2]. 

Although micro-gyroscopes have many advantages over traditional gyroscopes for their small size, low 

power consumption, low cost and batch fabrication, high performance micro-gyroscopes are still too 

expensive for consumer products, even for industrial products.  

Packaging, as one of the key manufacturing processes of MEMS sensors, provides protection from 

the environment, such as mechanical protection, optical and thermal protection and electrical interface 

and isolation. The packaging cost of MEMS devices in general is up to 70% of total costs [3]. The 

requirements for packaging of MEMS sensors are generally different among sensor types. Often, 

vacuum packaging is required for micro-gyroscopes to avoid viscous damping. Steps to attain and 

maintain the vacuum ambient include providing a means to pump away gases that filled with the 

package, hermetically sealing the package and proper process to reduce trapped gases in the package [4]. 

Proper packaging processes and getter technology are vital to success in vacuum packaging, but all of 

these processes increase the cost of micro-gyroscopes. Developing high-performance micro-gyroscopes 

operating at atmospheric pressure is an effective means to reduce the cost. A micro-gyroscope working 

at atmospheric pressure, different from a vacuum packaged one, has a low Q-factor and possibly large 

coupling damping due to the viscous air surrounding the movable structures.  

In 2002, researchers in Analog Devices reported a single-chip, surface micro-machined integrated 

gyroscope with atmospheric hermetic package [5]. This micro-gyroscope achieved a Root Allan 

variance of 50°/h with a full scale range of ±150°/s. In 2007, a silicon-on-insulator MEMS gyroscope 

operating at atmospheric pressure with a short-term bias stability of 1.5°/s was reported in [6]. During 

2008–2010, researchers at Peking University developed a series of micro-gyroscopes working at 

atmospheric pressure [7–13]. In [7,8], the authors described micro-gyroscopes operating at 

atmospheric pressure with small cross-talks between drive mode and sense mode. In [9–13], the 

authors reported several lateral-axis micro-gyroscopes which could work at atmospheric pressure. 

They developed novel torsional sensing comb capacitors to lower the air damping and electrostatic 

force balanced combs to suppress the mechanical coupling.  

Some reported researches improved the Q-factor of the gyroscopes operating under air pressure 

through special structure design. Slide film damping effects in drive and sense modes were used to 

achieve large quality factors of gyroscopes even operating at atmospheric pressure [14]. The sensitivity 

of a slot-structure micro-gyroscope working at atmosphere was improved through a tunable 

electrostatic spring constant which was achieved by triangular shape fixed electrodes [15]. Some 

researchers discussed the coupling error in the vibratory MEMS gyroscope with various air damping in 

detail [16].  

The frequency response and the scale-factor of the gyroscopes have not been paid close attention in 

the literatures mentioned above. The frequency responses of gyroscopes with high Q-factor have been 

well studied [17,18]. However, as for gyroscopes operating at atmospheric pressure, the low Q-factor 

has a great impact on the characteristics of the frequency response and scale-factor. In [17], the 

demodulation phase, which is negligible for high Q cases but significant for low Q cases, is not 
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included in the theoretical analysis. In [19], collateral modes of micro-gyroscopes, which provide 

mechanisms for the transfers of energy that are independent of angular rate, were analyzed through a three 

DOF model. The effects of the additional modes on the bias of micro-gyroscopes were studied specifically. 

The work reported in this paper focuses on the frequency response and scale-factor of the gyroscope 

with low Q-factor. Not only the demodulation phase but also an observed interference sense mode is 

taken into consideration in the analysis. This paper is organized as follows. Section 2 introduces the 

investigated micro-gyroscope with its imperfections in the practical implementation. The transfer 

function of the sense mode consisting of the primary and the interference modes is given in Section 3. 

The equation of the optimal demodulation phase (ODP) is also presented. In Section 4, the 

approximate transfer function of the gyroscope is deduced, followed by a series of simulations and 

analyses centered on the frequency response. Section 5 shows the simulations and analyses of the 

scale-factor. The results of the experiments, which verify the theoretical analyses carried out in the 

former sections, are shown in Section 6. At last, Section 7 concludes this paper. 

2. Imperfections of the Tuning Fork Micro-Gyroscope Operating at Atmospheric Pressure  

The tuning fork micro-gyroscope operating at atmospheric pressure has large proof masses to 

increase the signal noise ratio of the Coriolis response and has a large drive force to increase the 

vibration amplitude in the viscous air. The simplified schematic of the tuning fork micro-gyroscope 

with mechanically coupled drive mode and sense mode is shown in Figure 1 [18]. The sense combs are 

configured as squeeze mode to improve the sensitivity. The proof mass, or the Coriolis mass, is the 

central mass in the structure which transfers the vibration energy from the drive mode to the sense 

mode through Coriolis Effect. As illustrated in Figure 1, the micro-gyroscope has two identical proof 

masses whose working vibration directions are always opposite. This is why this kind of micro-gyroscope 

is named as tuning fork gyroscope. This configuration produces a differential signal and rejects 

acceleration from the environment, which is common-mode to the structure. 

