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Abstract: This paper proposes a scheme for indoor positioning by fusing floor map, WiFi 

and smartphone sensor data to provide meter-level positioning without additional infrastructure. 

A topology-constrained K nearest neighbor (KNN) algorithm based on a floor map layout 

provides the coordinates required to integrate WiFi data with pseudo-odometry (P-O) 

measurements simulated using a pedestrian dead reckoning (PDR) approach. One method of 

further improving the positioning accuracy is to use a more effective multi-threshold step 

detection algorithm, as proposed by the authors. The “go and back” phenomenon caused by 

incorrect matching of the reference points (RPs) of a WiFi algorithm is eliminated using  

an adaptive fading-factor-based extended Kalman filter (EKF), taking WiFi positioning 

coordinates, P-O measurements and fused heading angles as observations. The “cross-wall” 

problem is solved based on the development of a floor-map-aided particle filter algorithm 

by weighting the particles, thereby also eliminating the gross-error effects originating from 

WiFi or P-O measurements. The performance observed in a field experiment performed on 

the fourth floor of the School of Environmental Science and Spatial Informatics (SESSI) 

building on the China University of Mining and Technology (CUMT) campus confirms that 

the proposed scheme can reliably achieve meter-level positioning. 
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1. Introduction 

Indoor navigation has become an essential technique that can be applied in a number of settings, such 

as in a supermarket as a shopping guide, for a fire emergency service for navigation, or for a hospital 

patient for tracking. However, some techniques that have been successfully used that are similar to the 

Global Navigation Satellite System (GNSS) [1–3] are not suitable for indoor navigation. Real-time 

indoor positioning using existing techniques remains a challenge, and this is a bottleneck in the 

development of indoor location-based services (LBSs) [4]. 

The solution for indoor positioning is increasingly regarded as being based on the integration of 

multiple technologies, e.g., WiFi, ZigBee, inertial navigation systems (INSs), and laser scanning systems 

(LSSs). Each has its shortcomings, but an integrated system can combine the advantages of several of 

these technologies. Pahlavan and Li reviewed the technical aspects of the existing technologies for wireless 

indoor location systems [5]. There are two main hardware layouts that can be used in an indoor situation: 

(1) a sensor network, such as a WiFi or ZigBee system [6–8]; and (2) self-contained sensors, such as 

gyroscopes, accelerometers or magnetometers [9–12]. However, the stringent demands of reliable and 

continuous navigation in indoor environments are unlikely to be achievable using a single type of layout, 

and developing a hybrid scheme for reliable and continuous positioning is therefore a core prerequisite 

for real-time indoor navigation [13–15]. 

It is well recognized that trilateration and fingerprint matching are two basic WiFi-based approaches 

to locating an object in an indoor environment. In the first method, the user coordinates are calculated 

based on the distances between access points (APs) and the user. However, the distance measured based 

on the WiFi signal path loss model is so unstable that it is impossible to use such measurements in a 

practical indoor navigation system. Fingerprint matching is a more practical approach for use in a 

market-orientated indoor navigation system, and this technique has been widely researched, especially 

with the rapid market penetration of the modern smartphone. APs in supermarkets, schools, hospitals, 

and other infrastructures are also freely available for fingerprint database establishment. Artificial 

intelligence (AI) methods, e.g., decision trees and neural networks, constitute a new possible approach 

to determining a user’s location [16]. Nevertheless, some inevitable shortcomings exist, e.g., tedious 

fingerprint database updates and the need to alleviate the “go and back” phenomenon by integrating 

other techniques [5,16,17]. In addition, the cost of continuously using the WiFi radio on a mobile device 

can be prohibitive. Nonetheless, such methods are the focus of significant research efforts [12]. 

Pedestrian dead reckoning (PDR) algorithms, based on accelerometer, gyroscope and magnetometer 

measurements, can be used as a complementary method of developing an indoor navigation system. The 

basic PDR procedure involves step detection, step length estimation and heading determination [4,17]. In 

practice, acceleration measurements are an ideal choice for step detection, considering the periodicity of 

a pedestrian’s walking pattern, and there are three types of step detection algorithms: peak detection, 

flat-zone detection and zero-crossing detection. The deficiencies of the peak and zero-crossing detection 

algorithms create the potential for missing detection or over-detection if the thresholds are not 

appropriately set, and over-detection may also occur in the case of the flat-zone detection algorithm 

because the flat-zone test statistic varies with different walking patterns [18]. Considerable research has 

been conducted in an attempt to improve the accuracy of step length estimation, and the techniques that 

have been developed for this purpose can be summarized as constant/quasi-constant models, linear 
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models, nonlinear models, and AI models [19]. A look-up table conveniently stores a few levels of step 

length for a given pedestrian based on his/her locomotion mode and the time duration of every step [20]. 

The linear relationship between step length and step frequency can be used to estimate step length. 

Kourogi and Kurata utilized the correlation between vertical acceleration and walking velocity to 

compute the walking speed and then estimated the step length by multiplying the walking speed by the 

time of the unit cycle of locomotion [17]. Cho presented a neural network for step length estimation that 

is unaffected by accelerometer bias and the acceleration of gravity [21]. A gyroscope and a 

magnetometer are two types of heading sensors that are typically used when the PDR algorithm is 

applied [22]. Klingbeil and Xiao proposed the concept of correcting the magnetic azimuth using gyro 

data collected over a short time, thereby allowing the heading angles to be estimated by combining 

gyroscope and magnetometer measurements [22,23]. A biaxial magnetic compass may be used to 

calculate the azimuth after compensating for the inclination of the compass using a shoe-mounted 

accelerometer [21]. The use of an INS/EKF framework to reduce heading drift has been demonstrated [11]. 

A detector has been proposed that can perform magnetic field measurements, which can be used for 

heading estimation with adequate accuracy. This detector utilizes different magnetic field test parameters 

that can be analyzed to produce good magnetic field measurements [24]. One factor that limits the use 

of PDR alone for indoor navigation is its susceptibility to cumulative errors over time. To improve the 

reliability and accuracy of a PDR navigation system, the gross error caused by the sensor’s raw 

observations must also be avoided. To this end, an electromyography (EMG) method was presented and 

compared with a traditional method based on accelerometers in several field tests, and the results 

demonstrated that the EMG-based method was effective and that its performance in combination with a 

PDR algorithm can be comparable to that of accelerometer-based methods [24,25]. 

