Classifying Step and Spin Turns Using Wireless Gyroscopes and Implications for Fall Risk Assessments
Abstract
:1. Introduction
2. Experimental Section
2.1. Participants
2.2. Instrumentation
2.3. Experimental Procedure
2.4. Data Analysis
3. Results
Visual Classification | Correct IMU Classification | Sensitivity | Specificity | Overall Accuracy | |||
---|---|---|---|---|---|---|---|
Spin | Step | Spin | Step | (to Spin Turns) | |||
Overall | 180 | 180 | 137 | 138 | 76.1% | 76.7% | 76.4% |
Slow | 60 | 60 | 47 | 51 | 78.3% | 85.0% | 81.7% |
Normal | 60 | 60 | 48 | 45 | 80.0% | 75.0% | 77.5% |
Fast | 60 | 60 | 48 | 36 | 80.0% | 60.0% | 70.0% |
0 cm | 45 | 45 | 37 | 33 | 82.2% | 73.3% | 77.8% |
63 cm | 45 | 45 | 35 | 33 | 77.8% | 73.3% | 75.6% |
104 cm | 45 | 45 | 39 | 32 | 86.7% | 71.1% | 78.9% |
167 cm | 45 | 45 | 34 | 32 | 75.6% | 71.1% | 73.3% |
Visual Classification | Correct IMU Classification | Sensitivity | Specificity | Overall Accuracy | |||
---|---|---|---|---|---|---|---|
Spin | Step | Spin | Step | (to Spin Turns) | |||
Overall | 180 | 180 | 137 | 152 | 76.1% | 84.4% | 80.3% |
Slow | 60 | 60 | 49 | 53 | 81.7% | 88.3% | 85.0% |
Normal | 60 | 60 | 44 | 45 | 73.3% | 75.0% | 74.2% |
Fast | 60 | 60 | 44 | 54 | 73.3% | 90.0% | 81.7% |
0 cm | 45 | 45 | 35 | 40 | 77.8% | 88.9% | 83.3% |
63 cm | 45 | 45 | 36 | 36 | 80.0% | 80.0% | 80.0% |
104 cm | 45 | 45 | 34 | 37 | 75.6% | 82.2% | 78.9% |
167 cm | 45 | 45 | 36 | 36 | 80.0% | 80.0% | 80.0% |
Visual Classification * | Correct IMU Classification | Sensitivity | Specificity | Overall Accuracy | |||
---|---|---|---|---|---|---|---|
Spin | Step | Spin | Step | (to Spin Turns) | |||
Overall | 129 | 129 | 112 | 119 | 86.8% | 92.2% | 89.5% |
Slow | 47 | 43 | 42 | 43 | 89.4% | 100.0% | 94.4% |
Normal | 41 | 49 | 32 | 44 | 78.0% | 89.8% | 84.4% |
Fast | 41 | 37 | 38 | 32 | 92.7% | 86.5% | 89.7% |
0 cm | 30 | 31 | 29 | 29 | 96.7% | 93.5% | 95.1% |
63 cm | 30 | 32 | 24 | 32 | 80.0% | 100.0% | 90.3% |
104 cm | 35 | 31 | 32 | 27 | 91.4% | 87.1% | 89.4% |
167 cm | 34 | 35 | 27 | 31 | 79.4% | 88.6% | 84.1% |
4. Discussion
5. Conclusions/Outlook
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Carroll, N.V.; Slattum, P.W.; Cox, F.M. The cost of falls among the community-dwelling elderly. J. Manag. Care Pharm. 2005, 11, 307–316. [Google Scholar]
- Heinrich, S.; Rapp, K.; Rissmann, U.; Becker, C.; König, H.-H. Cost of falls in old age: A systematic review. Osteoporos. Int. 2010, 21, 891–902. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Yano, M.; Onodera, H.; Hokkirigawa, K. Effect of turning angle on falls caused by induced slips during turning. J. Biomech. 2012, 45, 2624–2629. [Google Scholar] [CrossRef]
- Cumming, R.G.; Klineberg, R.J. Fall frequency and characteristics and the risk of hip fractures. J. Am. Geriatr. Soc. 1994, 42, 774–778. [Google Scholar] [CrossRef]
- Glaister, B.C.; Bernatz, G.C.; Klute, G.K.; Orendurff, M.S. Video task analysis of turning during activities of daily living. Gait Posture 2007, 25, 289–294. [Google Scholar] [CrossRef]
- Akram, S.B.; Frank, J.S.; Chenouri, S. Turning behavior in healthy older adults: Is there a preference for step versus spin turns? Gait Posture 2010, 31, 23–26. [Google Scholar] [CrossRef]
- Hase, K.; Stein, R. Turning strategies during human walking. J. Neurophysiol. 1999, 81, 2914–2922. [Google Scholar]
- Yamaguchi, T.; Yano, M.; Onodera, H.; Hokkirigawa, K. Kinematics of center of mass and center of pressure predict friction requirement at shoe-floor interface during walking. Gait Posture 2012, 38, 209–214. [Google Scholar] [CrossRef]
- Fino, P.C.; Lockhart, T.E.; Fino, N.F. Corner height influences center of mass kinematics and path trajectory during turning. J. Biomech. 2015, 48, 104–112. [Google Scholar] [CrossRef]
- Taylor, M.; Dabnichki, P.; Strike, S. A three-dimensional biomechanical comparison between turning strategies during the stance phase of walking. Hum. Mov. Sci. 2005, 24, 558–573. [Google Scholar] [CrossRef]