 

Figure 1. Simplified schematic of the tuning fork micro-gyroscope with mechanically 

coupled drive mode and sense mode. 
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The first six modes of the presented micro-gyroscope are demonstrated in Figure 2. The designed 

natural frequencies of these modes are indicated in the figure. The anti-phase modes in drive and sense 

directions are the working modes, or the primary modes, while the other modes are interference 

modes. If the structure of micro-gyroscope is perfectly symmetric and is loaded differentially, there 

will be only primary modes participating in the vibration.  

 

Figure 2. The first six modes of the micro-gyroscope: (a) in-phase mode in drive direction; 

(b) in-phase mode in sense direction; (c) anti-phase mode in drive direction; (d) anti-phase 

mode in sense direction; (e) anti-phase torsional mode; (f) in-phase torsional mode. 

2.1. Coupling Damping and Coupling Stiffness between the Drive Mode and the Sense Mode 

Considering the primary modes and ignoring the nonlinearity which derives from the large 

deformation of the folded beams, the dynamic equation of the multi-DOF vibration system presented 

in Figure 1 can be modeled as ݉௫ 00 ݉௬൨ ݔሷݕሷ ൨ + ቂ ܿ௫ ܿ௫௬ܿ௬௫ ܿ௬ ቃ ݔሶݕሶ ൨ +  ݇௫ ݇௫௬݇௬௫ ݇௬ ൨ ݕݔ൨ =  ௫݂−2݉ݔߗሶ ൨ (1)

where	݉௫, ݉௬ and ݉ represent the effective masses of the drive mode, the sense mode and the Coriolis 

mass, respectively; ݔ	and	ݕ represent the displacements of the drive mode and the sense mode; ܿ௫ and 
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 ܿ௬ are damping of each mode while ܿ௫௬ and	ܿ௬௫ are coupling damping; ݇௫ and ݇௬ are stiffness of the 

modes while ݇௫௬ and ݇௬௫ are coupling stiffness; ௫݂ is the drive force applied to drive mode; ߗ is the 

angular rate input to the sensor. 

In the sense mode, due to the coupling damping and the coupling stiffness, there exists a quasi-

stable vibration even in the absence of angular rate input as long as the drive mode is stably driven. 

The response of the spring force introduced by the coupling stiffness, widely known as quadrature 

error, is always orthogonal to the Coriolis response. The response of the viscous force introduced by 

the coupling damping is in-phase with the Coriolis response. These two kinds of couplings are the 

main sources of zero-rate output (ZRO) of the micro-gyroscope [20]. At the atmospheric pressure, the 

response of coupling damping is obvious, although not dominate compared with that of quadrature 

error. Generally, the ZRO caused by quadrature error can be eliminated by phase demodulation while 

the ZRO caused by coupling damping cannot be easily canceled out.  

2.2. The Interference Modes in the Sense Mode 

Actually, far more complicated than Equation (1) describes, besides the primary modes, the  

micro-gyroscope suffers from several interference modes introduced by mechanical coupling and  

multi-DOF in space. Even when the structure of the micro-gyroscope is forced differentially, there 

exist interference modes due to the asymmetries of the proof masses, the folded beams and the comb 

fingers. As long as the interference modes become pronounced because of severe asymmetries and can 

be observed in the sense direction, they will change the characteristics of the sense mode. A detailed 

analysis of in-phase mode in sense direction is reported in [18]. 

Moreover, once the interference modes appear, besides the angular rate applied to the sensitive axis 

of the micro-gyroscope, other motions, such as linear acceleration, vibration and rotation with respect 

to other axes, will cause responses in the sense direction. Linear acceleration or vibration along the 

sense direction will excite the in-phase mode in the sense direction. Under ideal conditions, this motion 

will not be detected thanks to the symmetric structure and the differential detection. However, under 

non-ideal conditions, this in-phase interference mode may be obviously observed in the sense 

direction. Hence, linear acceleration or vibration may cause a detectable response. Similarly, the out of 

plane modes, although not shown in Figure 2, will result in couplings from rotations applied to the 

non-sensitive axes.  

