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Abstract: Continuously monitoring the ECG signals over hours combined with activity 

status is very important for preventing cardiovascular diseases. A traditional ECG holter is 

often inconvenient to carry because it has many electrodes attached to the chest and because 

it is heavy. This work proposes a wearable, low power context-aware ECG monitoring 

system integrated built-in kinetic sensors of the smartphone with a self-designed ECG 

sensor. The wearable ECG sensor is comprised of a fully integrated analog front-end (AFE), 

a commercial micro control unit (MCU), a secure digital (SD) card, and a Bluetooth module. 

The whole sensor is very small with a size of only 58 × 50 × 10 mm for wearable monitoring 

application due to the AFE design, and the total power dissipation in a full round of ECG 

acquisition is only 12.5 mW. With the help of built-in kinetic sensors of the smartphone, the 

proposed system can compute and recognize user’s physical activity, and thus provide 

context-aware information for the continuous ECG monitoring. The experimental results 

demonstrated the performance of proposed system in improving diagnosis accuracy for 

arrhythmias and identifying the most common abnormal ECG patterns in different activities. 

In conclusion, we provide a wearable, accurate and energy-efficient system for long-term 
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and context-aware ECG monitoring without any extra cost on kinetic sensor design but with 

the help of the widespread smartphone. 

Keywords: context-aware; power control; physical activity recognition; wearable ECG sensor 

 

1. Introduction 

Cardiovascular diseases are the principle causes of death worldwide [1,2]. The continuous 

electrocardiogram (ECG), which indicates the overall rhythm of the heart and can be monitored using 

non-invasive electrodes on the chest or limbs, has been demonstrated with prognostic significance for 

cardiovascular diseases [3]. Therefore, more than 24 h or 48 h ambulatory ECG monitoring is becoming 

more and more important in both homecare and clinical settings to prevent cardiovascular disease and 

detect symptomatic signs for patients with uncommon events [4]. In another aspect, as the characteristics 

of ECG signals are highly dependent on the user’s physical status, a combination method to monitor 

ECG and physical activity is in great need [5]. Combining with context information from activity status 

is beneficial to improve diagnosis accuracy on the ECG signals, identify the most common abnormal 

ECG patterns in different activities, and evaluate the cardiac functions for the clinicians. 

Usually, patients have to carry a bulky instrument for continuous ECG monitoring, which restricts 

their mobility and makes them uncomfortable with so many electrodes and cables around their bodies. 

There is a growing demand for small-size, compact wearable ECG acquisition system [6,7]. With the 

development of electronics over the past several years, more and more cost-effective approaches have 

been proposed to replace conventional methods for ambulatory ECG monitoring [8–10]. In 2012, 

Christian et al., introduced a system-level low-power wireless sensor for long-term biomedical signal 

monitoring. The proposed solution of an ECG circuits was demonstrated to lead to 2.5 times power 

saving [8]. In 2014, a mixed-signal system-on-chip (SoC) integrated analog font-end (AFE) with DSP 

back-end was proposed in [9]. The wireless ECG monitoring system comprised of the proposed SoC and 

Bluetooth protocol can implement a power consumption of 13.34 mW while transmitting ECG signal 

with 256 Hz sampling rate via Bluetooth. There are also some portable commercial devices until now, 

such as eMotion from MEGA Electronics Ltd [11] and wireless health monitoring system from  

IMEC [12], both of them are equipped with a Bluetooth module. Even though the reported ECG signal 

acquisition circuits are outstanding in architecture or power optimization, they do not work as a 

completed system to provide a lot of medical functions such as arrhythmias detection and context-aware 

information in real-life application. 

In another aspect, the widespread of smartphone with powerful computing capability and high-speed 

data access via wifi, 3G/4G cellular network, makes the ECG smartphone applications available [13–15]. 

With high-resolution touch-screen and universal communication interfaces, the smartphone based system 

can not only exhibit real-time ECG signals sent from the ECG sensor, but also transmit it to remote 

computing server to provide healthcare service [15]. Moreover, the smartphone can be used to recognize 

physical activity based on built-in sensors [16,17] with high accuracy and reliability. Therefore, how to 

take advantage of available device to reduce the power consumption of the ECG monitoring system 

while providing useful diagnosis information for the users is necessary. 
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In this work, we describe a wearable context-aware ECG monitoring system comprised of a  

self-designed integrated ECG sensor for continuous, long-term remote ECG monitoring and a 