To overcome these constraints, a floor map can be used to further calibrate the bias and correct for 

unreasonable positioning results. For example, combining gyroscope measurements with the use of a 

floor map allows the orientation to be corrected using only map aids [26,27], and large heading errors 

are eliminated via the long-range geometrical constraints exploited by particle filters (PFs) [28]. 

Extending these techniques to multiple floors and stairways could also be made possible by significantly 

adapting their constraints to suit pedestrians [29,30]. Unfortunately, the large number of particles makes 

it unrealistic to operate such algorithms in a real-time manner. However, the integration of several 

techniques can dramatically reduce the number of particles required in a PF model. 

To summarize, the methodologies of the whole article is concluded below: 

(1) Theoretical analysis. A series of basic researches have been analyzed. As mentioned in the 

introduction, the signal-based network such as Fingerprint System, and INSs should be two 

fundamental techniques in indoor localization. However, the stringent demands of reliable and 

continuous navigation in indoor environments are unlikely to be achievable using a single type 

of layout, and developing a hybrid scheme for reliable and continuous positioning is therefore a 

core prerequisite for real-time indoor navigation. The aim is to overcome the drawbacks of 

conventional architectures at theoretical level to make it possible to improve the performance of 

an integrated WiFi/pseudo-odometry system. 

(2) Integration Methodology Development. In the past, extended or unscented Kalman filter (EKF, 

UKF) and Particle Filter (PF) have mainly been used in data processing. However, in various 



Sensors 2015, 15 7099 

 

 

cases as indicated in the introduction section, the situation is a little different. For instance, the 

noise dealt with by Kalman filter is assumed to be white noise, and PF algorithm requires a large 

amount of calculation. To overcome these constraints, a floor map can be used to further calibrate 

the bias and correct for unreasonable positioning results. 

(3) Physical System Implementation and Tests. The specific course is shown in Figure 1 below: 

 

Figure 1. The general flow-chart.  

In this paper, a scheme for indoor positioning by fusing floor map, WiFi and smartphone sensor data 

to obtain a real-time hybrid indoor navigation result is presented. Compared with the existing 

technology, Topology-Constrained KNN Positioning method introduced the floor map as a constraint, 

which could improve the accuracy and operational speed of the WiFi result. Besides, this method fits 

linear zones much better, such as corridors and narrow roads, which would be hard for GPS to fit, and 

the most useful places for WiFi localization technology. On the other hand, the multi-threshold PDR 

algorithm, presented in this paper, could clearly detect most steps accurately in the experiment. In addition, 

pseudo-odometry (P-O) is presented in this paper as a new exclusive term which means that by simulating 

the odometer, the step lengths are transformed to the time-domain (TD). The remainder of the paper is 

organized as follows: In Section 2, a topology-constrained KNN positioning algorithm is proposed, and 

Section 3 proposes a pseudo-odometry measurement simulation procedure based on a multi-threshold PDR 

algorithm. Subsequently, a WIFI/P-O integration scheme based on a fading-factor-based EKF is 

demonstrated in Section 4. Thereafter, Section 5 presents a scheme for floor-map-aided integration based 

on a PF, which is the core of the hybrid integration scheme. Finally, two experiments are analyzed in 

Section 6, and Section 7 concludes the paper. 

2. Topology-Constrained KNN Positioning Algorithm 

First, as the infrastructure of our indoor positioning approach, the signal fingerprint method, which is 

based on a WiFi technique, includes offline fingerprint database creation and online location matching. 
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An area of interest is divided into regular lattices during offline database creation, and the corners of the 

lattice are used as the training samples for the reference points (RPs). The fingerprint database is also 

created by collecting the received signal strength indicator (RSSI) measurements of the available access 

Points (APs) and the corresponding coordinate values (ܺோ, ோܻ) of the corners.  

2.1. Topology-Constrained Fingerprint Database Creation 

To improve the positioning accuracy, the geometric layout of an indoor floor map is modeled using 

a fingerprint database to a certain extent. For this task, the algorithm first segments the indoor floor map 

into sub-regions based on the specific building layout, and RP lattices of various shapes are clustered. 

Then, a topology-constrained fingerprint database is created by recording both the RSSI measurements 

and the geometric characteristics of the RPs. To be specific, the RSSI matrix iRP  of the ݅௧ RP is given by 

ܴ ܲ = ێێێۏ
ଵܣ൫ܲۍ ଵܱห(ߠ|ܥூ)൯ ܲ൫ܣଶ ଵܱห(ߠ|ܥூ)൯ܲ൫ܣଵܱଶห(ߠ|ܥூ)൯ ܲ൫ܣଶܱଶห(ߠ|ܥூ)൯ ⋯⋯ ܲ൫ܣ ଵܱห(ߠ|ܥூ)൯ܲ൫ܣܱଶห(ߠ|ܥூ)൯⋮ 									 ⋮ ⋱ ⋮ܲ൫ܣଵ ௩ܱห(ߠ|ܥூ)൯ ܲ൫ܣଶ ௩ܱห(ߠ|ܥூ)൯ ⋯ ܲ൫ܣ ௩ܱห(ߠ|ܥூ)൯ۑۑۑے

ې
 (1)

where ܣ  is the ݇௧  AP available in the sub-region. ߠ = ,ݐܲ) ܵܩ ܵ)  denotes the coordinate and the 

topology relationship, namely, ܲݐ  and ܵܩ ܵ  represent the coordinate of the RP and the topology 

relationship, referred to as the Geometric Strength of the Sporadic Signal (GSSS), between the RP and 

the other adjacent RPs, respectively. CI is the ith (ܫ = 1,2,⋯ܰ) cluster, where N is the total number of 

clusters. ௩ܱ denotes the ݒ௧ RSSI measurement with respect to sub-region ܥூ. 
2.2. Topology-Constrained KNN Positioning Algorithm 

It has been experimentally proven that the parameter K is not directly related to the positioning 

accuracy for the classical KNN fingerprint-database-based algorithm [31], and further research 

demonstrated that using a K parameter that has been corrected based on the indoor layout can improve 

the positioning accuracy [4]. In this paper, considering the RP topology in eight directions, a modified 

KNN algorithm, which chooses the value of K adaptively, is presented and implemented in a real-time 

indoor navigation system.  