In vacuum packaged gyroscopes, benefiting from the extremely low damping, the impacts of the 

interference modes on the primary mode are very small. However, considering the viscous air at the 

atmospheric pressure and the sense combs in squeeze mode, the Q-factor is expected to be very low. 

Thus, at least one observed interference mode which is located nearest to the primary mode needs to be 

taken into account when the frequency response of the sense mode is evaluated. The details will be 

analyzed in the next section. 

3. Frequency Response of the Sense Mode and Optimal Demodulation Phase 

Motivated by the mode superposition method which decomposes a linear multi-DOF vibration into 

a sum of several independent modes, the forced response of the sense mode can be viewed as the sum 
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of the primary mode response and the interference mode response. The transfer function of the sense 

mode from applied force to displacement can be written as:  ܩ௦(ݏ) = 1݉௬ ∙ ଶݏ1 + (߱௬ଵ/ܳଵ)ݏ + ߱௬ଵଶ + ௬ߙ݉ ∙ ଶݏ1 + (߱௬ଶ/ܳଶ)ݏ + ߱௬ଶଶ  (2)

	= 1݉௬ (1 + ଶݏ(ߙ + (߱௬ଶ ܳଶ⁄ + ௬ଵ߱ߙ ܳଵ⁄ ݏ( + ߱௬ଶଶ + ଶݏ]௬ଵଶ߱ߙ + (߱௬ଵ/ܳଵ)ݏ + ߱௬ଵଶ ] ∙ ଶݏ] + (߱௬ଶ/ܳଶ)ݏ + ߱௬ଶଶ ] 	 (3)

where ߱௬ଵ	and ܳଵ are the natural frequency and the Q-factor of the primary mode, respectively; ߱௬ଶ 

and ܳଶ  are the natural frequency and the Q-factor of the interference mode, respectively; ߙ  is a 

constant coefficient related to asymmetries in the structure. The first term in Equation (2) represents 

the transfer function of the primary mode and the second term represents that of the interference mode. 

Since the two modes are independent, the sum of the two terms can describe the frequency response of 

the sense mode. The coefficient ߙ is a weight of the interference mode and depicts the ratio of the peak 

amplitude of the interference mode to that of the primary mode. 

Compared with a general sense mode described as a second-order system which has a pair of poles 

in the s-plane, this fourth-order system has two pairs of poles and a pair of zeros. The additional pairs 

of zeros/poles will distort the frequency response of the primary mode, especially the phase response 

which is of most concern. 

Figure 3 plots the frequency responses of the sense mode by using Equation (2) with the parameters 
of	 ݂௬ଵ = 2900	Hz, ݂௬ଶ = 3200	Hz, ܳଵ = ܳଶ = ܳ. The parameter values used in the simulations are 

close to those of the tested micro-gyroscope. For the sake of clarity, the amplitudes of the primary 

peaks are normalized to 1. It can be concluded from the frequency responses that the amplitude and 

phase get steeper as Q-factor gets larger. The amplitude of the secondary peak is also determined by 

the coefficient	ߙ. 

An assumed drive frequency of 2800 Hz is indicated in Figure 3. From the plot of phase response, 

the phase delay of the Coriolis response to the Coriolis force can be tens of degrees in low Q-factor 

cases. Therefore, in order to completely extract the Coriolis response, the reference signal used for 

phase demodulation, which is generally in-phase with the Coriolis force, should be delayed for an extra 

phase. This phase is called the ODP and denoted as		߮ௗ. From a physical viewpoint, 	߮ௗ will be 

exactly the same with the phase delay of the Coriolis signal through the sense mode. By utilizing 

Equation (3), 	߮ௗ can be given by ߮ௗ = ݊ܽݐܿݎܽ− ቆ߱ௗ߱௬ଵ ܳଵ⁄߱௬ଵଶ − ߱ௗଶ ቇ − ݊ܽݐܿݎܽ ቆ߱ௗ߱௬ଶ ܳଶ⁄߱௬ଶଶ − ߱ௗଶ ቇ+ ݊ܽݐܿݎܽ ቈ߱ௗ(߱௬ଶ ܳଶ + ௬ଵ߱ߙ ܳଵ)⁄⁄߱௬ଶଶ + ௬ଵଶ߱ߙ − (1 + ௗଶ (4)߱(ߙ

where ߱ௗ is the working frequency of the drive mode. The first term in Equation (4) is determined by 

the primary mode while the last two terms reflect the phase impact of the nearest interference mode. 
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Figure 3. Frequency responses of the sense mode with different Q-factor and	ߙ. 

Figure 4 exhibits the relationships between the ODP, the Q-factor and the coefficient	ߙ. The red 

curve denoted as “primary mode” in Figure 4 is the phase delay introduced by the primary mode only. 

