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Abstract: The staggering growth in smartphone and wearable device use has led to a 

massive scale generation of personal (user-specific) data. To explore, analyze, and extract 

useful information and knowledge from the deluge of personal data, one has to leverage 

these devices as the data-mining platforms in ubiquitous, pervasive, and big data 

environments. This study presents the personal ecosystem where all computational resources, 

communication facilities, storage and knowledge management systems are available in user 

proximity. An extensive review on recent literature has been conducted and a detailed 

taxonomy is presented. The performance evaluation metrics and their empirical evidences 

are sorted out in this paper. Finally, we have highlighted some future research directions 

and potentially emerging application areas for personal data mining using smartphones and 

wearable devices. 

Keywords: data mining; mobile computing; personal data; wearable computing 

 

1. Introduction 

Every day, billions of user-specific data points are generated by personal sensing devices (PSDs), such 

as smartphones and wearable devices, also known as resource-constrained environments (RCEs) [1]. 
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The MIT Technology Review reports 99.5% of newly created digital data remains unanalyzed [2]. This 

technological advancement presents an opportunity to quantify each second of humane life, allowing 

information to be obtained by analyzing data from our bodies and daily activities. These personal data 

can be exploited by data mining algorithms to discover hidden knowledge patterns, which may include 

frequent activities, classification of physiological data, and clusters of mobile trajectories. Thus, 

personal data mining techniques are surveyed in this study to set a direction for data analysis in RCEs. 

Personal data mining (PerDM) (a.k.a. Personal Analytics and Quantified-Self) is a relatively new 

concept that is based on data mining techniques used for mining the personal data of users to fulfill 

their personal needs [3]. The idea deriving the emergence of PerDM is twofold: maximizing the 

benefits gained from personal data to create well-managed healthy lifestyles while preserving privacy 

and security [4]. On the one hand, a rapid growth can be observed in the development of data mining 

technologies and algorithms, as evidenced by quantified-self movement by Kevin Kelly and personal 

analytics by Stephen Wolfram [5]. On the other, the publicness of the users’ personal data in ubiquitous 

and pervasive environments has raised strong concerns over privacy-preservation and security [4].  

At present, computational power and memory volume continues to be expanding, suggesting that 

PerDM would become more feasible in the near future and attract more research attention [6]. 

Computational, communicational, and storage resources that are available in a user’s vicinity form a 

new ecosystem called a personal ecosystem (PE). In connection with PEs, not only are PSDs being 

made resourceful but also providing numerous APIs to maximize the benefits from on-board sensors 

and device-resident data [1]. Despite the immense growth in micro- and nanotechnologies, PSDs are 

still restricted in terms of computational power, energy consumptions, on-board memory, and small 

screen real-estate [7]. Moreover, limited storage capacities and bandwidth are major constraints of 

PSDs. Nonetheless; PSDs present advantages in terms of mobility, in-hand real-time data processing, 

and continuous monitoring of user activities. Despite these constraints and limitations, PSDs are being 

considered as a strong candidate for future data processing systems. Thus, it could be perceived that 

PSDs can play significant role in PEs to uncover hidden knowledge patterns from daily lifestyle activities 

and user-specific information [8]. A primary motivation of this study is finding opportunities to maximize 

benefits from PEs. A number of terms are used in this paper (introduced or imported) and are 

summarized in Table 1. A more detailed definition is given when each concept is first used in the text. 

The main contribution of this paper is presenting a detailed taxonomy of PerDM in RCEs. A 

comprehensive literature review was performed to elucidate data mining systems from different 

perspectives. In this study, we presented the details of data sources, design considerations, different 

application models, and data mining algorithms for PerDM in RCEs. In addition, we illustrated PEs, as 

well as the constituent components within, and emphasized the resource-scarcity in PEs. Moreover, we 

explored the latest relevant literature to find the empirical evidences for evaluation criteria used for 

data mining algorithms in RCEs. To the best of our knowledge this study is the first to address both the 

hardware and software aspects of PerDM in RCEs. 

The rest of this paper is organized as follows: Section 2 provides the background of PEs and related 

resource-constraints. Section 3 presents a taxonomical discussion of relevant concepts of PerDM in 

RCEs. The evaluation criteria and their evidence in the literature are also presented in this section. 

Section 4 discusses the role of PerDM in PSDs to balance among personalization, privacy and security 
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in RCEs. Section 5 is about application areas and open research issues. Finally, the article is concluded 

in Section 6.  

Table 1. Terminology. 

Term Description 

PSDs Personal Sensing Devices 
RCEs Resource-constrained Environments 

PerDM Personal Data Mining 
PE Personal Ecosystem 

KDP Knowledge Discovery Process 
IoT Internet of Things 

EEU Efficient Energy Utilization 
BUC Bandwidth Utilization Cost 
BSN Body Sensors Network 
BLE Bluetooth Low Energy 

FPGA Field Programmable Gate Array 
DSPS Data Stream Processing Systems 

ID Integration Device 
OMM Open Mobile Miner 
SMA Mobile Smart Achieve 
FPM Frequent Pattern Mining 
SL Supervised Learning 
UL Unsupervised learning 
SSL Semi-Supervised Learning 

2. Background 

2.1. Personal Ecosystem 

A notable advantage of PSDs as data-processing platforms is their ability to reduce the 

computational burden at remote facilities by performing initial data processing at the users’ locality. 

As depicted in Figure 1, general data processing and knowledge management in PSDs are based on six 

main modules: (a) data sources and data acquisition; (b) knowledge discovery process; (c) knowledge 

management; (d) system management; (e) visualization; and (f) actuators.  

2.1.1. Data Sources and Data Acquisition 

PSDs enable the handling of heterogeneous data streams from both sensory and non-sensory data 

sources. On-board sensing data sources include a huge variety of sensors for sensing contextual and 

physiological information, locations, and environments [1]. Details of these data sources are listed in 

Table 2. User interaction with PSDs and device resident log files generate non-sensory data streams, 

which create multifaceted data streams. Numerous APIs and data collection tools are available for 

acquiring these data streams. For example, Android SDK [9] provides a sensor manager that can obtain 

data from on-board accelerometers, compasses, GPS, magnetometers, and cameras. Similarly, the 

mobile sensor data-processing engine (MOSDEN) is a highly sophisticated data collector developed 
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for opportunistic sensing in Internet-of-Things (IoT)-enabled environments [10]. MOSDEN acquires 

application-independent data and provides cross-platform data sharing, thereby resulting in a more 

dynamic and useful data acquisition. In addition, data preparation is performed at this layer by applying 

windowing models or distributing the data in equally sized chunks for further online data analysis.  
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Figure 1. Data lifecycle in PEs. 

Table 2. Personal Data in PE. 

Data Source Type Nature of Data Source Data Source Data Type 

Sensors 

Physiological 
Heart rate monitor Numeric/Integer 

Blood Glucose Monitor Numeric/Integer 

Physical activity Accelerometer Numeric/Floating point

Environmental 
Temperature Numeric/Floating point

Humidity Numeric/Integer 
Air pressure monitor Numeric/Floating point

Navigational 
GPS Location Numeric/Floating point

Compass Text 

User Interaction Input data 

On-screen keyboard Text/Numeric 

Microphone Audio 

Camera Images/Video 

Device-resident 

Application Logs 
Web browser logs Text 

Application specific logs Text 

Communication logs 
Bluetooth scans Text 

Wi-Fi Scans Text 

User data 
Contact List Text 
Call Logs Text 
SMS data Text 
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2.1.2. Knowledge Discovery Process (KDP)  

In PSDs, knowledge discovery involves three steps: (1) data preprocessing is performed; (2) data 

(stream) mining algorithms are applied to uncover hidden patterns; and (3) interesting knowledge 

patterns are sorted after pattern evaluation [11]. At the first step, preprocessing tasks include data 

fusion and pipelining strategies, outlier detection, anomaly detection, dimensionality reduction, and 

feature extraction techniques. At the second step, data mining or data stream mining algorithms for 

classification, clustering, and frequent pattern mining are applied on the preprocessed data to extract 

knowledge patterns. The choice between data mining and data stream mining solely depends on the 

application requirements and the need for online (data stream) or offline (data mining) data analysis. 

Lastly, the discovered patterns are evaluated against different measures of interestingness, and on the 

basis of which, the decision whether to store or discard is made at this stage. For example, the 

interestingness measure for classification could be either the minimum number of classes or the 

perceived level of accuracy. Similarly, for cluster evaluation, the number of clusters, their centroids, 

and the distance among them can be used for pattern evaluation. The pattern evaluation techniques are 

further discussed in detail in Section 3.3.  

2.1.3. Knowledge Management  

Knowledge patterns are aggregated, summarized, or integrated for further utilization. Then, these 

summary datasets are forwarded to the local storage. Onboard storage elements and removable  

SD-cards are typically used for local storage in PSDs. In case of unavailability of sufficient local 

storage, the datasets are sent to external environments for permanent storage. These external 

environments include remote data processing systems in clouds, grids, or on the Internet.  

2.1.4. System Management  

PSD-based data processing systems should be adaptive; that is, they should consider contextual 

information and resource monitoring [12]. The adaptation engine plays a critical role in executing 

seamless knowledge discovery processes inside PSDs without compromising the overall performance 

of mobile devices. In addition, a key function of the adaptation engine is enabling PSDs to process 

maximum data locally. Therefore, the adaptation engine collaborates with the context manager and  

on-board resource monitor modules. The context manager provides information about location, 

activities, and device usage status, among many others. Meanwhile, the resource monitor provides 

information about on-board available computational (CPU, RAM, ROM), communicational (Wi-Fi, 

Bluetooth, BLE, Wi-Fi direct), and storage (local storage, SD-card) resources. The adaptation engine 

periodically executes pre-defined rules for adaptation on the basis of dynamically changing contextual 

and resource-related information. 

Systems manage user profiles to address privacy- and personalization-related challenges. The 

vulnerability of mobile devices in ubiquitous and pervasive environments has brought about many 

serious privacy concerns [13]. User profiling or modeling in PE helps to mitigate these privacy risks by 

enhancing user control over their personal data and patterns. An alternative option for privacy 

preservation is the utilization of privacy-preserving data mining algorithms that anonymize personal 
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data before being shared in external environments. An added advantage of user profiling is that mobile 

users are provided with personalized services. In general, service providers implement mass 

customization to meet the needs of large groups of users; but by enabling privacy-preserving profile 

sharing, effective personalized services can be tailored by these providers. 