The GSSS indicator of the ݅௧ reference point ( ܴ ܲ ), which is denoted by ܵܩ ܵ| ܱ  
( ܱ = ሼ݊ݏா, ,ாே݊ݏ ,ே݊ݏ ,ேௐ݊ݏ ,ௐ݊ݏ ,ௐௌ݊ݏ ,ௌ݊ݏ  ௌாሽ), is used to describe the topology structure. First, a݊ݏ

given element of ܱ  should be set to null if no adjacent RP exists in the corresponding direction. 

Subsequently, ܵܩ ܵ is determined by summing the numbers of available RPs in all eight directions. For 

instance, ܴ ଵܲ, as marked in Figure 2, is adjacent to three RPs, and therefore, the corresponding GSSS 

value is 3; and those of ܴ ଶܲ,	ܴ ଷܲ and ܴ ସܲ are 5, 8 and 2, respectively. 
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Figure 2. The equally spaced lattices for the Geometric Strength of the Sporadic Signal (GSSS). 

To further illustrate the modified KNN algorithm, suppose that MT1 in Figure 3a is a user coordinate, 

which must be estimated based on the surrounding RPs,	ܴ ܲ	(݅ = 5,⋯ ,8). Triangles RP5-RP7-RP8 and 

RP6-RP7-RP8 consist of RPs that can be simultaneously used to describe corresponding RP topologies. 

In this case, the K value of the KNN algorithm for the user MT1 is set to 3, and the estimated user 

coordinate is calculated as follows: 

۔ۖۖەۖۖ
ெ்ܺۓ = ∑ ൬ݎ × ቀܺோೕቚܥூቁ൰ୀଵ ∑ ୀଵݎ

ெ்ܻ = ∑ ൬ݎ × ቀ ோܻೕቚܥூቁ൰ୀଵ ∑ ୀଵݎ
 (2)

where (ܺெ், ெ்ܻ) denotes the estimated user coordinate and ቀܺோೕ, ோܻೕቁ is the ݆௧ RP coordinate of the 

K RPs. ݎ is the correlation coefficient between the RSSI matrix of the ݆௧ RP in the fingerprint database 

and the user’s RSSI matrix measured in real time. In addition, K may also be set to 4 if the distance 

between MT1 and the center of the square is less than a given threshold. In the scenario depicted in 

Figure 3b, RP10 and RP11 are used to describe the topology, and the position of MT2 is calculated using 

the modified KNN algorithm with K = 2. 

 

Figure 3. Optimal RP selection: (a) Optimal Triangle Selection; (b) Optimal Line Selection. 
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For a given RP, the GSSS value varies from 1 to 8 in differently shaped lattices. Considering the 

calculation load, K should be set to 2 when GSS ≤ 2 but to 3 or 4 when GSS > 2. Overall, the procedure 

for indoor positioning using the modified KNN algorithm is summarized in Figure 3. Of the elements 

illustrated in this chart, the offline topology-constrained fingerprint database should be regarded as the 

highest priority. During online location determination, the user is required to record the RSSI 

measurement, which is used to determine the corresponding sub-region. Thereafter, the topology 

calculation is performed using the method described above. The K value and the corresponding RPs are also 

essential for the topology-constrained KNN algorithm to be able to produce the desired positioning results. 

The flow chart of the topology-constrained KNN positioning algorithm is summarized in Figure 4. 

The offline topology-constrained fingerprint database is created and includes RSSI data and the 

corresponding coordinates, topology information for each RP and pre-set sub-region information 

depending on the floor map layout. In the online coordinate calculation phase, user-recorded RSSI 

measurements are first used to match the corresponding sub-region and determine the nearest RP. 

Thereafter, GSSS and K are calculated with respect to a specific RP. The RPs are eventually determined 

and used as input to the KNN algorithm to calculate the user positions. 
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Figure 4. Topology-constrained K nearest neighbor (KNN) positioning algorithm. 

3. Simulation of P-O Measurements 

Despite the importance of WiFi data, there is a second indispensible input to this method, namely, 

inertial data (from inertial sensors), which will be introduced below in detail. It is widely known that 

pedestrian dead reckoning (PDR) algorithms, which are based on the number of footsteps and the step 

length, have recently begun to be implemented more widely. Moreover, a heading should be obtained as 

a value in the 2D plane and should be estimated based on measurements collected by a gyro and 

magnetometer, whereas the floor level can be detected in advance through barometer measurements. 

Sections 3.1 and 3.2 illustrate a new multi-threshold step detection algorithm and a hybrid heading 

estimation algorithm. Section 3.3 presents the flow chart of the P-O measurement simulation. 
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3.1. Multi-Threshold Step Detection 

The maximum time duration of a step and the minimum and maximum changes in the acceleration 

magnitude during one step are frequently used as parameters in techniques for avoiding faulty step 

detection. The dynamic time warping (DTW) algorithm provides further improvement in step detection 

accuracy [32]. In this paper, a multi-threshold algorithm is proposed to detect steps based on raw 

acceleration measurements. The amplitude a of the extremum of an acceleration signal can be used to 

determine the stance or walking status of an individual. The step detection is terminated if the individual 

is stationary, and otherwise, a set of parameters of the multi-threshold algorithm is used for step 
detection. If ܰ݉ݑ  and ܰ݉ݑ௩௬  denoted the numbers of detected peaks and valleys, then a  

multi-threshold algorithm for peak detection can be described as follows: 
If only one peak is detected, i.e., ܰ݉ݑ − ܰ݉ݑ௩௬ = 1, 

݁ݐܵ = ൞1, ௧ೡ∆ߜ = 12 ,௧∆ߜ ܽ ≥ ݐ∆＆ߜ ≥ ௩ݐ∆＆௧∆ߜ ≥ ,௧ೡ0∆ߜ ௧ೡ∆ߜ = 12 ,௧∆ߜ ܽ < ߜ ቛ∆ݐ < ௩ݐ∆௧ቛ∆ߜ < ௧ೡ∆ߜ  (3)