As illustrated in Figure 4a, the ODP is dominantly determined by the primary mode and appreciably 

decreased by the interference mode. In Figure 4b, as Q becomes smaller, the ODP gets larger, as well 

as the impact of the interference mode. In fact, although not shown here, the ODP gets within −1° 

when Q reaches hundreds to thousands, which is the general case in vacuum packaged micro-gyroscopes. 

Thus, the demodulation phase is always set as 0° in the high-Q micro-gyroscopes for convenience. 

However, the phase delay in the micro-gyroscopes operating at atmospheric pressure is significant and 

must be dealt with carefully. 

 

Figure 4. (a) The relationship between phase and ߙ	  with the other parameters as 		݂௬ଵ = 2900	Hz,	 ݂௬ଶ = 3200	Hz,	 ௗ݂ = 2800	Hz and	ܳଵ = ܳଶ = 20; (b) The relationship 

between phase and Q with the other parameters as 	 ݂௬ଵ = 2900	Hz, 	 ݂௬ଶ = 3200	Hz, 		ௗ݂ = 2800	Hz,	ߙ = 0.6 and	ܳଵ = ܳଶ = ܳ. 
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4. Frequency Response of the Micro-Gyroscope 

4.1. The Approximate Transfer Function from the Angular Rate Input to the Output of  

the Micro-Gyroscope 

In this subsection, the approximate transfer function of the micro-gyroscope from the angular rate 

input to the sensor output is deduced in consideration of the ODP and the interference mode. Assume 

that the displacement of the proof mass is (ݐ)ݔ = (5) (ݐௗ߱)݊݅ݏ௫ܣ

where ܣ௫ is the amplitude of the displacement. Substituting Equation (5) into Equation (1) gives the 

Coriolis force applied to the sense mode 

݂(ݐ) = −2݉ܣ௫߱ௗܿ (ݐௗ߱)ݏ ൈ (6) (ݐ)ߗ

The sense block diagram is presented in Figure 5 where	ܭ is the gain of the pre-amplifier which 

transfers the displacement of the structure into voltage and LPF is the low pass filter which attenuates 

the second harmonic produced by the demodulation. 

 

Figure 5. The sense block diagram of the micro-gyroscope. 

In most nonlinear systems, superposition theorem no longer can be applied, but benefiting from 

modulation and demodulation realized through multiplication, the primary mode and the interference 

mode can be considered separately. Furthermore, the reference signal for demodulation,  ܿݏ(߱ௗݐ + ߮ௗ), can be decomposed into ܿ߮ݏௗ ∙ (ݐௗ߱)ݏܿ − ௗ߮݊݅ݏ ∙  For clarity, the .(ݐௗ߱)݊݅ݏ

reference signal in Figure 5 is replaced with	ܿݏ(߱ௗݐ) and the two modes in the sense mode are unified as:  (ݏ)ܩ = ଶݏ݉/1 + (߱ ܳ⁄ ) ∙ ݏ + ߱ଶ (7)

Applying Laplace Transform to Equation (6) after substituting ܿݏ(߱ௗݐ) = ଵଶ ൫݁ఠ௧ + ݁ିఠ௧൯ into 

it yields  ܨ(ݏ) = −2݉ܣ௫߱ௗ 12 ݏ)ߗ] + ݆߱݀) + ݏ)ߗ − ݆߱݀)] (8)

where	(ݏ)ߗ is the Laplace Transform of (ݐ)ߗ. Similarly, the Laplace Transform of ܿ(ݐ) can be obtained as 
  

݁ݎܭ ݏ1ܶ + ݂ܿ (ݐ)ܿ 1 ݀߱ݔܣ2݉ܿ−(ݐ)ݕ (ݐ)  (ݐ)ߗ(ݐ)ݎ 
(ݐ݀߱)ݏܿ ݐ݀߱)ݏܿ + ݀߮ ) 
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(ݏ)ܥ  = ݏ)ܻܭ12 + ݆߱݀) + ݏ)ܻ − ݆߱݀) (9)

Substituting Equation (8) into ܻ(ݏ) =  and rearranging the obtained equation together (ݏ)ܩ(ݏ)ܨ

with Equation (9) yield (ݏ)ܥ = −2݉ܣ௫߱ௗܭ 14 ሼ[ݏ)ܩ + ݆߱ௗ) + ݏ)ܩ − ݆߱ௗ)](ݏ)ߗ + ݏ)ܩ − ݆߱ௗ)ݏ)ߗ − 2݆߱ௗ)+ ݏ)ܩ + ݆߱ௗ)ݏ)ߗ + 2݆߱ௗ)ሽ (10)

