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Abstract: This paper proposes a robust zero velocity (ZV) detector algorithm to accurately 

calculate stationary periods in a gait cycle. The proposed algorithm adopts an effective gait 

cycle segmentation method and introduces a Bayesian network (BN) model based on the 

measurements of inertial sensors and kinesiology knowledge to infer the ZV period. 

During the detected ZV period, an Extended Kalman Filter (EKF) is used to estimate the 

error states and calibrate the position error. The experiments reveal that the removal rate of 

ZV false detections by the proposed method increases 80% compared with traditional 

method at high walking speed. Furthermore, based on the detected ZV, the Personal 

Inertial Navigation System (PINS) algorithm aided by EKF performs better, especially in 

the altitude aspect. 

Keywords: inertial sensors; personal inertial navigation system; zero velocity detector; 

bayesian network; kinesiology 

 

1. Introduction 

As the development of Location Based Services (LBSs), the GPS technique can provide reliable 

outdoor positioning, but it is invalid in indoor environments. Indoor positioning is required in places 

like hospitals, warehouses, malls and tunnels. Some commercial indoor location techniques have 
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appeared, such as Wi-Fi fingerprint, RFID, UWB and computer vision, but indoor positioning is still 

not a well resolved problem so far. All these means need pre-installed infrastructures, network and 

remote database support. Their high cost also make it impossible to cover all the buildings. On the other 

hand, when a disaster strikes, the infrastructure becomes fragile. It is very difficult to track emergency 

first responders by traditional indoor positioning method. Fortunately, with the fast development of 

Micro Electro Mechanical System (MEMS), it becomes possible to realize reliable personal location 

for GPS-denied environments using PINS algorithm based on foot-mounted inertial measurement units 

(IMU). An outstanding advantage of these systems is that they are self-contained, which can compensate 

for the dead zones of wireless location techniques and provide seamless localization [1–3]. This solution is 

very useful in many applications. For example, tracking emergency first responders [4,5], guiding blind 

people [6] and augmenting reality. Furthermore, the IMU could be integrated into wearable sensor 

networks, which could provide rich context information for the future Smart World. 

The typical PINS application framework is shown in Figure 1. An IMU is mounted on the top of the 

toe and captures the movement characteristics of the foot. However the irregular movement patterns of 

people and lack of moving control information like unmanned vehicle systems, make it impossible to 

track pedestrian position using inertial sensing alone. The position error grows cubically in time brought 

about by double integrating acceleration errors, which will make the system collapse in the short time. 

However, during the detected ZV period in a gait cycle, the Zero Velocity Update (ZUPT) and Zero 

Angular Rate Update (ZARU) features provide pseudo measurements to error states EKF [7–9]. This 

allows the EKF to correct the velocity error and attitude error after each stride, stopping the position 

error from grow linearly. The reason why ZUPT/ZARU could correct errors is that it tracks the growing 

correlations among the velocity, position and attitude errors in certain off-diagonal elements of the 

covariance matrix. For example, at the end of a stride, there exists a high correlation between the 

uncertainty in the north velocity and the newly accumulated uncertainty in the northing position. If the 

ZUPT suggested that the velocity error was positive in the north direction, the EKF would correct the 

position to the south and the velocity to zero. 

 

Figure 1. PINS application framework. 

Since the ZUPT/ZART is so important to PINS, the key problem is how to detect the ZV period 

accurately, which will directly affect the correction of PINS, especially to the altitude [10]. The 
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traditional threshold method assumes that the acceleration should be only the gravitational 

acceleration, and the angular rate should be zero during the ZV period, so setting a threshold on the 

magnitude of the rate-of-turn is applied into a ZV detector [11]. Moreover, a combined condition 

method is proposed which sets threshold on the acceleration magnitude, local acceleration variance as 

well as gyroscope magnitude [12], respectively: 81 < (ܽ,௫ଶ + ܽ,௬ଶ + ܽ,௭ଶ ) < 121 (1)1݊ [(ܽ,௫ଶ + ܽ,௬ଶ + ܽ,௭ଶ ) − ( ఫܽ,௫ଶ + ఫܽ,௬ଶ + ఫܽ,௭ଶ )തതതതതതതതതതതതതതതതതതതതതതത]ଶୀାୀଵ < ℎ௩ (2)ω,௫ଶݐ + ω,௬ଶ + ω,௭ଶ < ℎ௬ (3)ݐ

where ܽ,, ݅ = ,ݔ ,ݕ  ,is the measurement of an accelerometer in the three orthogonal axes at time k ݖ

and ω, , ݅ = ,ݔ ,ݕ ݖ  is the gyroscope. Then a logical “AND” allows one to judge ZV by three 

conditions simultaneously. Finally, the noise in the result is filtered out using a median filter [13]. 