2.1.5. Visualization  

Knowledge visualization in PSDs can be either local or remote. Local visualization at small screen 

real-estate in PSDs is useful for basic visualization. This limitation sometimes necessitates remote 

visualization using more resourceful PSDs or external environments, because detailed and graphic 

intensive visualization are not usually provided in most PSDs [7]. Currently graphic-intensive PSDs 

are emerging but they are not very useful for real-time data mining systems displaying continuous 

patterns and utilizing immense battery and computational powers.  

2.1.6. Actuators  

Software modules serve as actuators for facilitating interactions with external systems. These 

external systems can be IoT-enabled smart homes and other similar smart spaces or remote data 

processing systems based on clouds, grids, and other Internet-enabled large infrastructures [5]. 

2.2. Constraints in Personal Ecosystem 

Given the small size, portability, and mobility requirements of users, PSDs are limited in terms of 

battery power, computation, communication, and visualization facilities. Major constraints of PSDs 

include bandwidth, CPU cycles, memory, storage, visualization, mobility, and connectivity [14,15]. 

Although advancements in micro- and nano-chipset technologies have empowered PSDs, these 

resource-constraints need to be considered in the development of data mining algorithms. A previous 

study has argued that resource and context awareness enable algorithms to autonomously adapt in 

volatile execution environments without any external interference and commands [16]. 

First, a major requirement of data mining algorithms is efficient energy utilization (EEU) because 

of the limited available energy resource in PSDs. EEU in smartphones is challenged by on-board 

sensing, feature-rich datasets, and continuous computational requirements with support for high-resolution 

graphics and multimedia services [17]. A study has shown that EEU can be improved by 

understanding the users’ interaction with mobile phones and by switching off irrelevant sensors and 

communication channels [18,19]. Another study has presented detailed information on human–battery 

interaction in a smartphone’s context, in which major behavioral, usage, and technical implications on 

EEU were highlighted [19]. Therefore, these aforementioned findings should be considered in devising 

a design strategy for data mining applications in PSDs. 

The decision of what, when, and how much data to analyze varies by nature and requirements of the 

data mining algorithms. Therefore, a designer should address this issue on a case-by-case basis 

depending on the application requirements. For example, for real-time analysis, a user must either 

immediately perform local analysis or offload to some external computational infrastructure. Similarly, 

some applications may require periodic analysis and create a space for offline analysis during 
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nighttime or when the PSD is charging. Another form of EEU is adapting algorithms with available 

resources in PSD. Such adaptation can be in terms of computational cycles, the sampling rate of sensor 

data, or the size of sliding windows [20–22]. The adaptation strategy is generally devised by establishing a 

trade-off between EEU requirements and the accuracy of knowledge discovery algorithms. 

EEU is a more critical issue in collaborative PSD environments, where the allocation strategy for 

data mining tasks can affect the overall performance. Researchers on EEU have used energy-based 

scheduling rather than conventional time-based scheduling schemes [14,23]. The proposed design 

utilizes localized clusters of mobile devices to execute data mining tasks using energy-aware task 

scheduling. The heuristics-based scheduling algorithm works in two task assignment phases: (a) it 

schedules the task in the local cluster of request origin; and (b) otherwise, it assigns the task to the 

most suitable node in the overall network by considering the energy consumption of both the 

communication and computation of tasks.  

Second, another major requirement of data mining in PSDs is bandwidth utilization cost (BUC) 

because of the financial and energy utilization burdens in PSDs. BUC can be lowered by adopting 

efficient computation offloading, local data processing, adaptation, and compression–decompression 

techniques. Various computation offloading schemes are available for performing remote data 

processing in PSDs. For example, a previous study has investigated whether to perform static or 

dynamic offloading by conducting a detailed survey on the implications of computational offloading 

on performance and energy consumption [24]. In addition to this, different kinds of PSDs, mobile 

applications, and computation offloading infrastructures are discussed in detail in this study. 

BUC can be lowered by performing local data analysis; however, the overhead cost can affect the 

EEU in PSDs. Alternately, raw data can be compressed in PSDs after a trade-off is established 

between EEU cost locally and BUC for computation offloading. After a thorough analysis of 

application partitioning schemes and mobile cloud computing application models [24,25], we can 

formulate a computation offloading strategy as shown in Algorithm 1.  

Algorithm 1 Computation Offloading Strategy 

1: if (cost (EEU) > BUC) 

2: { 

3:  Data  Compress (raw-data); 

4:  Send (Data, remote_system); 

5: } 

6: else Run  

7:  (local_data_mining_algorithm, raw-data). 

The offloading strategy works when the EEU cost in the mobile device exceeds the BUC. In this 

case, raw data is first compressed and then offloaded to cloud services for further processing. 

Alternately, local data mining algorithms are applied over raw data for local knowledge discovery. 

Third, CPU cycles, which represent the computational power, are limited in PSDs. Therefore, data 

mining algorithms should be designed accordingly. The design considerations for such algorithms 

include light-weight algorithms, adaptive algorithms, and scalable algorithms. Light-weight  

algorithms are developed by considering key analytical requirements, and results are approximated 
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accordingly [26]. Adaptive algorithms are designed such that they are reconfigurable and adjustable 

according to the available computational resources in PSDs [12]. Algorithms are considered scalable 

when a number of computational tasks are performed inside PSDs while other tasks are outsourced to 

other PSDs in the locality [20]. 

Fourth, memory is another key constraint in PSDs, particularly in smartphones where memory is 

shared between multiple applications and processes that provide support to online and offline data 

analysis. Energy-efficient techniques for tuning size, attributes, and results-related parameters of data 

are generally helpful in effective memory management in PSDs; conversely, learning-intensive 

algorithms pose serious challenges for memory efficiency [23]. An alternative approach is to perform 

offline or incremental learning to effectively utilize on-board memory resources in PSDs [21,22,27]. 

The learning methods are explained in detail later in Section 3.1.5. In addition, garbage collection 

should be considered an intrinsic feature at every phase of data mining in PSDs to attain high 

availability of memory resources. Additional memory optimization techniques are also helpful. For 

example, memory resources can be optimized by closing inactive applications, deleting application and 

device log files, as well as pausing irrelevant background processes. 

Fifth, storage is relatively scarce resources in PSDs. Researchers have studied the effect of storage 

on application performance in mobile phones [28]. The authors argue that internal storage (flash 

memory) showed 187% variability in performance compared with 2040% variability in applications 

running on external storage (SD-card and USB devices). Storage is considered a key constraint in 

PSDs because of its huge impact on application performance, specifically in four ways: (a) runtime; 

(b) launch time; (c) concurrent applications; and (d) CPU utilization. Moreover, performance is also 

affected by read/write operations in sequential and random manners. Therefore, data mining algorithms 

developed for PSDs should consider these drawbacks to maximize optimization and performance. 

Sixth, visualization poses a major drawback for PSD-based data mining systems because of the 

small, or sometimes even absent, screen real-estate. In the case of wearable devices and body sensor 

networks (BSNs), knowledge patterns are usually transported to a central processing system with 

visualization facility or to an integration device in the vicinity of the sensing devices. Smartphones 

generally have sufficient screen size for basic visualization facilities; however, detailed graphics-rich 

visualization requires the use of larger multimedia display screens, such as that of tablets, desktops, or 

overhead projectors. An adaptive visualization approach has been proposed to effectively deal with  

on-screen clutter of results from data stream mining algorithms [7]. The research on knowledge 

visualization in PSDs is still at its early stages, and many issues related to adaptation, fast results 

handling, and scalability with volatile data rates remain to be addressed.  

Lastly, PSDs are always moving and switching between different networks, thus indicating the need 

for efficient mobility management policies for PSD-based data mining systems. Data mining systems 

must be capable of tracking the devices for efficient data transfer between data sources and data 

mining systems. In some cases, the distant nature of mobile devices causes latency, noise, and 

incomplete data transmission. A four-dimensional design framework has been suggested to discuss the 

application mobility challenges associated with temporal, spatial, entity axes, and an extra axis for 

design concerns [29]. Moreover, connectivity is also a challenge in PSDs because of the weak Wi-Fi 

signals receptions as compared to laptops and other powerful portable devices. In addition, 

conventional Bluetooth connections consume large energy, emphasizing the need for Bluetooth Low 
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Energy (BLE) devices. Researchers have presented a performance study on the effect of Wi-Fi and 

Bluetooth on the power and throughput delay of smartphones [30]. They posit that Wi-Fi is the better 

choice for design considerations because of its better energy utilization and throughput performance.  

3. PerDM in Resource-Constrained Environments 

3.1. Taxonomy 

In this section, we present taxonomy of PerDM in RCEs in terms of data generation, design choices, 

application models, and algorithms (Figure 2). Furthermore, we describe the empirical evidence for 

data mining algorithms strictly applied in RCEs for PerDM and highlight some application areas and 

related challenges. 

PerDM in RCEs

AlgorithmsApplication 
ModelsDesign Choices

Local 

Integrated

Remote

Supervised 
Learning

Un-supervised 
Learning

Non-Sensor Data 
Sources

Application-
specific Data

Device-
specific Data

OS-specific 
Data

Sensor Data 
Sources

On-board 
Sensors

Off-board 
Sensors

On-board DM

Collaborative 
DM

Mobile DM

Semi-supervised 
Learning  

Figure 2. Taxonomy of PerDM in RCEs. 

3.1.1. Sensor Data Sources 

Sensor configurations in PSDs vary in terms of: (a) locality; (b) placement; and (c) modality. The 

locality of sensors [31] in PSDs is further referenced in two forms: (a) sensors configured on the same 

motherboard as computational components, such as CPU, memory, and storage facilities; and (b) sensors 

placed in remote wearable devices. Although useful for real-time data processing systems, local 

sensors-based PSDs are disadvantaged by heat dissipation and energy consumption. Nonetheless, data 

collected from off-board sensors-based PSDs are prone to noise and communication protocol hurdles. 