The last two terms in Equation (10) are high harmonics with respect to (ݏ)ߗ and will be negligible 

after the LPF. A conceptual ideal LPF is introduced here. Hence, the Laplace Transform of the output 

of the gyroscope can be written as ܴ(ݏ) = −2݉ܣ௫߱ௗܭ ∙ 14 ݏ)ܩ] + ݆߱ௗ) + ݏ)ܩ − ݆߱ௗ)](11) (ݏ)ߗ

Denote	ܶ(ݏ) = ݏ)ܩ] + ݆߱ௗ) + ݏ)ܩ − ݆߱ௗ)]/4. Substituting Equation (7) into it gives ܶ(ݏ) = (௦మାఠ ொ⁄ ∙௦ାఠమିఠమ)/ଶ(௦మାఠ ொ⁄ ∙௦ାఠమାఠమାଶఠఠඥଵିଵ ସொమ⁄ )(௦మାఠ ொ⁄ ∙௦ାఠమାఠమିଶఠఠඥଵିଵ/ସொమ	)  (12)

In a similar way, when the reference signal for demodulation is replaced with	݊݅ݏ(߱ௗݐ) in Figure 5, 

it can be derived that ܶ(ݏ) = (ఠ௦ାభమఠఠ/ொ)/(௦మାఠ ொ⁄ ∙௦ାఠమାఠమାଶఠఠඥଵିଵ ସொమ⁄ )(௦మାఠ ொ⁄ ∙௦ାఠమାఠమିଶఠఠඥଵିଵ/ସொమ)  (13)

So, when the ODP of the reference signal is considered, by combining Equations (12) and (13), we 

can obtain that ܶ(ݏ) = ଵ భమ ୡ୭ୱఝ∙൫௦మାఠ ொ⁄ ∙௦ାఠమିఠమ൯ି௦ఝ∙(ఠ௦ାభమఠఠ/ொ)(௦మାఠ ொ⁄ ∙௦ାఠమାఠమାଶఠఠඥଵିଵ ସொమ⁄ )(௦మାఠ ொ⁄ ∙௦ାఠమାఠమିଶఠఠඥଵିଵ/ସொమ)  (14)

For relatively low frequencies and by using the Taylor series, Equation (14) can be simplified as 

(ݏ)ܶ ≈ 1݉ 12 cos߮ௗ ∙ (߱ଶ − ߱ௗଶ) − ௗ߮݊݅ݏ ∙ (߱ௗݏ + 12߱߱ௗ/ܳ)(߱ + ߱ௗ)ଶ[ݏଶ + ߱ ܳ⁄ ∙ ݏ + (߱ − ߱ௗ)ଶ + ߱߱ௗ/4ܳଶ] (15)

Then taking the primary mode and the interference mode into account, the complete form of ܶ(ݏ) 
will be modified as 

(ݏ)ܶ ≈ ቂ12 cos߮ௗ ∙ ൫߱௬ଵଶ − ߱ௗଶ൯ − ௗ߮݊݅ݏ ∙ ߱ௗ(ݏ + 12߱௬ଵ/ܳଵ)ቃ /݉௬(߱௬ଵ + ߱ௗ)ଶ ݏଶ + ߱௬ଵܳଵ ∙ ݏ + ൫߱௬ଵ − ߱ௗ൯ଶ + ߱௬ଵ߱ௗ4ܳଵଶ ൨
+ ߙ ቂ12 cos߮ௗ ∙ ൫߱௬ଶଶ − ߱ௗଶ൯ − ௗ߮݊݅ݏ ∙ ߱ௗ(ݏ + 12߱௬ଶ/ܳଶ)ቃ /݉௬(߱௬ଶ + ߱ௗ)ଶ ݏଶ + ߱௬ଶܳଶ ∙ ݏ + ൫߱௬ଶ − ߱ௗ൯ଶ + ߱௬ଶ߱ௗ4ܳଶଶ ൨  

(16)

The overall transfer function of the sensor output can be obtained as (ݏ)ܪ ≜ (ݏ)ߗ(ݏ)ܴ = −2݉ܣ௫߱ௗܭܶ(ݏ) (17)

where ܶ(ݏ) is described in Equation (16). 
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4.2. The Impact of the Interference Mode on the Frequency Response and the Bandwidth of Gyroscope  

Considering the complexity of the fourth-order system described in Equation (16), numerical 

simulations are more straightforward than analytical methods in evaluating the frequency response of 

the gyroscope. Figure 6a demonstrates several frequency responses with different	ߙ. The parameters 

used in these simulations are the same with those in Figure 4a except	ܳଵ = ܳଶ = 30. The primary 

resonance peak is weakened by the existence of the interference mode. This effect derives from the 

fact that the primary pair of zeros of Equation (16) gets closer to the primary poles as	ߙ gets larger, as 

illustrated in Figure 6b where the blue circles indicate the zeros and the red crosses indicate the poles. 