Based on this method, a dynamic threshold is used to enhance the robustness of the system [14,15]. 

Furthermore, some probabilistic methods are introduced [16], like the use of the HMM framework to 

give the probability of movement and standstill for each time instant [17,18]. In order to get a better 

detection effect, a multi-IMU platform is proposed [19]. Some researchers adopt force sensitive 

resistors as external zero velocity detectors [20]. These solutions are more reliable, but involve more 

complex electric designs and higher communication costs. 

However, the ZV detectors mentioned above cannot deal with two main problems well. Firstly, the 

boundaries of the ZV period are fuzzy during the contact period and propulsive period in the gait 

cycle. Secondly, there exist ZV false detections due to the noise. The proposed solution extends the 

classic combined condition method, using Bayesian Network method to infer the ZV period with the 

measurements of low-cost IMUs and kinesiology knowledge. With a high probability of ZV, the 

method can remove ZV false detections effectively in the midstance period. Aided by the segmentation 

of the gait cycle, the method could reduce the ambiguity of ZV boundaries. The experiments reveal 

that the removal rate of ZV false detections increases 80% compared with the classic method at high 

speed. With the result of this ZV detector, a PINS/EKF aided by ZUPT/ZARU is proposed to realize 

3D tracking of pedestrians. The experiments show that the method can achieve good tracking effects 

and decrease the altitude error by 40% compared with the PINS/EKF based on a combined condition 

ZV detector. 

The remainder of this paper is organized as follows: Section 2 introduces the kinesiology model and 

proposes a gait cycle detector algorithm. Section 3 details the ZV detector based on Bayesian network 

inference. Section 4 presents the PINS/EKF framework and Section 5 presents experimental results. 

Finally, Section 6 provides the conclusions. 

2. Gait Cycle Detector 

The basic idea of proposed algorithm is to use an IMU for capturing the movement features of the 

foot. Different IMU installation modes on the foot create different signal features and ZV periods.  

To the best of our knowledge, there exist four typical IMU installation modes, namely above the 

instep, above the toe, under the heel and behind the heel. All of them demand a robust way to 
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accurately detect the ZV period. The key problem is how to reduce the ambiguity at the boundaries of 

the ZV period. In the experiments, the IMU is mounted on the top of toe (Figure 2). This installation 

mode has the following advantages: 

 The gyroscope measurements in the y axis have a sharp slope at the start of the swing period, 

which could be easily detected. 

 The duration of the ZV period is relative long. 

 The IMU measurements are relative stable in the ZV period at high speed. 

Figure 2 shows the IMU installation mode and the relationship between body coordinates and 

navigation coordinates. The following content is analyzed according to this installation mode. 

 

Figure 2. IMU installation mode and the relationship between body coordinate and 

navigation coordinate. 

2.1. Kinesiology Model Analysis 

In order to detect the ZV period in the gait cycle precisely, knowledge of the gait during ambulation 

is introduced as basic theory. The main content is as follows: 

 Gait cycle: a fundamental unit to describe the gait during ambulation, which occurs from the  

time when the heel of one foot strikes the ground to the time at which the same foot contacts 

the ground again. 

 Heel strike: a heel strike of the same foot. 

 A typical gait cycle lasts for 1–2 s. 

According to the kinesiology knowledge, a whole gait cycle consists of the stance phase and swing 

phase [21] (Figure 3). Moreover, the stance phase includes contact period, midstance period and 

propulsive period. The IMU signal feature is stationary during the midstance period and propulsive 

period, but variable during the contact period and swing period. The experiments show that the 

features of y axis gyroscope measurements could be used to segment the gait cycle easily and 

distinguish the start point of a gait. The gait timespan detector is discussed as follows. 
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Figure 3. Phases in a typical gait cycle. 

2.2. Gait Timespan Calculation 

In order to design a robust method to calculate gait timespan, the features of IMU measurements 

should be analyzed first. The proposed solution is based on y axis gyroscope measurements which have a 

sharp feature at the start of swing phase. Figure 4 shows two typical signal types of testers. The upper 

subplot shows two valleys in one gait cycle, while in the lower subplot, only one valley could be found 

with same valley detection algorithm. However, the results of two subplots both show that the same 

valley could always be found at the beginning of swing period. This valley could be used to calculate the 

duration of one gait. The details are described as follows: 

 

Figure 4. The y axis gyroscope measurements of two testers. 