Thus, deciding where to place sensor on body locations presents additional challenges for PSD-based 

data mining systems.  

In PEs, sensors can be configured in multiple ways [31]: (a) on-body through wearable devices;  

(b) off-body through smartphones and other smart spaces; or (c) sensors implanted inside the body.  

Selecting the best location for the sensors in PEs is critical in obtaining exact readings and  

noise-free data collection. For example, a study shows that PSDs placed in the front and back of a 

pants pockets produce different results [21]. Therefore, sensor placement must be considered in any 

PSD-based data mining system. 
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Modality constraints in PSDs [32] can be categorized in two forms: (a) to sense inside PEs only; or 

(b) to gather data from external environments as well. The fusion of data points from both modalities 

enable contextual information from external environments to be maintained. Consequently, different 

sensor configurations result in heterogeneity and complexity in data enabling feature-rich PerDM 

systems. A number of commonly known data sources in PSDs are presented in Table 2. Notably, 

wearable devices generate sensor data streams, whereas smartphones may handle non-sensor data 

streams as well. 

3.1.2. Non-Sensor Data Sources 

In addition to sensor data streams, a huge variety of data streams is present in smartphones.  

These non-sensor data streams can be categorized as: (a) device-resident; (b) application-resident; or  

(c) user-interaction based data. 

As a powerful PSD, smartphones store a number of log files to maintain: (i) communication and  

(ii) device-status related periodic information. Communication-related information includes Wi-Fi and 

Bluetooth scans as well as data about cellular networks and nearest towers. Status logs store 

information related to battery, operating system, and device hardware. Thus, a huge amount of data 

points can be gathered from device-resident information.  

Mobile applications gather a variety of user-related information. For example, mobile web browsers 

maintain cookies to store user credentials and personal login information for social networks and  

mail-service providers. The sensitivity of this information suggests the need for privacy-preserving 

data mining systems. 

Moreover, a user’s interaction with smartphones, including the use of on-screen keyboards, 

microphone, and video cameras, is the key driver of non-sensor data production in PSDs. Non-sensor 

data sources and their data types is presented in Table 2. Several data mining systems and algorithms 

for PSDs have been proposed in the literature to address evolving data source heterogeneity in PE. We 

will discuss these algorithms in detail later in this section. 

3.1.3. Design Choices for PSDs-Based Data Mining Systems 

Trade-offs between on-board computational resources and the cost of computation offloading to 

remote data processing systems should first be analyzed before personal data mining systems are 

designed. PSD-based data mining systems are generally designed in three modes: (a) local; (b) remote; 

and (c) integrated. Some of these systems either analyze data locally or offload them for remote 

processing, whereas some systems work in both modes. 

a) Local Processing 

The selection of local processing mode depends on the availability of on-board computational and 

battery power near the sensors [33]. Local processing is very effective for in-situ analysis over 

continuous fast sensor data streams. These systems are further configured as field programmable gate 

arrays (FPGA)-based and CPU-based infrastructures.  

FPGA-based systems are reprogrammable, reconfigurable, and customized for specific purposes [34]. 

These properties make FPGA-based systems ideal for real-time processing systems. Comparatively, 
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although the general-purpose nature of CPU-based systems makes them slower as compared to  

FPGA-based systems, the former can provide variety of operating systems and programming APIs for 

application development. Deployment of general-purpose data mining algorithms, with the use of these 

resources, demonstrates that CPU-based systems are a better candidate for modern PSDs.  

b) Remote Processing 

The need for remote processing mode arises when data sources and processing systems are located 

apart from one another and local processing systems are either unavailable or have insufficient 

resources to meet computational requirements [35]. Remote data stream processing systems (DSPS) 

include PSDs and other large computational infrastructures, such as clusters, clouds, and grids. Most 

PSDs rely on remote DSPS for computation offloading and knowledge discovery because of the 

limited on-board resources. A hierarchy of PSDs is being used in modern DSPS systems, as depicted 

in Figure 3, to maximize the computational benefits from the nearest PSDs before computation 

offloading to large DSPS. For example, mobile cloud-lets are used for provision of computational 

facilities to PSDs in the locality [36]. Similarly, smartphones are being used as integration devices 

(IDs) for modern wearable sensing devices. 

Server
Cloud
GridSmartphone

Laptop
PC

Smartwatch
Heart rate monitor

Smart glass

Wearable 
Devices Remote DSPS

Integration 
Devices

 

Figure 3. Data flow from PSDs to remote DSPS. 

The discussion on remote large-scale DSPS requires the examination of widely accepted tools and 

technologies. These DSPS are used for various heterogeneous data stream processing and enable  

large-scale ad-hoc queries over high-speed data. In addition, remote DSPS support multiple 

programming languages, including Java, C++, and Python. There is a long list of emerging analytical 

tools but we limited our discussion to the stable versions of these DSPS. A summary of some of these 

systems is presented in Table 3. 

Table 3. Large-scale DSPS. 

Platform Purpose Deployment Prog. Language Queries 

DataSift [37] 
Twitter Stream 

Analysis 
Cluster Multiple 

Filtering, Regular 

Expressions 

Dremal [38] 
Interactive  

ad-hoc querying 
Cluster 

Dremal query 

language 
ad-hoc queries 
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Table 3. Cont.  

Platform Purpose Deployment Prog. Language Queries 

ESper [39] 
Complex Event 

Processing 
In-Memory Java, .Net Online queries 

IBM InfoSphere [40] Stream processing  Cluster Java Online/ad-hoc 

Kenesis [41] Stream processing Cluster Java Online queries 

Hadoop Online Prototype [42] Stream processing Cluster Java Not Found 

MOA [43] Machine Learning Various platforms Java Not Found 

Microsoft Stream Insight [44] 
Complex Event 

Processing 
Server .Net Online queries 

S4 [45] Event processing Cluster Java 
Online data 

processing 

SAMOA [46] 
Distributed machine 

learning 

Can be integrated  

with S4 and Storm 
Java Not Found 

Scikits.learn [47] Machine learning Programming Abstraction Python, C++ Not Found 

StreamDrill [48] Stream processing Not found Not found 
Top-K item 

counting 

Storm [49]  Stream processing Cluster Multiple Online  

c) Integrated Processing 

Integrated processing mode is the combination of both local and remote data processing  

systems [20,27,50]. In this configuration, initial data processing is performed in near-sensor PSDs, and 

results are transported to remote DSPS for further analysis. This approach not only balances the 

computational burden between PSDs and remote DSPS but also helps to reduce energy consumption 

during data transmission and financial costs for computation offloading to remote DSPS.  

The configuration of integrated processing mode is made in different modes: (a) between PSDs 

only; and (b) between PSDs and remote DSPS. Therefore, this configuration enhances the versatility 

and design choices for system designers. For example, PDM is purely based on PSDs and their 

combinations, whereas other systems transport data from smartphones to mobile clouds [50]. Other 

examples [51] of PSD-based configurations are Samsung’s Galaxy S5 and Gear2 as integrated 

processing systems where initial analysis are performed at wearable devices while the rest of the tasks 

are executed at the host device end.  

3.1.4. Application Models for PSDs Based Data Mining Systems 

The discussion on PSD-based PerDM would be incomplete without providing an overview of some 

widely-accepted practical software and frameworks. The scope of this section is limited to some 

renowned and innovative configurations of stream execution models in PEs. Additionally, we provided 

examples of practical software for each of these execution models and articulated some core features 

of these software and frameworks. The rest of this section discusses PerDM in on-board applications, 

mobile devices, and collaborative environments. 
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a) On- (device) board Data Mining  

The increasing variety in sensors and developments in mobile computing platforms is the key factor 

in the adoption of on-board data stream mining [33]. Numerous on-board data mining systems have 

been successfully implemented to sense earth, climate, weather, health, spacecraft, robotics, and other 

physical and virtual sensing environments. However, at present, on -board data mining systems are 

facing the problem of low computational resources, that is, they have to handle noisy data as well as 

incompleteness and inaccuracies during data measurements. Moreover, geo-referencing (i.e., a priori 

information about location of sensors and sensing platforms) has become an essential requirement in 

on-board data mining applications.  

On-board data stream mining algorithms are being designed for both FPGA-based and CPU-based 

systems, although the latter comprise the better choice in most of the scenarios. FPGAs are reconfigurable 

and provide more computational resources and bandwidth because of their energy-efficient  

behavior [34]. The downside of FPGAs is that a new hardware must be designed or re-programmed for 

each algorithm. Examples of FPGA-based data mining techniques are their recent applications in 

micro- and nano-robotics [52]. Alternatively, CPU-based systems are general processing architectures; 

thus, they consume more energy and perform slower because of recursive scheduling constraints in the 

system. However, deployment and configuration of data mining algorithms in CPU-based systems is 

not a hectic and redundant task as compared with FPGA-based systems. 

CPU-based on-board data mining systems, strictly applied in RCEs, are often discussed in data 

mining literature. Open Mobile Miner (OMM) [12], VEDAS [53], and MineFleet [54] are some 

examples of on-board mobile DSPS. The scope of CPU-based data mining systems lies in both on-board 

and mobile data mining. Hence, the details of these systems are presented in the next subsection. 

b) Mobile Data Mining 

The applications models involving mobile phones as data-generating elements are based on three 

schemes: (i) mobile interface; (ii) on-board CPU; and (iii) client-server. 

In the first approach, mobile interface, mobile applications only provide interfaces and the data 

mining tasks are performed on the back-end computational infrastructures [20]. In the second 

approach, the on-board CPU-based mobile data mining, data mining tasks are performed locally on the 

mobile devices. In the third approach, the client-server approach, some data mining tasks are 

performed in mobile devices, while some tasks are performed at back-end server [55].  

Each of these approaches has its own strengths and limitations. For example, there is greater 

communication overhead in mobile interfaces than in on-board CPU-based data mining systems [20]. 

Moreover, data visualization and low latency are the positive aspects of on-board CPU-based data 

mining system, but these may be lacking in mobile interfaces. On the one hand, processing, memory, 

battery power, and storage are the key considerations in on-board CPU-based data mining systems; on 

the other hand, these are not major issues in mobile interfaces.  