smartphone for abnormal ECG patterns and physical activity recognition. The ECG acquisition sensor 

implemented with a full custom, fully integrated and low power AFE is presented in our study to 

minimize the size and power consumption. With Bluetooth technology, the acquired ECG signal is 

sent to user’s smartphone for real-time display and arrhythmias identification. Meanwhile, combining 

with the context information provided by the built-in kinematic sensors (triaccelerometer, gyroscope, 

and magnetic sensor) in the smartphone, this system can recognize a user’s physical activities and thus 

improve the accuracy for identifying ECG abnormal patterns. Compared with previous studies, we 

provide a platform for low-power, long-term and accurate ECG monitoring with a self-designed ECG 

sensor, activity recognition and then data fusion for improving the diagnosis accuracy without any 

extra cost on kinetic sensor design but with the help of the widespread smartphone.  

The remainder of the paper is organized as follows. In Section 2, we present an overview of the 

proposed context-aware ECG monitoring system, a combination of wearable ECG signal acquisition 

sensor and three built-in kinematic sensors in the smartphone for identifying physical activity.  

In addition, the software on the smartphone for data fusion and analysis is introduced in Section 2. Then 

in Section 3, the experimental results for identifying physical activities and the effectiveness of 

improving diagnosis accuracy while combining with physical activity are given. We conclude our study 

in Section 4, with an outlook for further research. 

2. The Proposed Context-Aware ECG Monitoring System 

2.1. System Architecture 

The block diagram of the proposed ECG monitoring system combined a wearable ECG  

acquisition sensor with a smartphone is described in Figure 1. The ECG sensor was developed following  

YY1139-2000 standard, a pharmaceutical industry standard of China for single and multichannel 

electrodigraph, which is evolved from EC13 national standard but more conform to local situation. In the 

ECG acquisition sensor, signal is amplified and filtered by a single chip of AFE module, then in MCU 

module the analog signal from AFE is converted to digital signal. After processed with compression 

algorithm, the digital signal is recorded in SD card or transmitted to smartphone for real-time display. 

Meanwhile, a USB port is equipped in the device for transmitting the signals which have been saved in 

the SD card to personal computers and then to the cloud platform for further analysis. 

The ECG signals transmitted to smartphone are real-time displayed on screen, with a brief  

report provided from the automatic analysis approach in the software or professional advices provided 

from the remote server. The built-in kinematic sensors of the smartphone are used to recognize the 

individual’s physical activity and thus help to improve the diagnosis accuracy for detecting  

abnormal patterns. 
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Figure 1. Schematic diagram of proposed context-aware electrocardiogram (ECG) 

monitoring system. 

2.2. Architecture of Wearable ECG Sensor 

The block diagram of traditional implementation of ECG acquisition device is presented in Figure 2, 

in which the circuit consists of a traditional instrument amplifier and Sallen-Key or Nyquist low pass 

filter [18], and some external function circuits for realistic ECG detection. The system also needs a  

lot of discrete components which occupy a large area that hindering the aim for wearable and low  

power design. 

 

Figure 2. Architecture of traditional acquisition device. 

The architecture of the proposed wearable sensor is shown in Figure 2. In the module of full 

custom, fully integrated, low power AFE, we integrated all the function circuits in traditional 

implementation presented in Figure 2. The integrated AFE in our study consists of an input/output 

buffer, full differential amplifier (DA) with high pass function, second Gm-C low pass filter, additional 

amplifying stage, DRL circuit, lead-off detecting circuit, fast restore function, and a power 

management module to provide a stable working voltage and current. 



Sensors 2015, 15 11469 

 

 

2.3. Full Custom, Full Integrated AFE 

The detailed block diagram of the proposed AFE is shown in Figure 3. In place of a separate 

analog-to-digital convert module, the inherent analog-to-digital function in the MCU module was used 

in the proposed system to improve efficiency. 

 

Figure 3. Block diagram of the analog front-end (AFE). 

In order to resolve the challenge of tradeoff between size and bandwidth of the circuit, we designed 

a full DA module with high pass function using pseudo-resistor technology [19] and a second low pass 

Gm-C filter [20,21], instead of traditional instrumentation amplifier and Sallen-Key or Nyquist low 

pass filter. The designed module is able to realize a very low pass band on the chip. At the same time, 

the DA module using the capacitance amplifying structure can also eliminate the DC offset voltage of 

electrodes which limit the gain of the first stage amplifier. 