The well-known zero-derivative method is used to find the valley. Due to the measurement noise or 

different walking modes, accidental zero-crossings will occur, so some effective means must be adopted 

based on the signal features of the y axis angular rate. Once the first valley is found, a delay time will be 

applied to ignore all the other valleys found during this time. This time span is defined according to 

kinesiology knowledge as: 
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ௗܶ௬ = ܶ௧ × 0.548 (4)

where ܶ௧ is the last gait timespan calculated, 0.548 is the proportion of swing phase and contact 

period in one gait (Figure 3). Furthermore, a flag is maintained to identify whether the current time 

instant is in the ZV period. Once the first valley in swing phase is found, the flag is set as false, and if 

last several samples are ZV, the flag is set as true. When the flag is false, all the other valleys found 

will also be ignored. 

In general, no matter which installation mode is applied, it is inevitable to overcome the ambiguity 

of the ZV boundary in the contact period. During that short moment, the relative motion between the 

IMU and foot will create more noise, because the foot strikes the ground. This noise will expand the 

altitude error, hence, an accurate ZV detector could correct the altitude error better. Based on the 

kinesiology knowledge and the calculated gait timespan, a data fusion method could be used to reduce 

the ambiguity of the ZV boundary. 

3. A Robust Zero Velocity Detector 

An accurate ZV detector is an essential part of PINS, because the error states EKF calibrate the 

position only when the foot is on the ground (ZV). The traditional ZV detectors are based on threshold 

methods. They could work well for low speed movement, but are not robust enough in some situations. 

A more reliable ZV detector based on Bayesian network inference is proposed as follows: 

3.1. Bayesian Inference Model 

A Bayesian network is a graphical probabilistic model that represents a set of random variables and 

their conditional dependencies via a directed acyclic graph. Formally, the nodes represent random 

variables which may be observable quantities or hypotheses. Edges represent conditional dependencies 

and nodes that are not connected represent variables that are conditionally independent of each other. 

Each node is associated with a probability function that takes values for the parent variables, and gives 

the probability of the variable represented by the node. 

When comes to the ZV inference problem, the observable quantities include the sampling time 

instant, and the IMU measurements. The hypothesis is the proportion of composition in a gait cycle 

based on kinesiology. The individual observations are correlated. In time-series temporal data, the values 

of ZV detector are correlated in time and obey the distribution shown in Figure 3. In accelerometer 

measurement data, the values of the ZV detector are decided by Formula (1). The acceleration 

measurements of IMU at time k can be written as: ܽ = ܽ + δܽ + ݁, (5)

where ܽ is the output of the accelerometer and ܽ is the real acceleration, δܽ is the bias, and ݁, is a 

noise. The threshold in Formula (1) is based on the consideration of the noise. This threshold method could 

be expanded to use the probability to describe the relationship between ZV and accelerometer measurement. 

Then a probabilistic graphical model could be used to infer the ZV. 

Figure 5 details the calculation flow of a ZV detector based on the BN inference method. The 

application of PINS normally runs on an embedded system, so the designed algorithm must be 

optimized to support resource-constrained devices. This method balances efficiency and accuracy. 
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Firstly, the ZVgyro is calculated by the ZV detector based on the angular rate threshold method. This 

method runs efficiently and works well in the swing and midstance periods. Secondly, according to 

kinesiology knowledge, ZVkin is set as true in the midstance and propulsive period and false in the 

swing and contact period. Finally, if ZVgyro is not equal to ZVkin, the proposed BN method is 

performed to infer whether it is zero velocity. Based on this strategy, the details of proposed ZV 

detector are as follows: 

 

Figure 5. BN inference flow chart. 

3.2. Zero Velocity Detector Based on Bayesian Model 

To detect the ZV period more accurately, a Bayes-based model is proposed to make inferences.  