Considering the popularity of mobile phones and smartphones, some application models and 

frameworks have been proposed for mining data streams generated and/or sensed by these devices. For 

example, a component-based framework, Mobile Smart Archive (SMA), has been proposed for 

collecting and mining sensor data streams on mobile devices [56]. SMA was developed using C++; 

thus, the project was not widely accepted due to Java-based implementations that were not yet possible 
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due to the lack of JVM-supported mobile devices at that time. Hence, SMA was not sustained for a 

long time.  

Another example is the development of a web service-based data mining system to mine databases 

by accessing data through mobile phones and displaying results back on these mobile phones [55]. In 

this system, the data are acquired by web servers from different data sources and then stored on mining 

servers. A MIDlet, deployed on a mobile phone, sends requests for particular data mining tasks, after 

which the mining server invokes the relevant web service and returns the results back to the mobile 

phone after completion. Although it was a good approach for that time, there were issues related to 

visualization and communication burden, because of limited bandwidth on the mobile phones, which 

demanded an effective data stream mining solution. 

A recent development is OMM, a generic tool for mobile data mining that senses the environment 

and performs local data mining tasks [12]. Key components of OMM architecture are data sources, 

data stream capture, adaptation engine, library of data stream mining algorithms, resource monitor, and 

visualization library. In addition, the researchers [57] proposed Context-Aware Real-Time Open 

Mobile Miner (CAROMM) for mobile crowd-sensing. The framework reduces the energy consumption 

and bandwidth utilization during data communication over mobile networks. The CAROMM operates 

using data mining algorithms in mobile devices and performing initial data processing at user end to 

reduce the computational burden over clouds. Similarly, Mobile WEKA is another general data mining 

tool developed for android devices; it supports classification, clustering, and association rule mining 

algorithms [58].  

c) Collaborative Data Mining  

Requirements on energy efficiency and limitations in computational power have resulted in the 

collaborative performance of data mining in ad-hoc mobile networks. There are two design 

considerations for these ad-hoc mobile networks meant for collaborative data mining. First, the devices 

in same locality are connected in peer-to-peer configurations. Second, an ad-hoc mobile cloud is 

established at run time to fulfill the processing needs of subscribed mobile users. Pocket Data Mining 

(PDM) is an example of the first configuration, yet no study has examined the second configuration in 

the literature [20]. Thus, we limited the current study to PDM, which is presented in the next paragraph.  

PDM is a collaborative data stream mining framework based on mobile devices, agent technology, 

and data stream mining algorithms. The basic motivation behind PDM is the opportunity to utilize 

mobile devices collaboratively for knowledge discovery in ubiquitous environments and to address the 

resource-constraints and energy efficiency challenges posed by conventional mobile data mining 

systems. PDM is suitable for a range of application domains including health, safety, traffic 

management, policing, crowd control, crises and riot managements; however, this approach comes 

with security- and privacy-related concerns that could be very serious in some situations. A complete 

monograph about PDM discusses the motivation, framework, experimental setups, results, and 

research challenges associated with collaborative data mining [20].  
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3.1.5. Data Mining Algorithms 

The core of taxonomy is the exploitation of data mining algorithms in RCEs. The detailed literature 

review of these algorithms is presented in Section 3.2 of this paper. Here, key learning methods, such 

as supervised learning and unsupervised learning are defined and presented. In addition, we have 

highlighted the importance of semi-supervised learning, which could be a preferable choice for PerDM 

in PSDs, in uncovering knowledge patterns when moving from known spaces to unknown spaces. 

Machine learning algorithms, also called learning models (LM), play a significant role in PerDM. 

Although the selection and deployment of these models is difficult owing to on-board available 

resources, LMs are widely adopted in PSDs as well. Learning schemes for PSDs vary in two 

dimensions (i.e., off-line and on-line), and learning process takes place linearly or incrementally. In 

case of off-line learning, the learning models are first trained out-of-PSD and then used inside PSDs, 

thus compromising accuracy as well as personalization at user-end [21,22]. Alternately, on-line 

learning provides more accurate and personalized models, but less EEU because of computation 

intensities inside PSDs [59]. Meanwhile, linear learning is more computation-intensive compared with 

incremental or ensemble learning. Hence, the choice of learning algorithm significantly affects the overall 

performance of PSDs. A precise discussion of three widely used learning modes is being presented by 

considering resource constraints and computational requirements of learning schemes in PSDs. 

The design consideration for learning algorithms include support to heterogeneous and redundant 

data, input space dimensionality, trade-off between “bias” and “variance” in input space, noise in 

output spaces, linearity and non-linearity of feature vector space, functional complexity, and amount of 

training data [60].  

a) Supervised Learning (SL) 

One of the most common tasks in data mining is to build models for the prediction of an object’s 

class on the basis of its labeled attributes. A classification or regression model is usually trained for 

class prediction on large data sets. Model training is done using supervised learning, which allows for 

manual labeling of data points so that classification algorithms can predict similar unobserved  

data [61]. An overview of SL algorithm development process is presented in Figure 4. The designer 

first outlines the type and amount of training data that could help in building prediction models. The 

training data are acquired from multiple data sources discussed in Sections 3.1.1 and 3.1.2, and feature 

extraction is performed for dimensionality reduction. In addition, instances are labeled manually (by 

user) or automatically (by application).  

The SL algorithms work by taking A (a set of input spaces with ai feature vectors and Li labeled 

attributes) and invoking a learning function that maps A to B (set of output spaces). The selection of 

function affects the overall performance of the SL algorithm. The evaluation of SL algorithm is 

performed using cross-validation, hold-out, prequential or leave-one-out techniques. Finally, the model 

is tested for accuracy using different evaluation criteria. A detailed discussion of these performance 

evaluation criteria is made later in Section 3.2. 
  



Sensors 2015, 15 4445 

 

 

Training Data 
Acquisition

Outline Training Data
Determine Input 

Feature Vector Spaces 
and Label Attributes

Determine Input Feature 
Vector Spaces

Test Data Acquisition

Evaluate Accuracy

Structure Function

Perform Validation

Supervised Learning Unsupervised Learning

 

Figure 4. SL and UL algorithm development process. 

Formally, SL algorithm works under some assumption or bias for better predictions in unseen test 

environments. For example, smoothness assumption states that if two points, P1 and P2, are closer to 

each other in a training dataset, it is most likely that they will be closer in test data as well. In addition, 

an algorithm has high variance in SL settings if it predicts different output values when it is trained 

with different data sets; it is considered biased when it predicts correct results with systematically 

incorrect input spaces. The prediction error ( ˆ eP ) of a learned classifier is the sum of bias (β) and 

variance (σ2) denoted as ˆ eP  = β + σ2. The trade-off between β and σ2 is that LM must be flexible with 

low β value so that it can fit the data well, but the high flexibility in LM also increases σ2 value. 

Therefore, a good SL algorithm provides a mechanism (automatic or manual) with which to adjust this 

trade-off between β and σ2 and prevent overfitting of the model [61,62].  

b) Unsupervised learning (UL) 

The absence of class labels in data leads toward the discovery of new groups using unsupervised 

learning techniques. Given the large data sets or streams with multiple attributes, the conventional SL 

algorithms require a great number of computational powers, making it difficult to manually handle all 

the grouping activities. The algorithm development process of unsupervised learning methods, as 

depicted in Figure 4, is the same except the labeling of data. In unsupervised learning, the definition of 

training data and its acquisition is the same, but the input features vector space contains only unlabeled 

data. The LM is trained and evaluated on the basis of input features vector space and finally tested 

using separate test data. The primary assumption for unsupervised learning algorithms is that all data 

points are identically and independently distributed to define a (n × d) matrix. UL is initially used for 

density estimation, but now it is equally being adopted for outlier detection, clustering, quantile 

estimation, and dimensionality reduction [60].  

A few examples of clustering algorithms using unsupervised learning schemes are exemplified by 

the following applications: Adjustable Fuzzy Clustering (AFC) for activity classification in wearable 

BSN environments; Light-Weight Clustering (LWC) for energy efficient mobile crowed-sensing; 

Time-Based Clustering (TBC) for efficient automatic navigational location prediction; k-mean clustering 
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for dimension reduction [63] and energy efficient complex activity recognition; and Gaussian Mixture 

Model (GMM) for stress classification [57,64–67] using smartphones. The applicability of these 

schemes proves that clustering using UL is a good candidate for PSD-based data mining systems.  

c) Semi-supervised learning (SSL) 

SSL plays an intermediate role between SL and UL. Both the scarcity of labeled data and the 

extensive labeling efforts are the main bottlenecks of SL algorithms. SSL extends SL by handling 

unlabeled data as well. Yet, SSL still needs human-intervention but reduces the effort of manually 

labeling the data. Moreover, SSL is equally exploited in other forms of data mining algorithms, such as 

clustering and regression. SSL algorithms work best under certain assumptions, and some of these 

known assumptions include smoothness assumption for classification algorithms, cluster assumption 

for interrelationship between cluster points, and low density separation assumption for dimensionality 

reduction algorithms. The assumptions with higher certainty level help develop better predictive 

models with higher accuracy. Alternately, poorly modeled assumptions can reduce the performance of 

predictive models [68,69].  

The rest of the algorithm development process depicted in Figure 5 is the same as SL and differs 

only in feedback propagation in LM. The model is given positive feedback and is updated with labels 

of accurately predicted input vectors. Meanwhile, negative feedback is sent for re-training to training 

datasets. SSL algorithms work by first establishing a hypothesis from labeled data and then modifying 

or prioritizing the hypothesis using unlabeled data. For example, an SSL algorithm takes both A 

(labeled data) and B (unlabeled data) as input. Using A, it then builds a hypothesized model called LM 

(A), then it processes B and based on the assumptions, it modifies or ranks LM (A). The new model is 

called LM (A + B), which means that it can handle both labeled and unlabeled input instances [68].  

Training Data 
AcquisitionOutline Training Data

Test Data Acquisition

Determine Input 
Feature Vector Spaces 
and Label Attributes

Evaluate Accuracy

Structure Function

Perform Validation

Negative Feedback
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Figure 5. SSL algorithm development process. 