If two consecutive peaks are detected, i.e., ܰ݉ݑ − ܰ݉ݑ௩௬ = 2, then the true peak can be detected  

as follows: 

݁ݐܵ = ൞1, ௧ೡ∆ߜ = 12 ,௧∆ߜ ܽ ≥ ݐ∆＆ߜ ≥ ௩ݐ∆＆௧∆ߜ ≥ ௧ೡ＆∆ܽ∆ߜ ≥ 00, ௧ೡ∆ߜ = 12 ,௧∆ߜ ܽ < ߜ ቛ∆ݐ < ௩ݐ∆௧ቛ∆ߜ < ௧ೡฮ∆ܽ∆ߜ < 0  (4)

where ܽ  is the extremum of the peaks in the acceleration signal. ∆ܽ  is the difference between the 

consecutive peak values. ∆ݐ  is the time difference between the consecutive peaks. ∆ݐ௩  is the time 
difference between a consecutive peak and valley. ߜ,  ௧ೡare the threshold values for peak∆ߜ ௧ and∆ߜ

detection, which are determined empirically. For example, ߜ∆௧ is set to 0.2 s as an empirical value. If 

pStep  is equal to 1, then a true peak is detected; otherwise, it is a false peak. as Figure 5a. 

The parameters ൫ܽ௩, ∆ܽ௩, ,௩ݐ∆  ௩൯  can also be used to construct a multi-threshold algorithm forݐ∆

valley detection. If ܰ݉ݑ − ܰ݉ݑ௩௬= 0, 

ݕ݈݈݁ܽݒ = ൞1, ௧ೡ∆ߜ = 12 ,௧ೡ∆ߜ ܽ௩ ≥ ௩ݐ∆＆ೡߜ ≥ ௩ݐ∆＆௧ೡ∆ߜ ≥ ,௧ೡ0∆ߜ ௩ߜ = 12 ,௧ೡ∆ߜ ܽ௩ < ௩ݐ∆ೡฮߜ < ௩ݐ∆௧ೡฮ∆ߜ < ௧ೡ∆ߜ  (5)

Similar to the case of peak detection, if two consecutive valleys are detected, i.e., ܰ݉ݑ௩௬ − ܰ݉ݑ = 1, 

then the true valley can be detected as follows: 

ݕ݈݈݁ܽݒ = ൞1, ௧ೡ∆ߜ = 12 ,௧ೡ∆ߜ ܽ௩ ≥ ௩ݐ∆＆ೡߜ ≥ ௩ݐ∆＆௧ೡ∆ߜ ≥ ௧ೡ＆∆ܽ௩∆ߜ ≥ 00, ௧ೡ∆ߜ = 12 ,௧ೡ∆ߜ ܽ௩ < ௩ݐ∆ೡฮߜ < ௩ݐ∆௧ೡฮ∆ߜ < ௧ೡ‖∆ܽ௩∆ߜ < 0  (6)

where ܽ௩ is the amplitude of the valley extremum. ∆ܽ௩ is the difference between the two consecutive ܽ௩ 
values. ∆ݐ௩  is the time difference between the consecutive valleys. ∆ݐ௩  is the time difference  
between a consecutive valley and peak. ߜೡ,  ௧ೡ are the thresholds for valley detection, where∆ߜ ௧ೡ and∆ߜ
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หߜೡห = ቚߜቚ and ߜ∆௧ೡ =  ௧. If valley is equal to 1, then a true valley is detected; otherwise, it is a false∆ߜ

valley, as Figure 5b. 

With the method we display above, we can find out the result of step detection as Figure 6. 

 

Figure 5. Faulty step detection induced by a pseudo-peak and a pseudo-valley: (a) Pseudo-peak 

and pseudo-valley detection; (b) Pseudo-step detection.  
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Figure 6. Step detection using raw acceleration data.  

Step length estimation is an important factor that affects the positioning accuracy and can be 

performed in combination with a step detection procedure. The step length is related to the acceleration 

and is typically given by ܮ = ܭ × ඥܽܿܿ௫ − ܽܿܿర  (7)

where ܮ is the length of the ݇௧ step. ܽܿܿ௫ and ܽܿܿ are the minimum and maximum amplitudes, 

respectively, of the acceleration. The value of the coefficient K depends on the individual and can  

be calibrated. 

3.2. Hybrid Heading Estimation 

Heading determination is a significant component of PDR-based positioning. The heading angle ψ is 

defined as the angle of rotation about the z axis with respect to the horizon/ground, which can be 

estimated using a gyroscope integrated with a magnetometer. The improved heading estimation  

algorithm presented by Wonho Kang is applied here [33]. The fused heading angle is calculated  

as follows: 

۔ۖەۖ
ߠۓ = ିଵߠߙ + ,ߠߚ + ,,ߠߛ ,∆ߠ ≤ ,ߠ ,∆ߠ ≤ ߠߠ = ,ߠߚ + ,,ߠߛ ,∆ߠ ≤ ,ߠ ,∆ߠ > ߠߠ = ,∆ߠ																																				,ିଵߠߙ > ,ߠ ,∆ߠ ≤ ߠߠ = ିଵߠߙ + ,∆ߠ																					,,ߠߛ > ,ߠ ,∆ߠ >  ߠ

,∆ߠ			 = หߠ, − ,,หߠ ,∆ߠ = หߠ, −  ,ିଵหߠ
(8)

where m and n denote the magnetometer and the gyroscope. α, β and γ are the weights of the current 
measurements from the gyroscope and the magnetometer. ߠ,  and ߠ,  denote the measurements 

acquired by the gyroscope and the magnetometer, respectively, for the ݇௧  step. ߠ  is the standard 

100 200 300 400 500 600 700 800

-4

-3

-2

-1

0

1

2

3

4

5

Acceleration Measurement

A
cc

el
er

at
io

n 
A

m
pl

itu
de

 V
al

ue

 

 

peak detection
valley detection
raw acceleration



Sensors 2015, 15 7106 

 

 

deviation of the magnetometer, and ߠ is the correlation between the magnetometer and the gyroscope. ߠ∆, is the difference between ߠ, and ߠ,. ߠ∆, is the difference in the magnetometer reading between 

two consecutive steps k and k−1. 