In addition, because of the equivalent resistance of human body, combined with the principle that 

equivalent input resistance of the AFE should be larger than 10 MΩ to eliminate the effect of voltage 

divider, we need an input buffer to get a high enough input resistance and depart the electrode from 

amplifying stage in case of some other environmental interference factors. A passive high pass filter is 

proposed to ensure the DC working voltage with a cutoff frequency of 0.5 Hz. A second low pass  

Gm-C filter is integrated and followed by an additional amplifying stage to get a higher gain. We 

integrate a traditional right-leg driven circuit to improve the common mode rejection ratio (CMRR) 

performance. In order to realize the disconnection between electrode and human skin for a wearable, 

comfortable device for long-term monitoring, we design a lead off circuit with equivalent resistance 

larger than 10 MΩ. In addition, a fast restore function circuit is integrated to help AFE get back to 

working state fast from abnormal state. A power management module is designed to provide a stable 

working voltage and current. 

2.4. Scheduling of MCU 

We utilize the analog-to-digital (AD) function embedded in the MCU module to convert the analog 

signal from AFE to digital signal for efficiency. In pursuit of low power requirement, the device can 

work in turn between two modes in scheduling of MCU, that is, normal run mode and low power 

mode. In the low power mode, the signal acquired is saved to buffer memory cells at regular time, 



Sensors 2015, 15 11470 

 

 

when the storage space of buffer cells is full, an interrupt signal will be generated and make the device 

to work in normal run mode. In the normal run mode, central processing units start to work and 

transfer the signal saved in buffer cells to secure digital memory card or transmit the signal to 

smartphone. The process of the signal transferring only takes decades of milliseconds, so in most of 

time the device works in low power mode. The block diagram of main scheduling of MCU is 

described in Figure 4. 

 

Figure 4. Flow diagram of the scheduling of a micro control unit (MCU). 

2.5. Physical Activity Recognition with Built-in Kinetic Sensors in the Smartphone 

As presented above, smartphone can be used to detect the fall state [22–24] and recognize physical 

activities with a degree of accuracy comparable to that of the tri-axial accelerometer. In our previous 

study [25], we utilized a smartphone to recognize 5-type physical activity with three built-in kinematic 

sensors (tri-accelerometer, gyroscope, and magnetic sensor), including static, walking, running, going 

upstairs and going downstairs. The experiment results on 8097 activity data have demonstrated the 

proposed approach can realize a high degree of accuracy with recognition rate of 89.6%. We also 

evaluated the impact of different pockets and orientations for activity recognition in [25], the 

experimental results demonstrated that the proposed solution is insensitive to four orientations including 

head upward and face inward, head upward and face outward, head downward and face inward, head 

downward and face outward. For the six different pockets, from the results presented in Figure 9b  

in [25], the features from trouser pockets are with higher variability compared with coat pockets, as 

bigger acceleration is produced from the lower limbs than that from the trunk part while the subject is 

moving. Moreover, the features from different trousers pockets are similar. We also evaluated the 

standard derivation of the mean acceleration data among the three activities including rest, walking and 

running for each pocket presented in [25], the results showed that the standard derivations are  

4.87 (with mean acceleration data of 0.85 for rest, 3.24 for walking and 10.22 for running) and  

5.06 (with mean acceleration data of 0.72 for rest, 3.41 for walking and 10.53 for running) for right 

rear trousers pocket and right front trousers pocket separately, while 3.50 for left coat pocket  

(with mean acceleration data of 1.08 for rest, 3.51 for walking and 7.99 for running). In another word, 

the acceleration data from trousers pockets are with higher discrimination than coat pocket. Therefore, 

the similar solution will be used in this study to recognize typical types of physical status that have 
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significant influence on the ECG pattern, including rest, walking and running, with the smartphone in 

any trousers pockets. The running and walking status was distinguished based on the ambulation 

speed, which was defined in [26]. Accordingly, the speed below 84 m/min is defined as walking, 

otherwise it is marked as running. 