Figure 6 shows the structure of the model. The model has three nodes, namely, ZV represents the ZV 

state, S represents ZVkin decided by the time instant in a single gait cycle and A represents ZVacc 

decided by the magnitude of accelerometer measurements. Intuitively, S is set as true if the current 

time instant is in the midstance period and propulsive period, and false in the other periods. A is set as 

true according to Formula (1) if acceleration is between the thresholds. On this basis, the inference 

problem is to compute the most likely ZV state given the accelerometer measurements and the 

temporal information. 
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The target of the model is to detect the ZV period in a gait, so the model is binary, which “True” 

means the ZV state and “False” means non-ZV state. To define the parameters of this model, how to 

perform the inference is derived firstly. Bayesian Network is a model for probabilistic inference, the 

target value output by the model is inferred using the maximum a posteriori (MAP) equation: ݒݖெ = ݔܽ݉݃ݎܽ ,ݏ|ݒݖ)ܲ ܽ) (6)

where zv, s and a are the values of ZV, S and A respectively. Rewritten using Bayes rule this yields: ݒݖெ = ݔܽ݉݃ݎܽ ,ݏ)ܲ	 ,ݏ)ܲ(ݒݖ)ܲ(ݒݖ|ܽ ܽ) = ݔܽ݉ݎܽ ,ݏ)ܲ (7) (ݒݖ)ܲ(ݒݖ|ܽ

In practice, the temporal information and accelerometer measurements are assumed conditionally 

independent. The Naive Bayes assumption is used to obtain: ݒݖ = ݔܽ݉݃ݎܽ (8) (ݒݖ)ܲ(ݒݖ|ܽ)ܲ(ݒݖ|ݏ)ܲ

So the parameters learning problem becomes how to obtain the two conditional probabilities tables 

(CPT) for ܲ(ݒݖ|ݏ), ܲ(ܽ|ݒݖ), and the prior probability of ܲ(ݒݖ). 

A

ZV

S ZV P(A=F) P(A=T)
F PA11 PA12
T PA21 PA22

ZV P(S=F) P(S=T)
F PS11 PS12
T PS21 PS22

P(ZV=F) P(ZV=T)
PZV1 PZV2

 

Figure 6. Bayes-based model of the ZV relationship. 

3.3. Probability Analyze 

Firstly, the ܲ(ݒݖ|ݏ) is analyzed. In theory, the two ZV boundaries are in the propulsive period and 

contact period. The proposed BN inference method mainly deals with these two periods. The 

probability of ZV in boundaries are assumed to obey a Gaussian distribution, and Cumulative 

Distribution Function (CDF) is used to describe the conditional probabilities tables of	ܲ(ݒݖ|ݏ). The 

CPTs in propulsive and contact periods are given in Equations (9) and (10), respectively: 

(ݒݖ|ݏ)ܲ = ێێۏ
ۍ 12 [1 + ݐ)݂ݎ݁ − σ√2ݐ )] 1 − 12 [1 + ݐ)݂ݎ݁ − σ√2ݐ )]1 − 12 [1 + ݐ)݂ݎ݁ − σ√2ݐ )] 12 [1 + ݐ)݂ݎ݁ − σ√2ݐ )] ۑۑے

ې
 (9)
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(ݒݖ|ݏ)ܲ = ێێێۏ
ۍ 12 [1 + ݐ)	݂ݎ݁ − ݐ) + ݐ݅ܽ݃ܶ ∗ 0.548)σ√2 )] 1 − 12 [1 + ݐ)݂ݎ݁ − ݐ) + ݐ݅ܽ݃ܶ ∗ 0.548)σ√2 )]1 − 12 [1 + ݐ)	݂ݎ݁ − ݐ) + ݐ݅ܽ݃ܶ ∗ 0.548)σ√2 )] 12 [1 + ݐ)݂ݎ݁ − ݐ) + ݐ݅ܽ݃ܶ ∗ 0.548)σ√2 )] ۑۑۑے

ې
 (10)

where ݐ is the end time of ZV period, namely the last ZV point in one gait calculated by Equation (3), ܶ௧ is a whole gait cycle timespan, 0.548 is the proportion of contact period and swing phase in a gait 

cycle (Figure 3), erf( ) is error function of normal distribution, σ  is the covariance of Gaussian 

distribution. The setting of σ is very important, because the probability distribution in the transition 

between contact and midstance period should be smooth, and the same in the transition between 

propulsive and swing period. On the other hand, the probability during midstance period should be 

large because the measurements of IMU during this period will be variable when running. Large 

probability will make the ZV inference more reliable. 3	σ principle is used to calculate the value of σ: σ = ܥ × ܶ௧ × 0.01 (11)

where ܶ௧ is the timespan of a gait cycle, 0.01 is time coefficient because the minimal time unit is 10ms 

with discrete calculation, C is the constant, which takes the value as 2 and 3.5 in propulsive and contact 

period respectively through experiments. The evaluation of C value is shown in Section 5. The sketch 

map of CPD in measurement cycle is shown in the 3rd subplot of Figure 7. 