Figure 7 shows the fusion results of a test in which a person walked forward five steps with a 

smartphone held firmly on his hand, stopped for a brief period, and eventually turned around and 

returned on the same path. The results reveal that the pseudo-heading measurements recorded by the 

magnetometer before and after the turn are considerably smoothed by the proposed algorithm. 

 

Figure 7. A test of heading fusion.  

3.3. P-O Measurement Simulation 

Pseudo-odometry (P-O) is introduced to determine how far a mobile user terminal departs from a 

designated starting point, which can yield a relative distance measurement for indoor positioning. P-O 

measurements can be easily simulated by sampling the PDR distance in accordance with the rate of RSSI 

measurements, which are considered to be collected once every 2 s in this paper. Figure 8 presents a 

flowchart that summarizes the procedure for P-O measurement simulation. 
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Figure 8. Flow chart of P-O measurement simulation. 
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4. WiFi/P-O Integration Based on a Fading-Factor-Based EKF 

Despite the beneficial features of the approaches described above, the absolute coordinates  

obtained using the WiFi algorithm may exhibit a “go and back” phenomenon, which is tedious for user 

applications. P-O measurements can yield a relatively fluid user trajectory but suffer from accumulated 

positioning errors. A reliable integration algorithm must be adopted to alleviate the disadvantages of 

both the WiFi and P-O algorithms. A fading-factor-based EKF can accommodate the significant 

differences between the WiFi and P-O approaches and appropriately balance their weights; such an 

approach is proven to be effective in this paper. 

4.1. Dynamic Equation 

The system state is estimated using recursive EKF equations, and the state equation is [34] X(݇ + 1) = ൫ܺ(݇)൯ܨ + Γܹ(݇) (8)

Its discretization is X(݇ + 1) = ߶(݇)ܺ(݇) + Γ(݇)ܹ(݇) (9)

where  

߶(݇) = 1 00 1 ݐ 00 0ݐ 00 0 1 00 1 (10)

Γ = ێێۏ
ଶ2ݐۍ 0 ݐ 00 ଶ2ݐ 0 ۑۑےݐ

௧ې
 (11)

X(݇) = ሾܰ(݇) (݇)ܧ (݇)ݒ (݇)ሿݒ ; ܰ(݇)  and ܧ(݇)  are the position states in the northern 

direction and the eastern direction, respectively, at time k; ݒ(݇)and ݒ(݇) are the velocity states in the 
eastern and northern directions, respectively, at time k; and ܹ(݇) is the system noise at time k. ܨ൫ܺ(݇)൯ 
and Γ are the system transition functions. ߶(݇) and Γ(݇) are the discretizations of ܨ൫ܺ(݇)൯ and Γ, 

respectively. t is the time interval. 

4.2. Observation Equation 

The observation equation for the integrated positioning based on WiFi, pseudo-odometry and 

magnetometer measurements can be written as follows: Z(݇) = ℎ൫ܺ(݇)൯ + ܸ (12)

Its discretization can be written as Z(݇ + 1) = (݇)ܺ(݇)ܪ + ܸ (13)

where Z(݇) = ሾܰ௪ ௪ܧ ݏ ݏ ℎ݁ܽ݀݅݊݃ሿ ; ܰ௪  and ܧ௪  are the position information 

obtained via WiFi in the northern and eastern directions, respectively; and ݏ  and ݏ  are the P-O 

increments of two consecutive samples in the eastern and northern directions, respectively; ℎ݁ܽ݀݅݊݃ are 
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the heading angle. ℎ൫ܺ(݇)൯ is the kth recursive filter observation function, and V is the measurement 

noise vector. 

4.3. Fading-Factor-Based EKF 

The estimates of the state vector from the extended Kalman filter can be obtained by performing a 

time update and a measurement update at a given instant of time: ܺ = ܺ,ିଵ + ܩ ቀܼ − ℎ൫ܺ(݇)൯ቁ (14)ܩ = ܲ,ିଵܪ் ൫ܪ ܲ,ିଵܪ் + ܸܴ ்ܸ ൯ିଵ (15)ܺ,ିଵ = Φ,ିଵ ܺିଵ (16)

ܲ,ିଵ = Φ ܲିଵΦ் + ܳ (17)

ܲ = ܫ) − (ܪܩ ܲ,ିଵ (18)

where ܩ  is the gain matrix of the extended Kalman filter at time k, ܪ  is the kth recursive filter 

observation matrix, ܲ is the covariance matrix of the state vector at time k, ܴ is the covariance matrix 

of the measurement noise vector at time k, ܳ is the covariance matrix of the system noise at time k, and 

the subscript k, k−1 represents the state or covariance estimate from time k−1 to time k.  

Through these five equations above, the ܺ  and ܲ , which represents the status variable and 

covariance of the equations, respectively, could keep innovating as time goes by. Eventually, we could 

come to accurate coordination and velocity to a certain extent. However, as time advances, the old data 

lose their value generally through the improvement of accuracy. Therefore, a fading factor is required to 

define the weight among the observed value. 

To balance the dynamic equation and the observation equation, a fading-factor-based EKF is  

used to overcome the deficiencies of the classic EKF to obtain more reliable navigation results [35]. 