SSL could be either transductive or inductive in nature. The transductive learning can only handle 

the known data points. Alternately, inductive learning enables one to handle unseen data as well. Some 
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commonly used SSL methods include transductive SVM, co-training, self-training, and graph-based 

methods. An overview of existing literature reveals that there is no SSL method that can be categorized 

as the best, but the authors [70] recommends a checklist for method selection. They argued that EM 

with generative models may be a good choice for clustering algorithms. Similarly, co-training is 

appropriate for two set features, graph-based methods could be used for feature similarities, and  

self-training methods are best for complicated supervised classifiers. A detailed literature review of 

these methods can be found in [70] for interested readers.  

3.2. Literature Review of PerDM Algorithms for PSDs 

The comprehensive literature review reveals that classification algorithms are widely accepted for 

PerDM in RCEs. Supervised learning—best for controlled experiments—is the main basis for the 

selection of classification algorithms. Moreover, On the one hand, numerous clustering algorithms are 

being exploited mainly using unsupervised learning methods, but the limitation of insufficient 

resources is a bottleneck that hampers the maximization of these algorithms. On the other hand, there 

is a lack of frequent pattern mining techniques in RCEs because of extensive memory requirements for 

candidate generation and large tree structures. The evidences of the exploitation of these algorithms are 

presented in the following sections. 

a) Classification 

Three types of training models are used for classification in RCEs: (a) universal, a single model that 

is used for all type of users; (b) personalized, in which a model is trained for each individual; and  

(c) adaptive, a model that starts with a universal scheme but gradually adapts and becomes personal for 

each user [64]. Each modeling technique, however, has disadvantages. For example, the universal 

model is a single model for all users; therefore, the need for more accurate predictions arises because 

of differences in behavioral and physiological patterns of users. Personalized models are more accurate 

but require manual labeling for each activity. Finally, adaptive models must be self-trained and 

manually labeled at both times. Of the three, the universal modeling scheme is used in most of the 

studies in extant literature.  

A variety of classification and feature extraction techniques from tree-based structures; neural and 

Bayesian networks; and statistical, probabilistic and regression models; and so on, are exploited in 

PSDs. For example, tree-based models, such as Hoeffding Tree (HT), Random Forest (RF), Best-First 

Tree (BFT), J48, and C4.5 have been used for activity recognition, energy efficiency, physiological 

data analysis, personalization, privacy and adaptation, stress classification, complex activities analysis, 

and intelligent distributed classification [22,26,64,65,71] in PSDs.  

Similarly, neural network-based models, such as Artificial Neural Networks (ANNs) and Multi-Layer 

Perception (MLP)-based NNs, are used for fall detection, energy-efficient activity recognition,  

WSN-based activity recognition, and simple and complex activity recognition [21,65,71,72]. Statistical 

classifiers, including Support Vector Machines (SVM), Quadratic Discriminant Analysis (QDA), 

Linear Discriminant Analysis (LDA) and k Nearest Neighbors (kNN), are implemented for activity 

recognition, injury rehabilitation, physiological data analysis, optimized energy consumption, stress 
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profiling, physical activity recognition, discrimination between stress and cognitive load, real-time 

activity recognition, and application usage prediction in mobile phones [65,73–79].  

Moreover, several regression models have been used in numerous studies, including Localized 

Logistic Regression (LLR), Nonlinear Logistic Regression (NLR), and Maximum Entropy (Max Ent) 

for energy efficiency and intelligent context-based personalized services; Bayesian Network and 

instance-based algorithms like K-star (K*) for simple and complex activity recognition; and rule-based 

models like Decision Table (DT) for activity recognition [26,65,71,77,80]. Finally, probabilistic 

models, such as Naive Bayes (NB), are widely adopted for distance estimation among Wi-Fi users, 

distributed classification, “callee” recommendation using personal and social contexts, physiological 

data analysis, personalization, privacy and adaption, and activity recognition [26,59,65,71,73,81–84]. Such 

a wide-scale adoption of classification algorithms has encouraged researchers to explore new 

opportunities for PerDM in PSDs. 

The comparative analysis of classification algorithms shows that accuracy is the basic criterion for 

algorithm selection [62]. The absence of a universal algorithm that works on every dataset imposes the 

challenge of selecting the best algorithm for a proposed solution. Similarly, the proposed PSD-based 

data mining system is designed after evaluating some potentially related algorithms. However, there 

may be a trade-off between accuracy and required computational complexity due to resource-related 

constraints in PSDs. The study shows that tree-based algorithm (i.e., C4.5) and statistical classifier 

(i.e., SVM) are amongst the classifiers with the best accuracy in majority of the data sets.  

The accuracy of a classifier depends on the number of instances, attributes, and classes to be 

predicted [62]. In addition, the application of Principal Component Analysis (PCA) affects performance 

given that a number of instances and variables negatively affect performance. Meanwhile, PCA 

variance, the application of PCA, and the number of target classes and nominal variables have positive 

effects on performance. Moreover, model building time is directly related with number of instances 

and data sparsity, but accuracy can be improved by efficient handling of noisy data. Thus, the prediction 

accuracy of classifiers in PSDs is dependent upon data size, number of attributes, preprocessing 

techniques, and data sparsity.  

The critical analysis of numerous studies relating PerDM in PSDs, as presented in Table 4, shows 

that the performance of same classification algorithms varies in different environments. For example, 

in case of tree-based algorithms, C4.5 [71] performed best with more than 90% accuracy compared 

with NB, but in another study [59], NB performed best with 86% ± 3.9% as compared with  

85.9% ± 2.5% of C4.5; furthermore, NB consumes 71 KB less memory than C4.5. Similarly, in some 

other studies [65,73], SVM outperformed NB in all cases.  

The variety in sensor configurations, device models, on-line and off-line learning, batch and stream 

analysis, and scheduled and real-time analyses can make a significant difference in the classification 

results. For instance, differences of latency in local on-board sensors and off-PSD sensors can lead to 

noisy and unbalanced data, thus affecting the prediction accuracy. Likewise, the resource constraints in 

real-time system can lead to false and inaccurate predictions [72]. 
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Table 4. Classification algorithms in PSDs. 

Study Algorithm Pre-Processing Technique Learning Max. Performance Platform 

[72] MNN Feature extraction  Offline Accuracy = 61.6%  Smartphone 

[83] NB with KDE Captures RSSI values Adaptive Accuracy = 84% Smartphone  

[85] J48 STFT and CWT Offline Accuracy = 97.2% Smartphone 

[78] LDA Feature extraction  Offline Accuracy = 82.8% MATLAB 

[82] HT, NB 80 (training) : 20 (test)  Online Accuracy >50% WEKA  

[22] C4.5 Feature extraction Offline Accuracy = 81.9% Smartphone 

[21] ANN 
Lag and autocorrelation 

plots, FFT and DCT 
Offline 

Accuracy with  

KDA [86] = 86.98%  

MATLAB, 

Smartphone 

 [75] SVM 

Dimensionality and noise 

reduction, and feature 

extraction 

Offline 

Online 

Accuracy with KDA 

features = 99% 

MATLAB, 

Smartphone 

[76] SVM 
Feature extraction and Noise 

reduction 
Offline Accuracy = 98.85% Smartphone 

[84] BN 
Context inference module is 

used for adoption of BN 
Online Accuracy = 63% Smartphone 

[26] J48 Feature extraction  Offline Accuracy = 97.02%  
Smartphone 

WEKA 

[79] QDA Feature extraction Offline Accuracy = 95.8% Smartphone 

[73] RF Feature extraction Offline Accuracy = 80.3% WEKA 

[81] NN Feature extraction Offline Accuracy = 100% WEKA 

[77] SVM Feature extraction Offline 
SVM has best accuracy in 

almost all cases 

PC, 

Smartphone 

[59] NB Feature extraction 
Online 

Adaptive 
Accuracy = 86% ± 3.9% 

ZTE Blade 

WEKA 

[87] kNN Feature extraction  Offline Recall = 95% Smartphone 

[74] NN Feature extraction  Offline Accuracy = 100% WEKA 

[71] MLP Feature extraction  Offline Accuracy = 50% WEKA 

[88] 
J48 , LibSVM, 

AdaBoost, BN 
Feature extraction  Offline Average accuracy = 77.14%  Smartphone 

b) Clustering 

Clustering using unsupervised learning schemes creates multiple groups or clusters of highly similar 

or dissimilar data points. The assessment of such similarities and dissimilarities depends on the 

attribute values and distance measured from the cluster centroids. Different variants of data clustering 

techniques include hierarchical, spectral, subspace, and density-, centroid-, and constrained-based 

techniques. The choice of these techniques solely depends upon the type and nature of data to be 

clustered as well as the application requirements. However, clustering algorithms are not widely 

adopted in PSD-based data mining systems due to high and sometimes unlimited computational 

requirements. In addition PSDs face the challenges of dealing with concept drift and high dimensional 

noisy data streams in ubiquitous and pervasive environments.  

Clustering algorithms in literature, as summarized in Table 5, ascertain that AFC can be used for the 

provision of incremental learning in PSDs. For example, researchers proposed a combined AFC with 

Probabilistic Neural Networks (PNNs) [65]. The proposed solution can lead to the following abilities: 
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(a) incrementally learn from new training data sets; (b) freely add and remove activities in the system; 

and (c) remove the old data for new and updated training data. The system was implemented using a 

six-node BSN, and results were compared with three existing incremental learning methods, namely, 

Fuzzy ARTMAP (FAM), Radial Basis Function (RBF) networks, and probabilistic FAM. The 

experimental results show that average accuracies and execution times for incremental learning using 

five-fold technique are 91.3% and 264.3 s, respectively, while those obtained using leave-one-out 

technique are 89.2% and 325.4 s, respectively. 

The exploitation of clustering algorithms in PSDs highlights the issue of lightweight algorithms that 

have been explored in CAROMM [57]. The experiments were performed on Android-based mobile 

phones and tablets using Lightweight Clustering (LWC) algorithms proposed in OMM [12]. The 

results were reported in two parts: (a) data accuracy and (b) bandwidth and energy usage. The authors 

reported 300% energy gain and 17 times bandwidth gain with the same level of data accuracy as 

compared with raw data. Hence, it is setting a sound base for future mobile-based data mining systems. 