 

Figure 7. Measurements of accelerometer and gyroscope in one gait cycle, and CPD in 

measurement cycle. 

Secondly, the relationship between ZV state and the measurements of the accelerometer ܲ(ܽ|ݒݖ) is 

discussed. Through the experiments, the Gaussian distribution is applied to describe the CPT of ܲ(ܽ|ݒݖ), based on the norm square of acceleration magnitude: 

(ݒݖ|ܽ)ܲ = ێێێۏ
ۍ 12 [1 + ܽ)݉ݎ݊)	݂ݎ݁ − [0,0, ݃])σ√2 )] 1 − 12 [1 + ܽ)݉ݎ݊)݂ݎ݁ − [0,0, ݃])σ√2 )]1 − 12 [1 + ܽ)݉ݎ݊)	݂ݎ݁ − [0,0, ݃])σ√2 )] 12 [1 + ܽ)݉ݎ݊)݂ݎ݁ − [0,0, ݃])σ√2 )] ۑۑۑے

ې
 (12)
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where n݉ݎ() is the function of square norm, σ is the covariance of normal distribution which is set as 1. 

According to Equation (1), 1 	σ  principle is used to get the σ  value, namely the probability of ܲ(ܽ|ݒݖ = ࢇ)݉ݎ݊ should be above 0.683, when the value of (݁ݑݎݐ − [0,0, ݃]) is in the range of [0, 1]. 

Finally, the setting of ܲ(ݒݖ) is according to the kinesiology knowledge (Figure 3). The zv is set as 

true in the midstance period and propulsive period, and false in the contact period and swing phase. In 

practice, with the increase of speed, the proportion of ZV period will decrease. The experiments show 

that the ܲ(ݒݖ) can work well in this Bayes model. The ܲ(ݒݖ) is set as follows: ൜ܲ(ݒݖ = (݁ݑݎݐ = ݒݖ)0.452ܲ = (݁ݏ݈݂ܽ = 0.548 (13)

4. PINS Based on EKF 

During the ZV period detected by the proposed BN inference method, an EFK aided by ZUPT and 

ZARU is used to estimate the position error states of a pedestrian. Then the error states are fed back to 

the PINS for correcting the position. The EKF framework used for PINS is shown in Figure 8, and the 

details are described as follows: 

 

Figure 8. The EKF framework used for PINS. 
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4.1. Personal Inertial Navigation 

The basic theory of PINS is to compute the IMU’s position and attitude in the navigation coordinate 

system from the IMU measurements in the body coordinate system, namely: ࢇ = ೖ|ೖషభ ∙ (14) ࢈ࢇ

where ࢈ࢇ  is the noiseless acceleration in the body (b) coordinates at time  ࢇ ,  is the noiseless 
acceleration in the navigation (n) coordinates, and ೖ|ೖషభ  is the rotation matrix which transforms 

vectors from the body coordinates to the navigation coordinates, given as follows: ೖ|ೖషభ = ೖషభ|ೖషభ ∙ ଷ×ଷࡵ2 + δષ ∙ ଷ×ଷࡵ2ݐ∆ − δષ ∙ (15) ݐ∆

where ೖషభ|ೖషభ  is the last rotation matrix which was corrected by the EKF, ೖ|ೖషభ  is updated with the 

incremental rotation term δષ, which is based on the bias-compensated gyroscopic readings. δષ is 

the skew symmetric matrix for turn rates and represents the small angular increments in orientation: 

δષ =  0 −ωᇱ(3) ωᇱ(2)ωᇱ(3) 0 −ωᇱ(1)−ωᇱ(2) ωᇱ(1) 0  (16)

Finally, the gravity is removed from the acceleration ࢇ. This gravity-free acceleration is integrated  

to obtain the velocity ࢜. Then the position ࢘ is gained by integrating this velocity. After that, the EKF 

is used to estimate the error states, which are updated with the IMU measurements in the ZV period. 

Thus the estimated errors could correct the previously computed attitude, velocity and position. 