Furthermore, the fading factor should be a self-adapting number to allow each variable condition to be 

managed accurately. The algorithm is written below: ߣ = ݔܽ݉ ൜1, 1݊ )ݎݐ ܰܯି ଵ)ൠ (19)ܯ = ݇)ܪ + 1)߶,ିଵ ܺିଵ ߶,ିଵ் ݇)ܪ + 1)் (20)

ܰ =  തܸ − ݇)ܪ + 1) ܹ ݇)ܪ + 1)் − ܴ (21)

where ߣ represents the optimal solution for this formula, namely, the fading factor. ∑ തܸ represents the 

variance of the predicted residuals. ∑ ܺିଵ is the variance of the optimal solution, and R denotes the 

measurement noise matrix. The modified covariance matrix modified is updated as follows:  ቊ ܲ,ିଵ = Φߣ ܲିଵΦ் + ܳ |ܵௐூிூ − ܵோ| < ܲ,ିଵܵߜ = Φ ܲିଵΦ் + ܳ |ܵௐூிூ − ܵோ| > (22) ܵߜ

where ܲ is the covariance matrix of the state vector at time k and ܳ is the covariance matrix of the 

system noise at time k. ܵௐூிூ and ܵோ are the increments of the WiFi and PDR coordinates, respectively. ܵߜ  is a threshold that is used to define whether the WiFi coordinate has “go and back”, and if 
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|ܵௐூிூ − ܵோ| <  then the WiFi coordinate will be considered to be reliable and will be input into ,ܵߜ

the fading-factor-based EKF, where ߣ is given by Formula (20). 

4.4. WiFi/P-O Integration Based on the Fading-Factor-based EKF 

The flow chart for WiFi/P-O integration based on the fading-factor-based EKF is summarized in 

Figure 9. The topology-constrained WiFi positioning results and the P-O measurement increments are 

used to determine the fading factor, and the heading angle obtained by fusing the gyroscope and 

magnetometer measurements is simultaneously input into the observation equation. Then, the final 

positioning result is obtained using the fading-factor-based EKF model. 

 

Figure 9. WiFi/P-O integration using the fading-factor-based extended Kalman filter (EKF).  

The variation in the fading factor variation with respect to time in an experiment that is described in 

Section 6 is shown in Figure 10a, and the corresponding variation in the threshold δS is depicted in 

Figure 10b. The variation in the prediction weight of the position vector is shown in Figure 10c. It is 

illustrated in Figure 10 that the fading factor ultimately converges, and an initial sharp growth of the 

fading factor from 1 to a peak value of greater than 2.5 is caused by large errors in the WiFi positioning 

coordinates. Thereafter, it continues to decrease down to a value of approximately 1. Compensation for the 

dramatic changes in δS  is provided by the weight value, which is adaptively adjusted through  

Equation (23). The value of 3 m selected for δS in this paper can eliminate almost all the gross error in 

the WiFi or P-O measurements. 
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Figure 10. Cont. 
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(b) 

 
(c) 

Figure 10. Performance of the fading-factor-based EKF: (a) The variation in the fading 

factor; (b) The variation in δS; (c) The variation in the prediction weight value. 

5. Floor-Map-Aided Integration Based on a PF 

Because the error may not be Gaussian in many situations, particle filters have recently seen 

widespread use in indoor positioning. However, such an approach typically requires nearly hundreds of 

times the number of calculations required by other filters because of the difficulty of the particle 

selection. Particle filters cannot be applied for real-time or near-real-time operation using a smartphone 

or other miniaturized devices. In this paper, a floor map is used to alleviate the computational load by 

constraining the particle numbers and providing more reliable location data. 

5.1. Particle Filter 

The posterior probability density Function (PDF) of a state ݔ(݇) given an observation ܼ(݇) can be 

approximately written as follows, according to Branko (2004) [36]: 

p൫ݔ(݇)หܼ(݇)൯ ≈ݓ(݇)ߜ ቀݔ(݇) − (݇)ቁேݔ
ୀଵ  (23)

where p(∙)and δ(∙) represent the posterior probability and the Dirac function, respectively. N is the total 

particle number corresponding to a specific filter step k. ݔ(݇) is the ݅௧ particle of state	ݔ(݇), and ݓ(݇) 
is the corresponding weight value. The sum of the N weights, ∑ (݇)ேୀଵݓ , is equal to 1.  

A particle filter has the merit of being applicable to a non-linear and non-Gaussian noise model. 

Multiple particle filters are available with varying performance; the classic auxiliary sampling 
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importance resampling (ASIR) algorithm is used in this paper. This filter comprises the following six 

steps [37]: 

(1) Initialization: The particle filter begins by generating N particles(x(0), i = 1⋯N) based on the 
initial PDF	p൫(0)ݔ൯. 

(2) Prediction: a new x(݇ + 1) is obtained from the transition PDF p ቀݔ(݇ + 1)ቚݔ(݇)ቁ. 

(3) Importance Sampling: For any particle ݔ(݇ + 1) , the weight is ݓ(݇ + 1) = ቀݖ(݇ + 1)ቚݔ(݇ + 1)ቁ which actually defined by the distance between its prediction position 

and observed value. 

(4) Normalization: The weight values of the ݇௧ steps are normalized as follows: ݓ = ௪ೖ∑ ௪ೖಿసభ , to 

set the weight to a normative standard, which could be useful for the resampling and updating. 

(5) Resampling and Particle Updating: The normalized weights are used to resample the  

particles. Particles with high weights are duplicated, and particles with low weights are deleted. ∑ ାଵݓ ≥ ୀଵݑ , where u represents a random number between 0 and 1 and n represents the 

number of particles to be resampled in this step. ݔାଵ = ାଵݔ (݆ = 1,⋯ ,ܰ), and the updated 

particles are given by ݔାଵ = ݉݁ܽ݊൫ݔାଵ ൯. 
(6) Calculation of Results: The classic ASIR algorithm is used to obtain the filter results. 

The accuracy and stability of the particle filter primarily depend on the number of particles used, but 

as the number of particles increases, the amount of calculation and the calculation time increase. For the 

given particle filter, the mean square error (MSE) and the calculation time (CT) are shown for various 

particle numbers (PNs) in Table 1. 

Table 1. The mean square error (MSE) and calculation time (CT) for various particle 

numbers (PNs) for the particle filter. 

PN 100 200 300 400 500 

MSE (m2) 4.34 3.58 3.25 3.09 3.12 
CT (s) 1.218 2.867 6.536 10.798 16.048 

 

Figure 11. The error maps for various particle numbers. 
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Figure 11 is also useful in the attempt to determine an appropriate particle number for a simulation. 

Once the particle number reaches 300, the MSE is reduced to approximately 3 m, and the calculation 

time increases to 6.536 s. Afterward, the MSE remains nearly unchanged with an increasing number of 

particles, although the calculation time continues to increase. 