 

Figure 6. (a) The impact of the interference mode on the frequency response; (b) The 

movements of zeros and poles in s-plane as	ߙ gets larger.  

Figure 7a shows that Q-factor drastically affects the resonance peaks. The bandwidth of the 

gyroscope will be limited by the first peak if it exceeds +3 dB point for some high-Q gyroscopes, 

especially for vacuum packaged ones. However, for the gyroscopes operating at atmospheric pressure, 

the bandwidth is often limited by −3 dB point. 

Besides Q-factor, the bandwidth is directly related to the difference between the natural frequency 
of sense mode and that of drive mode. We denote 	∆߱ଵ = ߱௬ଵ − ߱ௗ , ∆߱ଶ = ߱௬ଶ − ߱ௗ  for 

convenience. Figure 7b is obtained by varying ∆߱ଵ and	∆߱ଶ, while respectively fixing	ߙ and Q as 0.6 

and 20. As shown in Figure 7b, the bandwidth significantly decreases as ∆߱ଵdecreases and gradually 

increases as the interference mode approaches to the drive mode. Since the interference mode will not 

affect the bandwidth drastically, if it is far away from the drive mode, which can be easily observed 

both in Figures 6a and 7b. The bandwidth can be estimated through the first term in Equation (16) 

which is a second-order system with an effective Q-factor of 

ܳ = ට∆ ଵ߱ଶ + ߱௬ଵ߱ௗ 4ܳଵଶ⁄߱௬ଵ ܳଵ (18)

From Equation (18), the flatness of the frequency response can be fast evaluated. The primary 

resonance peak will appear if	ܳ > 1/√2, or equivalently, 
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ܳଵ > ට߱௬ଵ൫2߱௬ଵ − ߱ௗ൯2|∆߱ଵ| ≈ ߱௬ଵ2|∆߱ଵ| (19)

As mentioned before, the interference mode weakens the peak, so the actual critical Q-factor will be 

slightly larger than Equation (19) predicts.  

 

Figure 7. (a) The frequency responses with different Q; (b) The frequency responses with 

variations of frequency differences. 

It should be noted that the amplitude responses in Figure 7 are normalized with respect to zero 

frequency points. Revealed by Equation (17), the frequency difference also affects the amplitude of the 

zero frequency point which reflects the scale-factor of the micro-gyroscope. This will be discussed in 

the next section. 

5. Scale-Factor of the Micro-Gyroscope 

The scale-factor of the micro-gyroscope is defined as the ratio of the sensor output to the angular 

rate applied. Letting ݏ = ݆0 in Equation (17) gives the scale-factor of the gyroscope 

ܨܵ = ܭ ൦cos߮ ∙ ൫߱௬ଵଶ − ߱ௗଶ൯ − ߮݊݅ݏ ∙ (߱௬ଵ߱ௗ/ܳଵ)(߱௬ଵ + ߱ௗ)ଶ ൬∆ ଵ߱ଶ + ߱௬ଵ߱ௗ4ܳଵଶ ൰
+ ߙ cos߮ ∙ ൫߱௬ଶଶ − ߱ௗଶ൯ − ߮݊݅ݏ ∙ (߱௬ଶ߱ௗ/ܳଶ)(߱௬ଶ + ߱ௗ)ଶ ൬∆߱ଶଶ + ߱௬ଶ߱ௗ4ܳଶଶ ൰ ൪ (20) 

where ܭ	 = −൫݉ ݉௬⁄ ൯ܣ௫߱ௗܭ  and 	߮ = ߮ௗ . The impact of the interference mode on the  

scale-factor is simulated in Figure 8. The parameters are 	݉ ݉௬⁄ ≈ 1 , ௫ܣ	 = 1	μm	 ௗ݂ = 2800	Hz , ݂௬ଵ = 2900	Hz,	ܭ = 5	V/μm and	ܳଵ = ܳଶ = 20. Either the interference mode getting stronger or 

locating closer to the drive mode can increase the scale-factor. However, as mentioned before, the 

interference mode arises from imperfections in structures which are uncontrollable during the 

manufacturing process. The amplitude of the interference mode varies from gyroscope to gyroscope 
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and is sensitive to temperature change. Thus, the interference mode should be designed as far away 

from the working modes as possible to guarantee the stability of the scale-factor. 