4.2. Perform ZUPT/ZARU Aided EKF 

The error states EKF is performed during the ZV period detected by the proposed BN inference 

method. Because in this moment, the actual readings of accelerometer and gyroscope could be treated 

as error measurements, and the velocity and attitude are set as zero. This is the concept of ZUPT and 

ZART. The EKF error states vector contains 15 elements at time k: δ࢞| = δ࢞ = [δ, δ, δ࢘, δ࢜, δࢇ]் (17)

where δ and δࢇ represent the estimated biases for gyroscope and accelerometer respectively, δ is 

the attitude errors, δ࢘ is the position errors and δ࢜ is the velocity errors in the navigation coordinates. 

Each of them has three-dimensional estimations. In the prediction stage, the linearized state transition 

model is: δ࢞|ିଵ = ିଵ|ିଵ࢞δࡲ + ିଵ (18)࢝

where δ࢞|ିଵ  is the predicted error states vector, δ࢞ିଵ|ିଵ  is the filtered error states vector at time 	݇ − 1 ିଵ࢝ ,  is the process noise with covariance matrix Q, and ࡲ  is the 15 × 15 error states  

transition matrix: 
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ࡲ = ێێۏ
ۍێێ ଷ×ଷࡵ Δݐ ∙ ೖ|ೖషభ ଷ×ଷଷ×ଷ ଷ×ଷࡵ ଷ×ଷଷ×ଷ ଷ×ଷ ଷ×ଷࡵ ଷ×ଷ ଷ×ଷଷ×ଷ ଷ×ଷΔݐ ∙ ଷ×ଷࡵ ଷ×ଷ−Δݐ ∙ (ᇱࢇ)ܵ ଷ×ଷ ଷ×ଷଷ×ଷ ଷ×ଷ ଷ×ଷ ଷ×ଷࡵ Δݐ ∙ ೖ|ೖషభଷ×ଷ ଷ×ଷࡵ ۑۑے

(19) ېۑۑ

where Δݐ is the time step from the previous measurement, ࢇᇱ  is the bias-corrected acceleration in 

navigation frame transformed from ࢇᇱ in body frame by Equation (13), ܵ(ࢇᇱ) is the skew symmetric 

matrix using accelerations in the navigation coordinates to estimate the attitude of the sensor: 

(ᇱࢇ)ܵ =  0 −ܽ௭ೖ ܽ௬ೖܽ௭ೖ 0 −ܽ௫ೖ−ܽ௬ೖ ܽ௫ೖ 0  (20)

In the update stage, the EKF measurement model is: ࢆ = |࢞δࡴ +  (21)

where ࢠ is the input error measurements, ࡴ is the measurement matrix and ݊ is the additive white 

zero-mean Gaussian noise with covariance matrix ࡾ. According to ZUPT/ZARU conception, the ࢆ 

and ࡴ are given by as follows: ܈ = ൣδ δ࢜൧ = ൣ ࡴ൧ (22)࢜ = ଷ×ଷ ଷ×ଷࡵ ଷ×ଷଷ×ଷ ଷ×ଷ ଷ×ଷ ଷ×ଷ ଷ×ଷࡵଷ×ଷ ଷ×ଷ൨ (23)

The estimated error states vector δ࢞| is updated as follows: δ࢞| = δ࢞|ିଵ + ࡷ ∙ ࢆ] − |ିଵ] (24)࢞δࡴ

where δ࢞|ିଵ  is the predicted error states vector. Noted that these filtered error states are used to 

compensate the attitude, velocity and position in PINS. The error states δ࣓, δ࢘	ܽ݊݀	δ࢜ should be 

reset to zero, while δࢇ and δ࣓ should be maintained over time. ࡷ is the Kalman gain given by: ࡷ = ்ࡴ|ࡼࡴ)்ࡴ|ିଵࡼ + )ିଵ (25)ࡾ

where ࡼ|ିଵ is the estimation error covariance matrix based on measurements received at time	݇ − 1. 

The covariance matrix ࡼ| at time ݇ is computed using the Kalman gain in the Joseph form equation: ࡼ| = ଵହ×ଵହࡵ) − ଵହ×ଵହࡵ)|ିଵࡼ(ࡴࡷ − ்(ࡴࡷ +  (26)ࡾ

With the error estimator δ࢜ and δ࢘ obtained by Equation (24), the corrected velocity and position 

can be obtained by ࢜ = ࢜ − ࢘  and࢜ߜ = ࢘ − δ࢘, respectively. Similarly, the attitude estimator 

can be corrected by Equation (15), in which the δષ  is composed of the error estimator δ  with 

Equation (16). The estimated biases δࢇ and δ୩ are used to compensate the IMU measurements. 