5.2. Map-Aided Particle Filter 

A floor map records the positions of the walls and the obstacles in an indoor scenario, which may 

restrict the movements of the particles and provide more reliable position information. If the predicted 

position of a particle passes outside the effective region of the map, then the corresponding weight of 

the particle filter is set to zero: 

w = ۔ە
ۓ 0														if	the particle id outside the effective region1√2ߪߨ ݁ିቀ௫

()ି௫()ቁమାቀ௬()ି௬()ቁమଶఙమ  otherwise	 (24)

where ݔ(݇)  and ݕ(݇)  denote the N and E coordinates, respectively. ߪ  represents the variance of the 

results of the EKF algorithm, which is set to 1 m in this paper. A test similar to that presented in Section 5.1 

demonstrates that the floor-map-aided PF algorithm can provide more accurate and stable results in a 

shorter amount of time and using a considerably smaller number of particles; a calculation time of less 

than one second can be achieved using mobile phones (Table 2). 

Table 2. The MSE and CT for various PNs for the map-aided particle filter. 

PN 40 50 60 70 80 

MSE (m2) 2.890 2.599 2.601 2.615 2.640 
CT (s) 0.492 0.564 0.692 0.793 0.966 

5.3. Scheme for Floor-Map-Aided Integration Based on a PF 

The flow chart for floor-map-aided integration using a particle filter is summarized in Figure 12. The 

number of particles must be decided before the particle filter is used to integrate the integrated WiFi/P-O 

coordinates and the floor map, and the floor-map-aided weighting formula given by (20) is also used to 

avoid the “go and back” phenomenon. The detailed performance of the proposed scheme will be 

demonstrated in Section 6. 

 

Figure 12. Scheme for floor-map-aided integration based on a PF. 
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6. Experimental and Analysis Section 

6.1. TEST One 

To verify the effectiveness of the proposed algorithm, a field experiment was performed on the fourth 

floor of the School of Environmental Science and Spatial Informatics (SESSI) building on the campus 

of China University of Mining and Technology (CUMT) in Xuzhou, Jiangsu, China. In Figure 13, blue 

outlines indicate linear corridors, black outlines indicate non-linear corridors, and other areas are 

unavailable for a person to pass through. Sixty APs in total are distributed along the corridors on the 

ceiling (Figure 14). A SAMSUNG GALAXY S4 was used as the user terminal in the experiment; its 

technical specifications are shown in Table 3. 

(a) 

(b) 

Figure 13. Experimental site: (a) floor map of the fourth floor; (b) 3D model of the 

experimental site.  
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(a) 

 
(b) 

Figure 14. APs located in the corridor: (a) 60 APs located along the corridor; (b) RSSI data 

of 10 available APs for an RP. 

Table 3. Technical specifications of the SAMSUNG GALAXY S4 smartphone. 

Instrument Scale Factor Random Walk 

Accelerometer (m/s2) 19.6133 ±0.0006 
Gyroscope (m/s2) 8.7266 ±0.0003 

Magnetometer (μT) 1200.0000 ±0.0600 

To compare the indoor positioning results, four schemes were designed: 

Scheme 1: Topology-constrained KNN positioning test (GCK). 

Scheme 2: PDR-based indoor positioning test (PDR). 

Scheme 3: Integrated WiFi/P-O indoor positioning test using fading-factor-based EKF (WPO). 

Scheme 4: Floor-map-aided integrated WiFi/P-O positioning test (MWPO). 
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The EKF was used to fuse the information from different sensors for Schemes 1–3. In Scheme 4, the 

PF was used for floor-map-aided modeling, and the number of particles was set to 100. The smartphone was 

held as stable as possible during the experiment and thus was considered to be synchronized with the 

human body’s motion. The floor level should, in general, be determined in advance from barometer 

measurements, although only two-dimensional positioning was considered here. 

Figure 15 shows the position trajectories for the four schemes. The colorful dots represent the paths 

of travel calculated using the different schemes. In the test, the test participant walked with a uniform 

and stable gait; therefore, the true trajectory should be stable. 

Figure 15a demonstrates that the positioning accuracy achieved using WiFi is often related to the 

intensity of the points from the fingerprint database. The accumulated errors in the locations and the “go 

and back” phenomenon adversely affect the positioning results. 

The PDR algorithm, the results of which are shown in Figure 15b, inevitably incurs cumulative errors, 

as shown in Figure 16. Over time, the accumulated error increases, although this error could be mitigated 

by the floor-map-aided algorithm. 

 
(a) 

(b) 

Figure 15. Cont. 
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(c) 

 
(d) 

Figure 15. Estimated position: (a) WiFi with fingerprint database; (b) PDR; (c) WiFi/P-O 

integration; (d) Map-aided WiFi/P-O integration. 

 

Figure 16. The accumulated error of the PDR algorithm. 

As seen from Figure 15c, the positioning results of the WPO algorithm are more evenly distributed 

and rarely suffer from the “go and back” phenomenon. The results illustrate that the EKF fusion 

algorithm preserves the continuity and stability of the PDR algorithm while simultaneously restricting 

the accumulation of error, thereby improving the positioning accuracy. Moreover, some positioning results 
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shown in Figure 15c that are located in impassable areas are excluded when the floor-map-aided integrated 

WiFi/P-O positioning algorithm is used, as shown in Figure 15d. 

As observed in Figure 17, the particle distribution of the MWPO algorithm is restricted to lie within 

the accessible region. In this case, the particle sample number was set to 50. For single-point positioning, 

the calculation time of this algorithm is notably shortened, as analyzed in Section 5.2, enabling it to run 

on a smartphone. 

 

Figure 17. The particle distribution of the MWPO algorithm. 

Figure 18 shows the time series of the position errors of the four schemes with respect to the reference 

positions provided by a master station. The largest errors of the MWPO integration algorithm were 

observed during the first 20 steps, which may have been caused by the large WiFi positioning errors. 

 

Figure 18. The error time series of the four methods. 