K-means clustering has been exploited in some studies. For example StressSense uses k-means to 

initialize means and variances of the GMM components [64]. Here, GMM is used with diagonal 

covariance matrix for classification of stress and neutral speech in proposed system. The classification 

decision is made using likelihood function p(X|λ) where X is a feature vector and λ(w; ∑; μ) is a GMM 

model with weight, mean, and covariance matrix parameters. The proposed system evaluated Akaike 

Information Criterion (AIC) for several predictive models on each subject. Resultantly the authors 

decided that 16 GMM components should be used for optimum classification results. However 

variance limiting techniques has been used to avoid over-fitting the training data. This variance 

limiting technique has been applied with standard expectation maximization (EM) algorithm to train 

the GMM speaker models [89].  

Table 5. Clustering algorithms in PSDs.  

Study Algorithm Learning  Max. Performance Platform 

[57] Light-weight clustering Online/offline 
Energy gain = 300%,  

bandwidth gain = 17 times 
Smartphone 

[64] k-means with GMM Offline Accuracy = 82.9% Smartphone 

[63] 
k-means for dimension 

reduction 
Offline Accuracy = 95.31% Smartphone 

[65] 
Adjustable fuzzy clustering 

with Probabilistic NNs 
Offline/incremental Accuracy = 91.3% BSN 

[66] Time-based clustering Online Data reduction = 11x Smartphone 

[90] k-means Offline Accuracy = 97.1% Smartphone 

Another study used k-means clustering for a low-energy single-accelerometer-based complex 

activity recognition system [90]. As complex activity detection is more challenging because of the 

aperiodic and unpredictable nature of sensor data, the authors selected k-means clustering, where  

k = 10 is the optimal size. Multiple SVM-based fusion models for learning features were evaluated 

because of their superior support for classification and training. The reported results show that the 

proposed system achieves an average accuracy of 86.17%. Researchers proposed a sound classification 

system for mobile applications [63]. Here, the k-means clustering algorithm is applied for dimension 
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reduction and hidden markov model (HMM) for classification. The average accuracy of sound 

classification in MobileSense is 95.31%. 

In other studies, TBC-based clustering algorithms were used for trajectory data mining and  

location prediction because of their support for historical data. TBC is used for efficient automatic 

navigation and location prediction in concentrative driving and regularly visited location history 

management [66,67]. According to a thorough literature reviewing, clustering-based algorithms, 

despite their major computational requirements, may be adapted more in future studies.  

c) Frequent Pattern Mining 

Frequent Pattern Mining (FPM) is basically applied over I (set of items):{i1,...,in}and T (set of 
transactions):{t1,..,tn}, where T ⊆ I. Transaction ID (TID) is used to uniquely identify a transaction in 

database [91]. T contains A (a set of items) iff A ⊆ T. The association rule AB over two item sets A 

and B exists iff A ⊂ I and B ⊂ I and iff A∩B = ∅. The rule AB contains the Transaction TID with 

minimum support s% for AB and confidence c% for A∪B. Moreover, for a given set of Transactions 

D, the rule for minimum confidence (minconf) and minimum support (minsup) are specified by users, 

and all rules that support minconf and minsup are generated for D.  

These algorithms are generally designed to mine only frequent patterns and/or to find associations 

among different item sets. Overall research in frequent pattern mining varies from basic patterns to 

multilevel and multidimensional patterns, to extended patterns for data sets and streams. The extensive 

literature review shows that research in frequent pattern mining for PSD-based data mining systems is 

still at its initial stage. To the best of our knowledge, there are only two studies that purely use FPM 

algorithms in mobile commerce and activity recognition [27,92]. 

In the first study, researchers proposed the Personal Mobile Commerce Pattern (PMCP-Mine) as 

part of the Mobile Commerce Explorer (MCE) framework to determine the personal shopping patterns 

of mobile users in m-commerce environments [92]. PMCP-Mine first mines the frequent mobile 

transactions from a user’s local purchase data and then updates the local transaction database by 

removing the infrequent transactions. Finally, PMCP-Mine predicts new transaction patterns based on 

updated transaction patterns. The performance analysis of PMCP-Mine shows that execution time is 

incremental with the decrease in supported threshold value.  

In the second study, data mining technique based on emerging patterns (EP) was proposed in a 

complex activity recognition system that works at two layers [27]. In the first layer, the data are 

processed at BSN nodes and then transmitted to a mobile device for further processing. At the node 

level, lightweight algorithms are used for gesture recognitions and pattern-based real-time recognition 

algorithms are used in central portable devices. EP represents a set of frequent items in one class but a 

set of infrequent items in other classes. The assumption behind the EP-based technique is that 

instances containing EP items most likely belong to the corresponding EP class. The complexity 

analysis of the proposed algorithm shows that the time complexity of matching EP items with items 

stored in the class is O((m.l + k).n). Here n shows the length of input vector, k represents the total 

activities, m denotes the number of EPs, and l gives the average number of items in an EP. In addition, 

the space complexity of proposed algorithm is Ө(m.l) to hold the EPs. Performance analysis shows that 

the average recognition accuracy is 82.87%, the average recognition delay is 5.7 sensing periods, and 
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the average utility is 0.81. Despite the high misdetection and false detection rate, the proposed 

algorithm performs better than the single-layer and HMM-based algorithms.  

Alternately, the exploitation of learning methods coupled with FPM algorithms is also gaining 

popularity in adaptive systems. For example, systems are using online incremental learning methods at 

first stage to continuously adapt with concept drift. In second stage, contextual correlations are 

discovered using proposed adaptive apriori algorithms [93]. It is worth to be noted that FPM 

algorithms and their combination with learning methods in resourceful environments are rigorously 

investigated but their utility in RCEs is still an unexplored research area. Therefore, the absence of 

literature on FPM techniques highlights the need for a detailed study to articulate the feasibility and 

performance of algorithms to find frequent patterns in RCEs. 

3.3. Evaluation Criteria and Empirical Evidences 

Data mining algorithms are usually evaluated with preset criteria for evaluation. The criteria used to 

evaluate the classifiers are usually accuracy, computational complexity, robustness, scalability, 

integration, comprehensibility, stability, and interestingness [62]. Accuracy is the basic criterion for 

the selection of classification algorithms, and classification time is the primary contributor in time 

complexity. Therefore, both of these metrics are usually considered in the performance evaluation of 

any classification algorithm.  

Similarly, cluster evaluation is performed at two levels [64]. The Davis–Bouldin Index, Dunn 

Index, and Silhouette Coefficient are used for internal evaluation. Alternatively, Rand Measure,  

F-measure, Jaccard Index, Fowlkes–Mellow Index, confusion matrix, and mutual information are the 

external evaluation criteria for cluster analysis. The basic evaluation criteria for frequent pattern 

mining algorithms include time and computational complexities, accuracy, candidate counts, tree size, 

and number of frequent item sets [92]. Contrary to traditional data mining algorithms, PSD-based 

algorithms are evaluated with basic criteria because of their resource constraints. A detailed overview 

on data mining algorithms using these performance criteria for evaluation is presented in Table 6. 

Space complexity (SP) evaluation is conducted to assess the computational (in terms of storage and 

memory) requirements of data mining algorithms. SP depends on the internal data structure and 

intermediate candidate generation of the algorithms. Similarly time complexity (TC) is evaluated to 

measure the execution time of data mining algorithms. Both SP and TC are measured using Big O 

notations. Note that Big O notations are used in the context of asymptotically bounded notations  

(also known as Big θ) because of resource constraints in PSDs. 

Data mining algorithms deal with a massive amount of incoming data streams. Therefore, the 

number of instances that are accurately classified, clustered, or frequently counted is the primary 

contributor in the overall knowledge discovery process. The resultant patterns are classified as follows:  ܶ݁ݑݎ	ݏ݁ݒ݅ݐ݅ݏܲ	(ܶܲ):	The number of instances correctly predicted as required. ܶ݁ݑݎ	ݏ݁ݒ݅ݐܽ݃݁ܰ	(ܶܰ): The number of instances correctly predicted as not required. ݈݁ܽܨ	ݏ݁ݒ݅ݐ݅ݏܲ	(ܲܨ): The number of instances incorrectly predicted as required. ݁ݏ݈ܽܨ	ݏ݁ݒ݅ݐܽ݃݁ܰ	(ܰܨ): The number of instances incorrectly predicted as not required. 
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Various evaluation metrics are computed on the basis of these pattern classifications. A primary 

metric is accuracy (for classification) or Rand measure (for clustering algorithms), which is measured 

using Equation (1). The accuracy or Rand measure gives the percentage of correctly classified instances:  Accuracy	 = R.M = ܶܲ + ܶܰܶܲ + ܲܨ + ܶܰ + (1) ܰܨ

As presented in Equation (2), precision determines the ratio of correctly detected/classified/clustered 

instances among all positive instances classified as positive instances:  Precision = ܶܲܶܲ + (2) ܲܨ

Using Equation (3), sensitivity, which is also called recall value, is calculated to find the ratio of 

positive instances among all correctly detected instances: Sensitivity = Recall = ܶܲܶܲ + (3) ܰܨ

Alternatively, specificity metric, which is calculated using Equation (4), is used to determine the 

ratio of negative instances among all negative instances: Specificity = ܶܰܶܰ + (4) ܲܨ

F-score is another measure that combines the precision and recall values using slightly different 

equations, as presented in Equation (5) for classification and Equation (6) for cluster evaluation. Note 

that the β value is used to increase the impact of recall on the F-score. The greater the β values are, the 

lesser the precision impacts on the overall F-score of the underlying clusters: F − Score	(for	classifiers) = 2 × .݊݅ݏ݅ܿ݁ݎ ݊݅ݏ݅ܿ݁ݎ݈݈ܽܿ݁ݎ + (5) ݈݈ܽܿ݁ݎ

F − Score	(for	clusters) = ଶߚ) + .݊݅ݏ݅ܿ݁ݎ)(1 .ଶߚ(݈݈ܽܿ݁ݎ ݊݅ݏ݅ܿ݁ݎ + ݈݈ܽܿ݁ݎ  (6)

Miss detection, which is also called the false negative rate (FNR), is used to evaluate the percentage 

of data analyzed that produced false results. FNR is calculated using Equation (7): Miss detection	(False Negative Rate (FNR)) = ܲܶܰܨ + (7) ܰܨ

False detection, which is also called the false detection rate, is calculated using Equation (8) and it 

measures the percentage of data not analyzed at all: False detection	(False Detection Rate (FDR)) = ܲܶܲܨ + (8) ܲܨ

Aside from the basic performance metrics, a detailed evaluation of data mining algorithms could be 

done using a confusion matrix. The alternative terms used for confusion matrix are error matrix, 

contingency table for supervised learning, and matching matrix for unsupervised learning algorithms. 