 

Figure 8. The change of scale-factor with variations of	∆߱ଶ and	ߙ. 

The change of scale-factor with the variations of ∆߱ଵ and ܳ is demonstrated in Figure 9 where	 ݂௬ଶ 

and ߙ are set as 3200 Hz and 0.6, respectively. For high-Q cases, the scale-factor is nearly inversely 

proportional to	∆߱ଵ, which implies that the sensitivity of the micro-gyroscope will become very large 

if	∆߱ଵ is small. When	∆߱ଵ = 0, which is known as mode-matched condition, the ODP will be close to 

−90°. Then, the scale-factor can be approximately simplified as ܵܨ ≈ ܭ ቈܳଵ߱ௗଶ + ߙ ߱௬ଶ߱ௗ/ܳଶ(߱௬ଶ + ߱ௗ)ଶ∆߱ଶଶ (21)

 

Figure 9. The change of scale-factor with the variations of ∆߱ଵ and	ܳଵ. 
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more than thousands in vacuum packaged micro-gyroscopes. The sensitivity of those micro-gyroscopes 

can be greatly improved under the mode-matched condition. 

 

Figure 10. The dependence of scale-factor on Q-factor and ߙ under mode-matched condition. 

Interestingly, back to Figure 9 for low-Q cases, the scale-factor will not increase drastically as ∆߱ଵ 

approaches to zero. Even under mode-matched condition, the scale-factor is limited by low Q-factor. As 

mentioned in the last section, the open-loop bandwidth of the micro-gyroscope is dominantly determined 

by	∆߱ଵ. So, the improvement of the sensitivity by decreasing the bandwidth is no longer obvious. 

In practice, the demodulation phase can hardly be exactly the same with the ODP. The variation of 

the scale-factor is shown in Figure 11 when the error of the demodulation phase, ߮ − ߮ௗ , is 

introduced by varying ߮ from 0° to −180° in Equation (20). The scale-factor reaches the maximum 

value when the demodulation phase is set as the ODP determined by Equation (4) while the scale-

factor becomes zero when the demodulation phase is delayed another 90°. This implies that the 

reference signal is orthogonal to the Coriolis response. The slope of the curve in Figure 11 at the ODP 

point is zero while the slope becomes the steepest at the point where the scale-factor reaches zero. This 

relationship can be used in experiments to find out the exact ODP. 

 

Figure 11. The relationship between the scale-factor and the demodulation phase. 
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6. Results 

To verify the theoretical analyses above, a micro-gyroscope designed by our research team, shown 

in Figure 12 together with the photo of the experiment setups, was tested at atmospheric pressure. Half 

of the sense combs were used as force feedback combs to excite the sense mode. Figure 13 shows the 

measured frequency response of the sense mode, along with the theoretical response calculated from 

Equation (2) with the experimentally determined parameters. In order to fit the data, the total gain of 

Equation (2) was adjusted as 2.8 × 1010. 

 

Figure 12. The photos of the micro-gyroscope and the experiment setups. 

 

Figure 13. The measured frequency response and the theoretical response of the sense mode. 

2400 2600 2800 3000 3200 3400

400

600

800

1000

1200

1400

1600
 Experimental

A
m

p
lit

u
d

e
(m

V
A

C
)

 Theoretical

2400 2600 2800 3000 3200 3400
-180

-150

-120

-90

-60

-30

0

Frequency (Hz)

P
ha

se
 (

d
eg

re
e)



Sensors 2015, 15 2467 

 

As mentioned before, the sense combs are configured as squeeze mode which has an effect of 

negative electrostatic stiffness. When a voltage is applied to the electrodes, the stiffness of the sense 

mode will decrease in accordance with the following equation ω௬ = ට߱௬ଶ − )ߢ ௗܸଶ + ܸଶ/2) (22)

where ߱௬ is the initial natural frequency of the sense mode; ߢ is a constant coefficient related to the 

details of the structure; ௗܸ is DC voltage while ܸ is the amplitude of AC voltage. This effect derives 

from the nonlinear property of the squeeze combs. Thus, the data plotted in Figure 13 did not reflect 

the real parameters of the sense mode because in order to obtain the data, an AC voltage biased by a 

DC voltage must be applied to excite the sense mode. To obtain the parameters of the sense mode 

without the influence of test voltages, the relationship between the natural frequency and the test 
voltages was measured, as shown in Figure 14 where ߱௬ଶ  is plotted as a linear function of	 ௗܸଶ + ܸଶ/2. 

