A New Surface Plasmon Resonance Immunosensor for Triazine Pesticide Determination in Bovine Milk: A Comparison with Conventional Amperometric and Screen-Printed Immunodevices
Abstract
:1. Introduction
2. Results
2.1. SPR Immunodevice Assembly and Direct Flow Measurements
2.2. Conventional and Screen-Printed Immunosensors Assembly
2.3. The Albumin–Atrazine Conjugation
2.4. Albumin–Atrazine Biotinylation
2.5. Antibody Immobilization on the Immobilon Membrane
2.6. Atrazine Determination with Competitive Format Using Conventional or Screen-Printed Devices
2.7. Selectivity and kaff Measurements
2.8. Pesticide Measurement in Bovine Milk Samples and Recovery Tests
3. Discussion
Methods | Atrazine Determination by Means of SPR Immunosensor | Atrazine Determination by Means of Conventional Immunosensor | Atrazine Determination by Means of Screen-Printed Immunosensor |
---|---|---|---|
Regression equation (Y = a.u., X = M) | y = 121.0 (±6.4) + 0.8 (± 0.5) | y = 34.1 (±0.8) log x + 408.8 (±6.2) | y = 10.9 (±1.3) log x + 31.2 (±0.6) |
level of confidence (1 − α) = 0.95; | (n − ν) = 7; (t = 2.12) | (n − v) = 16; (t = 2.12) | (n − v) = 8; (t = 2.78) |
Linear range (M) | 1.0 × 10−7–1.5 × 10−6 | 1.0 × 10−10–2.8 × 10−5 | 5.0 × 10−8–2.0 × 10−5 |
Correlation coefficient (R2) | 0.9857 | 0.9891 | 0.9736 |
Repeatability of the measurement (as pooled SD %) | 5.5 | 5.3 | 7.2 |
Low detection limit (LOD) (M) | 5.3 × 10−8 | 5.0 × 10−11 | 2.3 × 10−8 |
Analysis time | ≈1 h | ≈1 h | ≈25 min |
Compound | % Response of SPR Device | % Response of Conventional Immunosensor | % Response of Screen-Printed Immunosensor |
---|---|---|---|
Atrazine | 100.0 | 100.0 | 100.0 |
Simazine | 90.0 | 87.5 | 85.0 |
Atrazine-desethyl | 40.0 | 42.6 | / |
Azinphos-ethyl | 15.0 | 9.7 | 12.8 |
2,4-D | 8.0 | 28.0 | 20.0 |
Carbaryl | 5.0 | 3.0 | 8.5 |
Aldicarb | 5.0 | 2.0 | / |
Method | IC50 n = 5; RSD% ≤ 5 (M) | kaff n = 5; RSD% ≤ 5 (M−1) |
---|---|---|
Surface plasmon resonance in flow | 8.0 × 10−7 | 1.25 × 106 |
Conventional immunosensor | 6.5 × 10−7 | 1.54 × 106 |
Screen printed immunosensor | 1.0 × 10−6 | 1.00 × 106 |
Milk Sample Number | Found Atrazine Concentration (M) (n ≥ 3) | Pesticide Added in Bovine Milk | Total Concentration Value after Spiking (M) | Experimental Conc. Value (M) ± SD (n ≥ 3) | % Recovery |
---|---|---|---|---|---|
1 | <5.0 × 10−8 | Atrazine | 1.89 × 10−7 | (1.89 ± 0.03) × 10−7 | 100.0% |
2 | <5.0 × 10−8 | Atrazine | 1.89 × 10−7 | (2.01 ± 0.02) × 10−7 | 103.3% |
3 | <5.0 × 10−8 | Atrazine | 2.64 × 10−7 | (2.40 ± 0.03) × 10−7 | 94.9% |
Milk Sample Number | Found Pesticide Concentration (M) (n ≥ 3) | Pesticide Added in Bovine Milk | Total Concentration Value after Spiking (M) | Experimental Conc. Value (M) ± SD (n ≥ 3) | % Recovery |
---|---|---|---|---|---|
4 | <5.0 × 10−8 | Simazine | 3.00 × 10−7 | (2.85 ± 0.03) × 10−7 | 95.8 |
5 | <5.0 × 10−8 | Atrazine-desethyl | 3.00 × 10−7 | (2.79 ± 0.02) × 10−7 | 93.0 |
6 | <5.0 × 10−8 | Azinphos-ethyl | 3.00 × 10−7 | (2.73 ± 0.03) × 10−7 | 92.6 |
Milk Sample Number | Method | Found Pesticide Concentration (M) (n ≥ 3) | Pesticide Added in Bovine Milk | Total Conc. Value after Spiking (M) | Experimental Conc. Value (M) ± SD (n ≥ 3) | % Recovery |
---|---|---|---|---|---|---|