Here, the obtained data about desired predictions and actual predictions are presented in matrix form. 

The diagonally highlighted cells, as presented in Table 7, accurately show the discovered patterns.  
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Table 6. Evaluation criteria for data mining algorithms in PSDs.  

Note: The performance criteria used in respective studies is denoted by √, otherwise marked as -. 

Table 7. Confusion matrix.  
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s  Class1 Class2 Class3 Class4 

Class1     
Class2     
Class3     
Class4     

The Brier score (BS) [94] is another measure used to calibrate the prediction by finding the 

difference between probabilistic predictions and actual predictions. BS is calculated using Equation (9), 

where N is the total number of forecast predictions: 

ܵܤ = 1ܰ( ௧݂ − ܱ௧)ଶே
௧ୀଵ  (9)

Study Time Comp Space Comp Accuracy Ener. Cons. Precision Recall F-Score Conf. Matrix 

[58] - - √ - - √ √ √ 

[69] - - √ - - - - √ 

[72] √ - √ - - - - √ 

[64] - - √ - - - - - 

[68] - - √ - - - - - 

[16] √ - √ √ - - - √ 

[15] - - √ √ - - - √ 

[61] - - √ - - - - - 

[62] √ √ √ - - - - - 

[60] - - √ - - - √ - 

[19] √ √ √ √ - - - √ 

[65] - - √ - - - - - 

[59] - - √ √ - √ √ - 

[57] - - √ - - - - - 

[63] √ - √ √ - - - - 

[67] - - √ - √ √ √ - 

[48] √ √ √ √ - - - - 

[66] √ - √ - √ √ √ - 

[60] - - √ - √ - - - 

[56] - - √ - √ √ √ √ 

[73] - - √ - - - - √ 

[51] √ - √ - - - - - 

[46] - - √ √ - - - - 

[50] - - √ - - - - - 

[52] - √ - - - - - - 

[53] √ √ TBC based algorithm was evaluated by No. of stay points and regions 

[49] - - √ - √ √ √ - 

[74] √ √ √ - - - - √ 
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Clustering algorithms are evaluated with some extra metric. The patterns are evaluated internally 

(with data originally used for clustering) and externally (with unused data).  

The Davies–Bouldin (DB) index is used for the internal evaluation of “n” number of clusters using 

Equation (10). The “C” values are the cluster centroids and the “σ” values are the average distance of 
all values from their respective centroids. The expression d൫C୧, C୨൯ calculates the distance between two 

cluster centroids. Clustering algorithms with high inter-cluster and low intra-cluster distances have low 

DB index values. The algorithm with the lowest DB index is considered to be the best one:  

DB = 1݊maxஷ ቆ ߪ + ,ܥ݀൫ߪ ൯ቇܥ

ୀଵ  (10)

Similarly, the Dunn (D) index is used to find the density and separation of clusters. The D index, 

which is calculated using Equation (11), represents the ratio maximum intra-cluster distance d′(k) and 

minimum inter-cluster distance d(i, j): ܦ = minଵஸஸ ൝ minଵஸஸ,ஷ ൝ ݀(݅, ݆)maxଵஸஸ ݀′(݇)ൡൡ (11)

The silhouette coefficient is another metric used to compare the average distance among elements 

from the same cluster with the average distance among elements from other clusters. The measurement 

can be performed using Equation (12), which can be rewritten as Equation (13). Here, SC(n) is the 

silhouette coefficient, x(n) is the average distance measure within the same cluster, and y(n) is the 

lowest average distance measure of another cluster:  SC(݊) = (݊)ݕ − ,(݊)ݔmaxሼ(݊)ݔ ሽ (12)(݊)ݕ

SC(݊) = 	 ێێۏ
1ۍێێ − (݊)ݕ(݊)ݔ , ݂݅ (݊)ݔ < ,	0(݊)ݕ (݊)ݔ	݂݅ = (݊)ݔ(݊)ݕ(݊)ݕ − 1, ݂݅ (݊)ݔ > (݊)ݕ  (13)

The Jaccard (J) index is a commonly used evaluation metric for external evaluation that measures 

the similarity between two datasets X and Y. The J-index is calculated using Equation (14): J(ܺ, ܻ) = |ܺ ∩ ܻ||ܺ ∪ ܻ| = ܶܲܶܲ + ܲܨ + (14) ܰܨ

Similarly, the Fowlkes Mallow (FM) index measures the similarity between clustered and 

benchmarked results using Equation (15):  

FM = ඨ ܶܲܶܲ + ܲܨ × ܶܲܶܲ +  (15) ܰܨ

The Mutual Information measure is used to find the nonlinear similarity between different clusters 

using Equation (16), where A and B are different clusters, P(ܽ, ܾ) is the joint probability distribution, 

and ܲ(ܽ), ܲ(ܾ) is the marginal probability distribution of each cluster [95]: 
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I	(ܣ; (ܤ = ܲ(ܽ, ܾ) log  ܲ(ܽ, ܾ)ܲ(ܽ)ܲ(ܾ)൨∈∈  (16)

The additional performance evaluation criteria of FPM algorithms include recoverability (similar to 

recall in classification and clustering), spuriousness, redundancy, number of patterns, significance, and 

robustness [96]. “B” is the set of base items defined as ሼbଵ, bଶ, … , b୬ሽ and “F” is the set of found 

patterns as	ሼfଵ, fଶ, … , f୬ሽ. The recoverability metric is used to quantify the level at which the FPM 

algorithm can efficiently recover the base patterns. The F × B matrix is constructed first where each 
element in the matrix is represented as fb୧୨ at the ith row and jth column. Recoverability is computed 

using Equation (17): Recoverability (ܤ) = ∑ maxୀଵ…|ி| ݂ܾୀଵ…||∑ หܤหୀଵ…||  (17)

The spuriousness of a pattern determines the quality of a pattern by estimating the number of 

patterns that are not associated with ‘B’. Spuriousness can be measured using Equation (18):  

Spuriousness(ܨ) = ∑ ൬|ܨ| − maxୀଵ…|| ݂ܾ൰ୀଵ…|ி|∑ ||ୀଵ…|ிܨ|  (18)

Precision can be derived from spuriousness using Equation (19) as follows: Precision = 1 − (19) ݏݏ݁݊ݏݑ݅ݎݑݏ

The balance between spurious and useful patterns is measured by the significance metric. 

Significance, which is similar to the F-score in classification algorithms, is measured using  

Equation (20): Significance	(ܨ) = 2 × ݕݐ݈ܾ݅݅ܽݎ݁ݒ݁ܿ݁ݎ × ݕݐ݈ܾ݅݅ܽݎ݁ݒ݁ܿ݁ݎ݊݅ݏ݅ܿ݁ݎ + (20) ݊݅ݏ݅ܿ݁ݎ

Redundancy is measured using Equation (21) as follows: Redundancy	(ܨ) = ∑ ݂ × ݂ − ∑ ݂ × ݂ୀଵ…|ி|,ୀଵ…|ி| 2  (21)

In addition with computational and performance evaluation measures of data mining algorithms, 

bandwidth consumption and energy consumption are the two key metrics that should be considered in 

PSD-based data mining algorithms [97]. The bandwidth consumption from a single device to ‘m’ 

servers in a given time period is defined in Equation (22) as follows: Costௗ௧ = (ݏ݁ݐݕܾ)ܽݐ݈ܽ݀ܽݐݐ × ݉ (22)

The bandwidth gain (BandwidthGainୢ୲) after performing the cost analysis of PerDM algorithms in 

PSDs (ܲܽݏ݊ݎ݁ݐݐ. (ௗ௧ݐݏܥ  over cost of sending raw data (ܴܽݓ. (ௗ௧ݐݏܥ  can be computed using 

Equation (23):  BandwidthGainௗ௧ = .ݓܴܽ .ݏ݊ݎ݁ݐݐௗ௧ܲܽݐݏܥ ௗ௧ (23)ݐݏܥ
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The overall cost of energy consumption Costୣ୳can be computed using Equation (24), where energy 
consumption during sensing and/or data acquisition (ݐݏܥ௦௨ ), data processing (ݐݏܥ௨ ), and data 

transmission (ݐݏܥௗ௧௨) determine Costୣ୳:  ݐݏܥ௨ = ௦௨ݐݏܥ + ௨ݐݏܥ + ௗ௧௨ (24)ݐݏܥ

Energy gain (EnergyGain௨) is computed using Equation (25), which shows the percentage of 

energy that could be saved after PerDM in PSDs ܲܽݏ݊ݎ݁ݐݐ.  ௨ compared with energy usage inݐݏܥ

raw data transmission ܴܽݓ. to external data mining platforms:  EnergyGain௨	௨ݐݏܥ = .ݓܴܽ .ݏ݊ݎ݁ݐݐ௨ܲܽݐݏܥ ௨ (25)ݐݏܥ

4. Balancing Privacy, Personalization, and Security Using PerDM in PSDs 

Currently, privacy- and security-related concerns are arising because of the proliferation and 

openness of mobile devices in pervasive and ubiquitous environments. The need for personalized 

services is also increasing because of massive data deluge in big data environments. Therefore, a  

well-designed PSD-based data mining system can play a significant role in the provision of  

privacy-preserving secure personalized services. The importance of such a system increases when 

dealing with highly personal data such as activities, emotions, banking information, and patients’ 

physiological and genomic data sequences. 

The designers of data mining systems need to create a balance to effectively meet three objectives: 

(1) the system must be highly secured but not at the cost of privacy and personalization; (2) the system 

must preserve privacy without compromising security and personalization; and (3) the system must 

provide effectively personalized services without undermining security and privacy. However, 

practically, a trade-off always exists among the three objectives in meeting the user requirements and 

enhancing the utility of the system.  