The statistics of the MSE, the average error (AE) and the maximum error (ME) reveal that the  

map-aided algorithm achieved the most reliable and accurate positioning results. In this test, the accuracy 

indicated by the MSE of the integrated WPO indoor positioning algorithm with EKF was improved by 

22.9% compared with the pure WiFi algorithm, and the AE and ME were reduced by 7.4% and 53.5%, 
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improved by 48.1%, and the AE and ME were reduced by 41.8% and 61.8%, respectively. The integrated 

MWPO positioning algorithm was more accurate than the WPO algorithm, with an MSE improvement 

of 4.9%, an AE reduction of 18.0% and a similar ME (Table 4). 

Table 4. Error analysis of the four schemes. 

ERROR GCK PDR WPO MWPO

MSE/m 4.037 5.993 2.618 2.491 
AE/m 3.135 4.990 2.344 1.922 
ME/m 10.375 12.650 4.708 4.664 

As seen from the comparison, the integrated MWPO positioning algorithm results in an improvement 

in the accuracy, reliability, and calculation rate and a decrease in the accumulated error; therefore, this 

method is superior to the others to a certain extent. 

6.2. Test Two 

To demonstrate the robustness of the MWPO integration algorithm for a smartphone-based indoor 

positioning system, gross errors were added to the WiFi observations as listed in Table 5. 

Table 5. Gross errors added to the WiFi measurements. 

Time 40 s 60 s 80 s

X direction (m) 10 10 0 
Y direction (m) 0 0 10

Figure 19 illustrates the positioning trajectories determined using the WPO algorithm and the MWPO 

algorithm. As shown in Figure 19a, the three gross-error-contaminated points cause the trajectory to 

deteriorate around the affected epochs as a result of EKF recursion. In Figure 19b, the gross-error effects 

are entirely mitigated with the introduction of the MWPO algorithm. Table 6 shows the residuals of 

these two algorithms for each affected time point (40 s, 60 s and 80 s), and the results demonstrate that 

the MWPO algorithm achieves much higher reliability and accuracy. 

 
(a) 

Figure 19. Cont. 



Sensors 2015, 15 7119 

 

 

 
(b) 

Figure 19. Estimated position: (a) WiFi/PDR integration with EKF; (b) Map-aided WiFi/P-O 
integration with PF. 

Table 6. Residuals of the gross-error epochs. 

Time WPO MWPO
40 s 4.8224 m 1.8483 m
60 s 3.5404 m 1.4832 m
80 s 3.0557 m 0.6947 m

Gross errors were also added to the P-O measurements as listed in Table 7 to verify the robustness  
of the WPO and MWPO algorithms. The resulting positioning trajectories obtained using the  
WPO algorithm and the MWPO algorithm are shown in Figure 20. As shown in Figure 20a, the three  
gross-error-contaminated points cause the trajectory to deteriorate around the affected epochs as a result 
of EKF recursion, similar to Figure 20a, and again, the gross-error effects are mitigated in the case of 
the MWPO algorithm. Table 8 lists the residuals of the gross-error-contaminated epochs. 

Table 7. Gross errors added to the P-O measurements. 

Time 40 s 60 s 80 s
s (m) 10 10 10

 

 
(a) 

Figure 20. Cont. 
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(b) 

Figure 20. Estimated position: (a) WiFi/PDF integration with EKF; (b) Map-aided WIFI/P-O 

integration with PF. 

Table 8. Residuals of the gross-error epochs. 

Time WPO MWPO 

40 s 9.6667 m 1.1344 m 
60 s 8.5872 m 2.0504 m 
80 s 6.3026 m 1.3445 m 

These results demonstrate that the MWPO algorithm is more robust than the WPO algorithm, 

regardless of where the gross error originates. 

These observations yield the following conclusions regarding the investigated positioning algorithms 

for indoor navigation systems. 

(1) A topology-constrained K nearest neighbor (KNN) algorithm and a multi-threshold PDR  

algorithm are treated as the fundamental basis of this methodology, and P-O measurements are 

simultaneously simulated. This approach represents an innovation in the attempt to combine 

WiFi and PDR data by providing a common axis (time axis) other than the step duration. 

(2) The position determined based on WiFi data experiences fluctuations to some extent, particularly 

in certain locations, such as windows, glassed-in rooms and corridors. It was experimentally 

demonstrated that with the addition of supplementary data from inertial sensors, this fluctuation 

can be considerably decreased, thereby improving the reliability of the algorithm. 

(3) Considering the issue of the fanning out of positions at corners, a fading factor was incorporated 

to improve the rate of convergence, thereby decreasing the fluctuation to an acceptable level and 

improving the accuracy of the entire algorithm. 

(4) Despite the high accuracy provided by particle filters, a particle filter always requires a 

considerable amount of calculation, and therefore, most experiments using PFs require a central 

computer to cope with the information obtained from the nodes. However, incorporating an 

electronic map of the structure in question into the analysis eliminates redundant operations, 

thereby helping to improve computational speed and quality. 
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(5) With the development of methods of integrating the data from both WiFi and inertial sensors (P-O 

measurements), decreasing fluctuations (including rebound) and increasing particle filtering 

efficiency (map aid), the proposed hybrid algorithm succeeds in combining the measured data 

within a common time axis, improving the positioning reliability and producing a dramatic 

upward shift in operating rate and quality. Therefore, it offers the possibility of quasi-real-time 

measurements using mobile phones instead of a central computer, as has generally been used in other 

recent experiments. 

7. Conclusions 

This paper investigated several positioning algorithms for indoor navigation systems. A  

topology-constrained K nearest neighbor (KNN) algorithm and a multi-threshold PDR algorithm were 

presented, and P-O measurements were simulated. The proposed floor-map-aided WiFi/P-O integration 

algorithm combines the complementary advantages of all three techniques using a particle filter (PF) 

model. The experimental test results indicate that the integration of these techniques can not only avoid 

the “cross-wall” phenomenon but also the gross-error effects inherent to WiFi and P-O measurements. 

It was demonstrated that a higher indoor positioning precision can be achieved using a smaller number 

of particles when a floor map is used. The further development of the algorithm will focus on improving 

the calculation efficiency to allow it to run more efficiently on a smartphone system. 
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