1 | (a) | <5.0 × 10−11 | Atrazine | 10.0 × 10−8 | (9.8 ± 0.10) × 10−8 | 98.5% |
2 | (a) | <5.0 × 10−11 | Simazine | 10.0 × 10−8 | (9.7 ± 0.12) × 10−8 | 97.3% |
3 | (a) | <5.0 ×10−11 | Atrazine-desethyl | 10.0 × 10−8 | (9.4 ± 0.25) × 10−8 | 94.4% |
4 | (a) | <5.0 × 10−11 | Azinphos-ethyl | 10.0 × 10−8 | (9.3 ± 0.10) × 10−8 | 93.3% |
5 | (b) | <2.5 × 10−8 | Atrazine | 10.0 × 10−8 | (9.6 ± 0.10) × 10−8 | 96.5% |
6 | (b) | <2.5 × 10−8 | Simazine | 10.0 × 10−8 | (9.8 ± 0.13) × 10−8 | 98.3% |
4. Materials and Methods
4.1. Samples
4.2. Reagents and Materials
4.3. Materials for SPR Measurements
4.4. Apparatus for SPR Measurements
4.5. Apparatus for Conventional and Screen-Printed Immunosensors
4.6. Biotinylation Materials
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Environmental Protection Agency. Atrazine Updates. Current as of January 2013. Government Printing Office (GPO): Washington, DC, USA. Available online: http://www.epa.gov/pesticides/reregistration/atrazine/atrazine_update.htm (accessed on 30 April 2015).
- Ackerman, F. The economics of atrazine. Int. J. Occup. Environ. Health 2007, 13, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, C.; Hock, B. Analysis of atrazine residues in food by an enzyme immunoassay. J. Agric. Food Chem. 1993, 41, 1421–1425. [Google Scholar] [CrossRef]
- Freeman, L.E.B.; Rusiecki, J.A.; Hoppin, J.A.; Lubin, J.H.; Koutros, S.; Andreotti, G.; Hoar Zahm, S.; Hines, C.J.; Coble, J.B.; Barone-Adesi, F.; et al. Atrazine and Cancer Incidence Among Pesticide Applicators in the Agricultural Health Study (1994–2007). Environ. Health Perspect. 2011, 119, 1253–1259. [Google Scholar] [CrossRef] [PubMed]
- Helling, C.S.; Turner, B.C. Pesticide Mobility: Determination by Soil Thin-Layer Chromatography. Science 1968, 162, 562–563. [Google Scholar] [CrossRef] [PubMed]
- Rezić, I.; Horvat, A.J.M.; Babić, S.; Kaštelan-Macan, M. Determination of pesticides in honey by ultrasonic solvent extraction and thin-layer chromatography. Ultrason. Sonochem. 2005, 12, 477–481. [Google Scholar] [CrossRef] [PubMed]
- Coulson, D.M.; Cavanagh, L.A.; Stuart, J. Pesticide analysis, gas chromatography of pesticides. J. Agric. Food Chem. 1959, 7, 250–260. [Google Scholar] [CrossRef]
- Eisert, R.; Levsen, K. Solid-phase microextraction coupled to gas chromatography: A new method for the analysis of organics in water. J. Chromatogr. A 1996, 733, 143–157. [Google Scholar] [CrossRef]
- Cai, Z.W.; Cerny, R.L.; Spalding, R.F. Microbore liquid-chromatographic mass-spectrometric determination of atrazine and its major hydroxylated degradate in water at parts-per-trillion levels using electrospray. J. Chromatogr. A 1996, 753, 243–251. [Google Scholar] [CrossRef]
- Hogendoorn, E.; van Zoonen, P. Recent and future developments of liquid chromatography in pesticide trace analysis. J. Chromatogr. A 2000, 892, 435–453. [Google Scholar] [CrossRef] [PubMed]
- Amvrazi, E.G.; Albanis, T.A. Multiresidue method for determination of 35 pesticides in virgin olive oil by using liquid-liquid extraction techniques coupled with solid-phase extraction clean up and gas chromatography with nitrogen phosphorus detection and electron capture detection. J. Agric. Food Chem. 2006, 54, 9642–9651. [Google Scholar] [CrossRef] [PubMed]