From Equation (22), the absolute value of the slope of the line is the coefficient ߢ and the vertical 

intercept is the square of the initial natural frequency. By utilizing the linear fitting method, the 

coefficient ߢ and the initial natural frequency were obtained. The modified parameters of the sense 

mode are listed in Table 1. From the mode locations demonstrated in Figure 2, the observed 

interference mode is believed to be the anti-phase torsional mode. 

 

Figure 14. The negative electrostatic stiffness of the sense mode. 
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The frequency response of the micro-gyroscope was measured by using virtual rate table method 

which is described in [21] in detail. Figure 15a illustrates the block diagram of the control and sense 

circuits for the experiment. The phase delay block, which was implemented with an all-pass filter, was 

set as about −42.5° while the theoretical ODP is calculated as −43.7° by using the parameters listed in 

Table 1. 

 

Figure 15. (a) The block diagram of the circuits for the bandwidth experiment; (b) The 

phase relationships of the signals in the system when no angular rate was applied. 

The quadrature response would have a phase delay of 43.7° with the quadrature force which is 

always in-phase with the displacement signal. From Figure 15b, it can be seen that the zero-rate signal 

had a phase delay of 65° with the displacement signal. In other words, the zero-rate signal contained 

not only the quadrature response but also the response coming from the coupling damping force, which 

was in-phase with the velocity signal. Through the phase relations mentioned above, the magnitude 

ratio of the quadrature force to the coupling damping force can be determined as 2.56 by using simple 

trigonometric identities. The ODP cannot be obtained by the phase difference between the zero-rate 

signal and the displacement signal because the mentioned magnitude ratio remains unknown unless the 

ODP is already obtained.  

Figure 16 shows the measured frequency response of micro-gyroscope and the theoretical response 

calculated from Equation (16) by using the parameters listed in Table 1. In order to filter the harmonics 

introduced by the demodulation, the LPF at the output stage is necessary in the experiment. However, 

in the theoretical analysis, an ideal LPF is introduced. Considering the influence of the LPF, the 

amplitude attenuation and phase delay introduced by the LPF were also measured and are plotted with 

the pink dash line in Figure 16. Then, the measured amplitude response of the gyroscope was divided 

by the attenuation factor and the measured phase response was added with the phase delay. The 

modified data are plotted with red stars in Figure 16. In addition, to plot the theoretical curve, the 

negative electrostatic stiffness was considered and the total gain was adjusted as 3.4 × 1010 to fit the 

experimental data. 
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Figure 16. The measured frequency response and the theoretical frequency response of  

the micro-gyroscope. 

The change of the scale-factor with the variation of demodulation phase was measured by real rate 

table and is demonstrated in Figure 17. The demodulation phase was adjusted by the RC parameters in 

the all-pass filter. The scale-factor achieved the maximum value as −4.8 mV/(°/s) at the demodulation 

phase of −41.7° and decreased to zero at the demodulation phase of −131.7°. The ODP was obtained as 

−41.7° from Figure 17 and was in close agreement with the theoretical value calculated as −43.7°.  

 

Figure 17. The measured scale-factor with different demodulation phases. 
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cost. In this paper, the frequency response and scale-factor of the gyroscope with low Q-factor are 

studied in detail. 

In order to extract the Coriolis response completely, a demodulation phase should be introduced in 

the sense circuits. The ODP is obtained through the transfer function of the sense mode which consists 

of the primary mode and the interference mode. The ODP will decrease as the amplitude of the 

interference mode or the Q-factor increases. The approximate transfer function from the angular rate 

input to the gyroscope output is presented in consideration of the interference mode and the ODP. 

Through numerical simulations, it can be concluded that the flatness of the frequency response is 

mainly determined by Q-factor of the sense mode, and the appearance of the interference mode will 

decrease the peak value of the amplitude response if there is a peak. The impact of the interference 

mode on the frequency response will get stronger as the frequency difference between the interference 

mode and the drive mode gets smaller. Although the scale-factor becomes larger when the interference 

mode becomes larger or gets closer, the increase of the sensitivity is unstable and should be avoided as 

much as possible. For micro-gyroscopes with low Q-factor, the mechanical sensitivity is limited by  

Q-factor even under mode-matched condition. The improvement of the sensitivity by reducing the 

frequency difference between the working modes is not so significant compared with the vacuum 

packaged gyroscopes. 

It is shown that the theoretical analyses are in close agreement with the results of the experiments. 

The deduced transfer functions and the simulations carried out can provide constructive guidance on 

bandwidth and sensitivity designs of the micro-gyroscopes operating at atmospheric pressure. 
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