5. Implementation and Evaluation 

Several tests have been performed to evaluate the performance of the algorithm. The application 

framework comprises an Android phone and an IMU with a Bluetooth module which is used to transfer the 

raw data to the Android unit (Figure 1). The IMU has 3-axis accelerometers and 3-axis gyroscopes. The 
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choice of dynamic range of the IMU should balance the measurement resolution and the application 

demands. A wider dynamic range could provide more accurate altitude estimation [10], but sacrifice 

resolution. Moreover, the experiments show that the acceleration will exceed 80 m/s2 when running, so 

integrated analysis suggests that the range of the accelerometer should be set between ±160 m/s2. 

Similarly, the gyroscope is set between ±2000 deg/s. The sampling rate is set as 100 Hz, considering 

the computing resources of the Android platform. 

The experiments are executed by different people indoors and outdoors. The scenarios include a 

floor with multiple rooms, multiple layers and outdoors. Since this application is mainly used in 

emergency rescue situations, ten physically fit volunteers with ages ranging from 20 to 35 took part in 

the experiments. 

In this section, the proposed method is evaluated in two aspects. Firstly, the proposed ZV method is 

evaluated. The comparisons of ZV boundary and ZV false detections detected by different methods are 

shown. Secondly, the 3D Tracking Effect is evaluated. The volunteers travel different close paths to 

evaluate the horizontal error and upstairs to evaluate the vertical errors. 

5.1. ZV Detector Evaluation 

Firstly, In order to verify the Formula (11), the experiments analyzed the average ZV false detections 

in the contact period and propulsive period with different C values. The data is sampled at a speed of  

5.6 km/h. The 1st subplot of Figure 9 shows that there exists more noise in the contact period. With the 

increase of C value, more false detections will occur. However, in the propulsive period, the signal 

feature has a sharp slope, so the number of false detections is small. This means that the C value in the 

propulsive period has a negligible effect on the algorithm. Thus, the experiment concentrates on the C 

value in the contact period. The 2nd subplot of Figure 9 shows the position error with different C 

values in the contact period.  

 

Figure 9. The average ZV detections in the contact period and propulsive period with 

different C values in Formula (11) and horizontal position errors with different C values in 

the contact period. 
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The experiment is performed over a 1 km rectangular closed path. According to the results, a small 

C value means that the probability distribution of ܲ(ݒݖ|ݏ) is steep, which will overlook the impact of ܲ(ܽ|ݒݖ) . However, a large C value suggests that the BN ZV detector will degenerate into the 

combined condition method. The results show that the C value could be set as 3.5. 

The comparison of the detected ZV boundary between the proposed method and the combined 

condition method is shown in Figure 10. Based on the data of two testers, the results suggest that the 

start of the ZV period determined by the proposed method is 0.01 s (from ZV1 to ZV1b) and 0.04 s 

(from ZV2 to ZV2b) earlier than the combined condition method, respectively. This is because the foot 

strikes the ground at the end of the contact period. During this process, more noise is created, which will 

cause the start time of the ZV period delay detected by the threshold method. Unfortunately, during this 

short delay time, the position error could increase rapidly. 

 

Figure 10. The square norm of acceleration and the gyroscope measurements in the y axis 

of two testers, and the comparison of ZV boundaries obtained by two methods 

In Figure 11, the top two subplots are the tri-axis accelerometer and tri-axis gyroscope 

measurements, respectively. The 3rd subplot is the ZV detected by the combined condition method 

with median filter, it should be noted that there still exist two ZV false detections, especially point 1 

that occurs in the midstance period, which is impossible in practice. Point 2 is an ambiguous detection. 

The 4th subplot is the ZV result of the proposed method. This ZV result is clearer. 

Through the experiments, Figure 12 shows the proportion of ZV false detections in the total test 

duration with different methods at different speeds. The experiments are performed at different speed of 

1.8, 3.6, 5.6 and 8.0 km/h, respectively. It reveals that the combined method could work well during low 

speed movement, but when the speed increases, more noise will reduce the accuracy of the algorithm. 

Some researchers advise that the only angular rate threshold method can provide a relatively stable ZV 

detector, but in the test, it still could not achieve good performance at high walking speed. Most false 

detections occur during the transition from the contact period to the midstance period, while the BN 

inference method could use kinesiology knowledge to reduce the fuzziness of the ZV period to some 

extent. In short, with the increase of speed, the number of false detections will grow by all the 

methods, but the BN inference method could limit this growth effectively. 
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Figure 11. The comparison of ZV false detections between the combined condition 

method and the BN inference method. 