- Sassolas, A.; Prieto-Simón, B.; Marty, J.L. Biosensors for pesticide detection: New trends. Am. J. Anal. Chem. 2012, 3, 210–232. [Google Scholar] [CrossRef]
- Gamal, A.E.; Mostafa, J. Electrochemical biosensors for the detection of pesticides. Open Electrochem. J. 2010, 2, 22–42. [Google Scholar] [CrossRef]
- Minunni, M.; Mascini, M. Detection of pesticide in drinking water using real-time biospecific interaction analysis (BIA). Anal. Lett. 1993, 26, 1441–1460. [Google Scholar] [CrossRef]
- Tekaya, N.; Saiapina, O.; Ben Ouada, H.; Lagarde, F.; Namour, P.; Ben Ouada, H.; Jaffrezic-Renault, N. Bi-enzymatic conductometric biosensor for detection of heavy metal ions and pesticides in water samples based on enzymatic inhibition in Arthrospira Platensis. J. Environ. Protect. 2014, 5, 441–453. [Google Scholar] [CrossRef]
- Garrido, E.M.; Delerue-Matos, C.; Lima, J.L.F.C.; Brett, A.M.O. Electrochemical methods in pesticides control. Anal. Lett. 2004, 37, 1755–1791. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Reder, S.; de Alda, M.L.; Gauglitz, G.; Barcelo, D. Simultaneous multi-analyte determination of estrone, isoproturon and atrazine in natural waters by the RIver ANAlyser (RIANA), an optical immunosensor. Biosens. Bioelectron. 2004, 19, 633–640. [Google Scholar] [CrossRef] [PubMed]
- Campanella, L.; Bonanni, A.; Martini, E.; Todini, N.; Tomassetti, M. Determination of triazine pesticides using a new enzyme inhibition tyrosinase OPEE operating in chloroform. Sens. Actuators B Chem. 2005, 111–112, 505–514. [Google Scholar] [CrossRef]
- Campanella, L.; Lelo, D.; Martini, E.; Tomassetti, M. Organophosphorus and carbamate pesticide analysis using an inhibition tyrosinase organic phase enzyme sensor; comparison by butyrylcholinesterase + choline oxidase OPEE and application to natural waters. Anal. Chim. Acta 2007, 587, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Campanella, L.; Dragone, R.; Lelo, D.; Martini, E.; Tomassetti, M. Tyrosinase inhibition organic phase biosensor for triazinic and benzotriazinic pesticide analysis (part two). Anal. Bioanal. Chem. 2006, 384, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Campanella, L.; Eremin, S.; Lelo, D.; Martini, E.; Tomassetti, M. Reliable new immunosensor for atrazine pesticide analysis. Sens. Actuators B Chem. 2011, 147, 78–86. [Google Scholar] [CrossRef]
- Campanella, L.; Martini, E.; Tomassetti, M. New immunosensor for lactoferrin determination in human milk and several pharmaceutical dairy milk products recommended for the unweaned diet. J. Pharm. Biomed. Anal. 2008, 48, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Campanella, L.; Martini, E.; Pintore, M.; Tomassetti, M. Lactoferrin and immunoglobulin G determination in animal milk by new immunosensors. Sensors 2009, 9, 2202–2221. [Google Scholar] [CrossRef] [PubMed]
- Campanella, L.; Martini, E.; Tomassetti, M. Further development of lactoferrin immunosensor (part III). J. Pharm. Biomed. Anal. 2010, 53, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Tomassetti, M.; Martini, E.; Campanella, L.; Favero, G.; Mazzei, F.; Sanzò, G. Lactoferrin determination using flow or batch immunosensor surface plasmon resonance: Comparison with amperometric and screenprinted immunosensor methods. Sens. Actuators B Chem. 2013, 179, 215–225. [Google Scholar] [CrossRef]