- Patla, A.E.; Prentice, S.D.; Robinson, C.; Neufeld, J. Visual control of locomotion: Strategies for changing direction and for going over obstacles. J. Exp. psychol. Hum. Percept. Perform. 1991, 17, 603–634. [Google Scholar] [CrossRef]
- Justine, M.; Manaf, H.; Sulaiman, A.; Razi, S.; Alias, H.A. Sharp turning and corner turning: Comparison of energy expenditure, gait parameters, and level of fatigue among community-dwelling elderly. BioMed Res. Int. 2014, 2014. [Google Scholar] [CrossRef]
- Yamada, M.; Higuchi, T.; Mori, S.; Uemura, K.; Nagai, K.; Aoyama, T.; Ichihashi, N. Maladaptive turning and gaze behavior induces impaired stepping on multiple footfall targets during gait in older individuals who are at high risk of falling. Arch. Gerontol. Geriatr. 2012, 54, e102–e108. [Google Scholar] [CrossRef]
- Gietzelt, M.; Nemitz, G.; Wolf, K.-H.; Meyer Zu Schwabedissen, H.; Haux, R.; Marschollek, M. A clinical study to assess fall risk using a single waist accelerometer. Inform. Health Soc. Care 2009, 34, 181–188. [Google Scholar] [CrossRef]
- Lockhart, T.E.; Yeoh, H.T.; Soangra, R.; Jongprasithporn, M.; Zhang, J.; Wu, X.; Ghosh, A. Non-invasive fall risk assessment in community dwelling elderly with wireless inertial measurement units. Biomed. Sci. Instrum. 2012, 48, 260–267. [Google Scholar]
- Wu, X.; Yeoh, H.T.; Lockhart, T. Fall Risks Assessment and Fall Prediction among Community Dwelling Elderly Using Wearable Wireless Sensors. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, San Diego, CA, USA, 30 September–4 October 2013; pp. 109–113.
- Fino, P.C.; Frames, C.W.; Lockhart, T.E. A new fall risk monitoring tool: Wireless classification of step and spin turns using a trunk and shank/foot mounted IMUS. In Proceedings of the 7th World Congress of Biomechanics, Boston, MA, USA, 6–11 July 2014.
- Barth, A.T.; Hanson, M.A.; Powell, H.C., Jr.; Lach, J. Tempo 3.1: A body area sensor network platform for continuous movement assessment. In Proceedings of the Sixth International Workshop on Wearable and Implantable Body Sensor Networks, Berkeley, CA, USA, 3–5 June 2009; pp. 71–76.
- Soangra, R.; Lockhart, T.E.; Lach, J.; Abdel-Rahman, E. Effects of hemodialysis therapy on sit-to-walk characteristics in End Stage Renal Disease patients. Ann. Biomed. Eng. 2013, 41, 795–805. [Google Scholar] [CrossRef] [Green Version]
- Fino, P.; Lockhart, T. Required coefficient of friction during turning at self-selected slow, normal, and fast walking speeds. J. Biomech. 2014, 47, 1395–1400. [Google Scholar] [CrossRef]
- Studenski, S.; Perera, S.; Patel, K.; Rosano, C.; Faulkner, K.; Inzitari, M.; Brach, J.; Chandler, J.; Cawthon, P.; Connor, E.B.; et al. Gait speed and survival in older adults. JAMA 2011, 305, 50–58. [Google Scholar] [CrossRef]
- Courtine, G.; Papaxanthis, C.; Schieppati, M. Coordinated modulation of locomotor muscle synergies constructs straight-ahead and curvilinear walking in humans. Exp. Brain Res. 2006, 170, 320–335. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fino, P.C.; Frames, C.W.; Lockhart, T.E. Classifying Step and Spin Turns Using Wireless Gyroscopes and Implications for Fall Risk Assessments. Sensors 2015, 15, 10676-10685. https://doi.org/10.3390/s150510676
Fino PC, Frames CW, Lockhart TE. Classifying Step and Spin Turns Using Wireless Gyroscopes and Implications for Fall Risk Assessments. Sensors. 2015; 15(5):10676-10685. https://doi.org/10.3390/s150510676
Chicago/Turabian StyleFino, Peter C., Christopher W. Frames, and Thurmon E. Lockhart. 2015. "Classifying Step and Spin Turns Using Wireless Gyroscopes and Implications for Fall Risk Assessments" Sensors 15, no. 5: 10676-10685. https://doi.org/10.3390/s150510676
APA StyleFino, P. C., Frames, C. W., & Lockhart, T. E. (2015). Classifying Step and Spin Turns Using Wireless Gyroscopes and Implications for Fall Risk Assessments. Sensors, 15(5), 10676-10685. https://doi.org/10.3390/s150510676