 

Figure 12. The proportion of ZV false detections in the total test duration with different 

methods at different speeds. 

The proportion of detected ZV periods in one gait cycle obtained with different methods has been 

compared in Table 1. When the walking speed increases, more noise will occur. This is the reason why 

the dynamic range of the proportion by the combined condition method is wide. The range of the 

proposed method is more stable than the method under the combined conditions. On the other hand, 

when people are running, there exists only very tiny ZV period in one gait cycle based on the 

combined method, which will fail to locate pedestrians. 

Table 1. The proportion of detected ZV period in one gait cycle by two methods. 

Method Combined Method (%) Bayesian Network Inference (%) 

ZV in one gait 18–46 32–47 
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5.2. 3D Tracking Effect Evaluation 

To evaluate the altitude accuracy of PINS based on the proposed ZV detector, experiments are 

performed on a horizontal floor. The accuracy of altitude is a tough problem in 3D tracking, because it is 

constrained for many reasons, including the dynamic range of the accelerometers, accelerometer sensor 

errors and the accuracy of the ZV detector, etc. The experiment reveals that the proposed method could 

improve the altitude accuracy, and reduce the altitude error by 40% on average (Figure 13).  

 

Figure 13. Experiment results of altitude error in a total distance of 100 m with ten testers 

at normal speed. 

The entire system is tested in different scenarios. Figure 14 shows the average horizontal errors in 

the EKF/PINS algorithm based on different ZV detectors. The experiments are performed along a 

closed path at normal speed (5.6 km/h), and the difference between the start and end points is treated 

as the horizontal error. The tests’ rectangular paths are 100, 200, 300, 600 and 1000 m in length. The 

results show that the position error roughly increases linearly with distance, and the proposed ZV 

detector could also improve the tracking effect. 

 

Figure 14. Average horizontal error by PINS/EKF based on different ZV detectors. 
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The experiments prove that the proposed method could compensate the altitude error better  

(Figure 15b,d). Meanwhile, an accurate ZV detector could also achieve better horizontal tracking 

effects. In Figure 16, the blue closed path is the real walking path. With the same EKF parameters, the 

red path based on ZV detector by BN inference method could fit the real path well, while based on the 

combined condition ZV detector, the green tracking path deviates from the real path. Figure 17 shows 

the 3D map and altitude map of going upstairs, the result shows a good altitude tracking effect by the 

EKF/PINS based on the ZV period detected by the BN inference method. 

(a) (b) 

(c) (d) 

Figure 15. The comparison of the tracking results based on different ZV detectors.  

(a) Estimated 2D path based on the combined condition method; (b) Estimated altitude 

based on the combined condition method; (c) Estimated 2D path based on the BN method; 

(d) Estimated altitude based on the BN method. 
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Figure 16. Estimated indoor 2D path. 

 
(a) (b) 

Figure 17. (a) Estimated 3D path for going upstairs; (b) Estimated altitude. 

The proposed method to detect the ZV period is robust. To get a better position effect, it is essential to 

adjust the EKF parameters based on sensor characteristics and the different movement patterns. The 

experiments show that a different R value in EKF will affect the result. Intuitively, the increase of R will 

lead to over-steering, and vice versa. This is because when R is big, namely the uncertainty of velocity 

and angular rate is big, and then the EKF will compensate more. However, the influence of R value on 

the result is limited because the EKF will converge. In the future, some landmarks could be used to decide 

whether the tracking is over-steering or under-steering, and adjust R value adaptively. On the other hand, 

more aided information can be introduced to calibrate the position errors, like maps, RF markers and so on. 

6. Conclusions 

This paper proposes a robust zero velocity detector algorithm used in personal navigation systems 

based on a foot-mounted IMU. The ZV detector by Bayesian Network inference method is introduced, 

with the measurements of inertial sensors and kinesiology knowledge. The algorithm uses the angular 
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rate signal features to accurately compute gait cycles and get the start time of a gait cycle. The 

experiments show that the BN inference method could reduce the boundary fuzziness of the ZV period 

and effectively remove the ZV false detections in tough application situations. With the detected ZV 

period, an EKF/PINS aided by ZUPT/ZARU achieves a good 3D tracking effect. 
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