A proper profiling of contextual information, preferences, and physiological and behavioral 

information at user premises can help to enhance privacy, security, and personalization. As the user is 

the core contributor and consumer of data in PEs, profile management at user premises will enhance 

his/her trust and privacy in the system. Some recent examples of user profiling in PSDs can be found 

in [92,98,99]. Data mining and machine learning techniques are good candidates for user profiling in 

ubiquitous and pervasive settings. For instance, personalized services for MCE presented in [92] are 

based on pattern mining, and the system presented in [100] provides personalization using decision 

tree. The proposed online multi-task learning algorithm in [101] deals with the problem of data 

sparseness in personalized activity recognition from a multi-person environment. Another recent 

application of frequent item-set mining for privacy-preserving and personalization is presented in [102]. 

Considering the success of PerDM in user-centric personalization in PSDs, we illustrate the process of 

user-centric personalization in external environments (Pervasive, Ubiquitous, or Big Data Ecosystem) 

in Figure 6 that uses PerDM in PSDs as a user profiling tool and in external environments as a 

personalization and recommendation engine. 
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Figure 6. PSDs based user-centric personalization process. 

The application of data mining and machine learning techniques is relatively new in PSD-based 

user-centric personalization. Some recent examples of personalized healthcare technologies can be 

found in activity recognition [103] and mobile-based systems [104]. However, to the best of our 

knowledge, no significant work that collectively covers the privacy, security, and personalization of 

big data streams in a ubiquitous environment has been conducted. Therefore, this research area should 

be explored. In conclusion, rapid development in PerDM algorithms and users’ adoption of  

fine-grained PSDs are key evidence to establish the hypothesis on personalizing big data ecosystems in 

a private, secure, and cost-effective way.  

User-Centric Personalization Evaluation Model 

According to a study [105], the overall effectiveness of user-centric personalization in PSDs is 

based on 10 constructs and. The connection between these constructs and the overall satisfaction and 

effectiveness is presented in Figure 7. 

1. User satisfaction: The overall effectiveness of PSD is based on the strong connection between 

user satisfaction and user intention for using PSD. Therefore, an effective personalization 

strategy can enhance user satisfaction.  

2. Perceived information load: The overwhelming amount of data causes information load in PSD, 

causing dissatisfaction and reluctance for PSD usage. Personalized services based on relevant 

information can reduce the information load and increase the overall usability of PSD.  

3. Perceived relevance and accuracy: Personalization based on user profiles and contextual 

information can help present relevant and accurate information. Therefore, relevance and 

accuracy are directly related to the overall effectiveness of the system.  

4. Perceived effort: The amount of effort required to use personalized contents is directly 

associated with user satisfaction because the effort labor required for exploring relevant results 

reduces the overall effectiveness of PSD.  

5. Perceived security and privacy: The availability of sensitive personal information, such as 

financial and health data, needs a highly secure and privacy-preserving system. Therefore, 

privacy and security affect user satisfaction.  
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6. Perceived user control: The sensitivity of personal data and the need for personalization are the 

key drivers that make users lose control over their personal information. Therefore, 

personalized systems that provide sufficient user control over personal information enhance 

overall user satisfaction. 

7. Perceived trust: Users produce and exchange different types of personal information. An 

effective mechanism for acquiring, processing, storing, and sharing of users’ personal 

information at the service provider’s end enhances users’ trust in personalized systems.  

8. Perceived goal fulfillment: Personalized systems are needed to fulfill user requirements for the 

functional and entertainment aspect. Goal fulfillment is directly linked to user satisfaction and 

intention for future use of personalized systems. 

9. Perceive device adaptability: Personalized systems should be adaptable to user preference in 

multi-PSD environments. User interaction from each device should provide same level of 

service. Therefore, device adaptability directly affects user satisfaction. 

10. Perceived overall effectiveness: The main construct of personalized systems is to measure the 

overall effectiveness for enhanced productivity, goal completion in a short time, and improved 

overall efficiency of users. Overall efficiency indicates the usability, personalization, and 

effectiveness of a system. 

Here, we close the discussion on privacy-preserving, secure, and user-centric personalization using 

PSDs. We will look into the application areas and open research issues in the succeeding section. 
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Figure 7. Evaluation model for PSDs based user-centric personalization [105]. 

5. Application Areas and Open Research Issues 

According to existing literature, the provision of computational resources in fine-grained PSDs has 

opened new research horizons. The emergence of new application models and application areas has 
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boosted relevant research. Therefore, PSDs are key enablers in some emerging research areas such as 

mobile commerce, humane activity recognition, mobile health, human–PSD interaction, physiological 

and behavioral monitoring and analysis, among others. The discussion on PerDM in PSDs is 

incomplete without highlighting some relevant application areas. A look into these application areas is 

presented in the following paragraphs.  

The provision of customer-centric experience in terms of trust and usability is the key focal points 

in mobile commerce (m-commerce) environments. Diversity in m-commerce environments from  

in-store purchases to mobile and online purchases has stimulated customer-centric recommendation. 

The successful exploitation of data mining algorithms in m-commerce environments has opened new 

research horizons for PSD-based m-commerce environments [92]. Moreover, context management, 

privacy, personalization, and adaptation techniques are useful in attaining better customer  

experience [59,80]. In the future, PSD-based data mining systems will enable customers to manage and 

mine their data in PEs for privacy preservation and security. Moreover, the need for privacy-preserved 

anonymized data sharing is arising after the major shift of the banking industry from branchless to 

mobile banking, in which mobile payments and mobile account management have become the norm 

rather than the exception. Therefore, the local knowledge patterns discovered in PSDs can meet the 

privacy, personalization, and security requirements. 

Humane Activity Recognition (HAR) from the recognition of simple ambulatory activities  

(e.g., walking, sitting, running, and sleeping) to complex activities (e.g., performing parallel or similar 

activities) is fueled by data mining techniques for sensory data sources [28,65,81,85]. Simple HAR 

systems are relatively easy to develop and deploy in PSDs, but the need for complex HAR systems still 

exists as an open research area. Moreover, the present HAR systems mostly perform periodic analysis 

or transmit data to remote DSPS for HAR. Therefore, future research should focus on real-time, online 

PSD-based HAR to reduce the need for external computational resources and scheduled HAR. 

Similarly, the scarcity of resources in PSDs limits classification-based HAR, thus creating research 

opportunities in two directions: (a) optimization of available classification algorithms and  

(b) exploitation of other data mining algorithms for activity recognition. For instance, existing 

algorithms should be optimized to meet the computational, energy, and bandwidth constraints. 

Clustering and FPM algorithms are also needed to be applied for feature diversity in HAR systems. 

Mobile health (mHealth) is an emerging research area that focuses on the provision of healthcare 

services in remote and/or underdeveloped areas around the globe [106]. Initially, mobile phones were 

key enablers in mHealth technologies, but after the wide acceptance of IoT-enabled infrastructures, all 

types of PSDs are gaining popularity. For example, modern PSDs can sense patients’ body temperature, 

heart rate, electrocardiogram, blood glucose level, and other physiological states [107,108]. The 

physiological data analysis techniques can help profile patients’ daily health conditions [73]. Moreover, 

PSDs can perform behavioral analysis and categorize stress level and cognitive load [74,78]. The 

availability of physiological and behavioral monitoring can help in the reduction of service provision 

burden on the care providers’ end and help in creating innovative patient-centric mHealth technologies. 

Human–PSD interaction is another interesting area for the application of PerDM techniques. The 

single-user multi-device phenomenon in the modern era emphasizes the need for unobtrusive 

interaction and attention-oriented usage of PSDs in PEs. Moreover, the availability of a single-active 

screen in PSDs highlights the issue of intelligent adaptive user interfaces. PerDM algorithms in PSDs 
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create a research opportunity to address these issues. For example, the analysis of application usage 

prediction can help develop personalized, interactive, and adaptive user interfaces [87].  

In summary, we perceive that PerDM in RCEs will be able to leverage smartphones and wearable 

devices into a new era of ubiquitous sensing and pervasive computing. Moreover, the adoption of 

devices will open new research avenues to provide private, secure, and personalized ubiquitous 

services to users.  

So far we discussed the design consideration, resource constraints, data mining schemes, and 

algorithms with evaluation criteria in relation to PerDM in RCEs using PSDs. In addition, we 

highlighted the issue of privacy, security, and personalization and discussed the role of PSDs based 

PerDM systems. Some application areas and future research opportunities were also discussed. In the 

following section, we conclude this study on the state of art of PerDM in RCEs.  

6. Conclusions 

The staggering growth in PSDs is a key enabler in PerDM in RCEs for personalization, privacy, and 

security at user premises. Moreover, the exploitation of data mining algorithms in PSDs enables the 

use of PEs for personal good. User-centric big data personalization is a concept with a wide range of 

application in health care, tourism, education, e-government, and smart cities, among others. It has 

immense potential in personalization for better patient, traveler, customer, student, and citizen 

experiences. For example, in case of personalized medicines, the idea of [109] is to provide the right 

treatment with the right dose and right drug at the right time. Therefore, the success of personalized 

medicine depends on the accurate diagnostics for targeted therapies.  

PerDM in RCEs has a great potential to leverage these opportunities by monitoring user 

physiologies and diagnosing irregularities in patients’ daily life data. The fusion of personal data in 

PSD-based systems with big health data creates an opportunity for patient-centric big data personalization. 

To the best of our knowledge, no practical user-centric PSD-based big data personalization system has 

yet been created. Therefore, we establish the hypothesis that the provision of personal data mining 

services in PEs can lead to highly secure, privacy-preserving personalized big data systems. 

The vision can be met by enhancing the processing abilities of the current PerDM systems by 

focusing on execution models and data mining algorithms. The execution model can be optimized for 

cost and computation reduction by enabling maximum data processing inside PSDs and extending it to 

cloud-enabled data mining systems. Similarly, data mining algorithms should be designed to be 

scalable from small-scale, lightweight computations inside PSDs to compute-intensive tasks in cloud 

environments. Another important aspect is the enablement of privacy-preserving and personalized data 

processing in integrated processing modes to fully leverage heterogeneous computing devices uniformly.  
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