- Tomassetti, M.; Martini, E.; Campanella, L.; Favero, G.; Carlucci, L.; Mazzei, F. Comparison of three immunosensor methods (surface plasmon resonance, screen-printed and conventional amperometric immunosensors) for immunoglobulin G determination in human serum and animal or powdered milks. J. Pharm. Biomed. Anal. 2013, 73, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Goodrow, M.H.; Harrison, R.O.; Hammock, B.D. Hapten Synthesis, antibody development, and competitive inhibit ion enzyme immunoassay for s-Triazine herbicides. J. Agric. Food Chem. 1990, 38, 990–996. [Google Scholar] [CrossRef]
- Ramón-Azcón, J.; Kunikata, R.; Sanchez, F.J.; Marco, M.P.; Shiku, H.; Yasukawa, T.; Matsue, T. Detection of pesticide residues using an immunodevice based on negative dielectrophoresis. Biosens. Bioelectron. 2009, 24, 1592–1597. [Google Scholar] [CrossRef] [PubMed]
- Duk, M.; Lisowska, E.; Wu, J.H.; Wu, A.M. The biotin/avidin-mediated microtiter plate lectin assay with the use of chemically modified glycoprotein ligand. Anal. Biochem. 1994, 221, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.V.; Anderson, K.W.; Bachas, L.G. Controlled layer-by-layer immobilization of horseradish peroxidase. Biotechnol. Bioeng. 1999, 65, 389–396. [Google Scholar] [CrossRef] [PubMed]
- Green, N.M. A spectrophotometric assay for avidin and biotin based on binding of dyes by avidin. Biochem. J. 1965, 94, 23C–24C. [Google Scholar] [PubMed]
- Bartoli, M.; Monneron, A.; Ladantet, D. Interaction of calmodulin with striatin, a WD-repeat protein present in neuronal dendritic spines. J. Biol. Chem. 1999, 273, 22248–22253. [Google Scholar] [CrossRef]
- Tomassetti, M.; Martini, E.; Campanella, L. New immunosensors operating in organic phase (OPIEs) for analysis of triazinic pesticides in olive oil. Electroanalysis 2012, 24, 842–856. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomassetti, M.; Martini, E.; Campanella, L.; Favero, G.; Sanzó, G.; Mazzei, F. A New Surface Plasmon Resonance Immunosensor for Triazine Pesticide Determination in Bovine Milk: A Comparison with Conventional Amperometric and Screen-Printed Immunodevices. Sensors 2015, 15, 10255-10270. https://doi.org/10.3390/s150510255
Tomassetti M, Martini E, Campanella L, Favero G, Sanzó G, Mazzei F. A New Surface Plasmon Resonance Immunosensor for Triazine Pesticide Determination in Bovine Milk: A Comparison with Conventional Amperometric and Screen-Printed Immunodevices. Sensors. 2015; 15(5):10255-10270. https://doi.org/10.3390/s150510255
Chicago/Turabian StyleTomassetti, Mauro, Elisabetta Martini, Luigi Campanella, Gabriele Favero, Gabriella Sanzó, and Franco Mazzei. 2015. "A New Surface Plasmon Resonance Immunosensor for Triazine Pesticide Determination in Bovine Milk: A Comparison with Conventional Amperometric and Screen-Printed Immunodevices" Sensors 15, no. 5: 10255-10270. https://doi.org/10.3390/s150510255
APA StyleTomassetti, M., Martini, E., Campanella, L., Favero, G., Sanzó, G., & Mazzei, F. (2015). A New Surface Plasmon Resonance Immunosensor for Triazine Pesticide Determination in Bovine Milk: A Comparison with Conventional Amperometric and Screen-Printed Immunodevices. Sensors, 15(5), 10255-10270. https://doi.org/10.3390/s150510255