As shown in Figure 5, the built-in accelerometer, gyroscope, and the orientation sensor of a 

smartphone which reflected acceleration, angular velocity, and orientation of physical activity were 

used to collect the information for classification. In order to reduce the influence of measurement 

noise, we used a low-pass filter with 10 Hz cutoff frequency to pre-process the data prior to the activity 

classification. In addition, the sliding window approach was employed to reduce the bias arisen from 

sensor sensibility and noise by segmenting the signals into multiple small overlapped windows. At a 

sampling frequency of 25 Hz, each window with 50% overlap represents 1.6 s. Five signals, including 

the signal magnitudes of the accelerometer and gyroscope sensor, the X, Y, Z direction value of the 

magnetic sensor, were collected for each sample. Then 30 features (mean, standard deviation, median, 

skewness, Kurtosis, Inter-quartile-range of the five signals for each window) were extracted for 

classification. After that, we classified activities (rest, walking and running) from daily life data 

employing decision trees in WEKA environment [27] using the extracted 30 features. The decision tree 

was created using the J48 algorithm, an open source Java implementation of the C4.5 decision tree 

algorithm in the WEKA tool. It is implemented in the following ways: (1) At each node of the tree, the 

attribute that splits the dataset into subsets concentrated in one class or the other most effectively, that 

is, with the highest normalized information gain, is chosen to make a decision; (2) To avoid the  

over-fitting problem, a stop-splitting rule is required to control the growth of the tree. In our study, the 

stop-splitting rule was defined that the minimum number of objects at each terminal node should be 

larger than 30. The J48 is implemented on the basis that if a smaller tree structure is with comparable 

performance to a larger one, the smaller one would be chosen. 

 

Figure 5. The block diagram of the physical activity recognition scheme. 

2.6. Software on Smartphone 

The software on the smartphone was developed at Android operating system. It mainly consists of a 

feature extraction program using weighted average beat subtraction (WABS) method and maximum 

likelihood estimation (MLE) method [28], a physical activity recognition program, a Bluetooth 

receiving program, a display program and interactive interface program. Feature extraction program 

extracts features of ECG signal from single lead ECG recordings and according these features to 
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identify 10-type arrhythmias. Physical activity recognition program acquires the information from 

built-in accelerometer, gyroscope and orientation sensors, and then extracts features from the 

information, which were utilized to recognize three typical activities (rest, walking and running). 

Bluetooth receiving program is in charge of the connection between ECG sensor and smartphone. Display 

program unpacks the received ECG data and obtains the result from physical activity recognition. The 

software interface of smartphone terminal will be introduced in Results and Discussion part. 

A smartphone (Samsung, I9100GALAXYSII, 125.3 × 66.1 × 8.49 mm, 116 g, Android OS 2.3) was 

used to carry out the experiments in our study. The smartphone is equipped with a built-in triaxial 

accelerometer (STM K3DH) with 19.6 m/s2 maximum range and 0.019 m/s2 resolution, a triaxial 

gyroscope sensor (STM K3G) with 34.9 rad/s maximum range and 0.0012 rad/s resolution, and a 

triaxial magnetic field sensor (Asahi Kasei AK8973) with 2000 μT maximum range and 0.0625 μT 

resolution. We have tested the performance of the developed app with the smartphone. The test results 

showed that the CPU occupation is about 25% and battery usage is about 1mAh in one minute while 

running the APP in background. With a 1650 mAh battery capacity, the smartphone can provide more 

than 24 h activity recognition without other applications. The developed APP performs very well while 

running other applications including phone call, address book searching and camera. 

3. Results and Discussion 

3.1. Experimental Results of Proposed AFE 

The photograph of proposed AFE with 0.18 μm CMOS technology SMIC process is presented in 

Figure 6a, the chip size is 1.3 mm × 1.1 mm and the core circuit only occupies 0.9 mm × 0.8 mm. 

Figure 6b shows the experimental platform to test and verify our AFE on human body, the testing 

board of our chip is also shown on the left-down corner, in which only a few discrete components are 

needed for measurement. The ECG was measured with a gain setting of 360 and the filter cutoff set of 

0.5 ~ 120 Hz. The screenshot of the oscilloscope shows that different characteristics of the ECG are 

clearly visible and thus demonstrate that the AFE can function as well as expected. It can be used to 

measure signals in high quality while applied in ECG acquisition system. 

 
(a) (b) 

Figure 6. (a) The micro photograph; (b) Experiment of proposed AFE in ECG  

Acquisition device. 
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3.2. Performance of Proposed ECG Acquisition Sensor 

Figure 7 shows the photograph of proposed acquisition sensor at the left and its appearance of  

final package. The sensor is very small for wearable monitoring application with a size of only  

58 × 50 × 10 mm and a weight of 20 g. 

 

Figure 7. Photograph of proposed ECG Acquisition device. 

 

Figure 8. ECG acquisition sensor hardware validation procedure. 
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To validate the hardware performance of the proposed ECG sensor, we evaluated four main indexes 

including input impedance, frequency response, anti-jaming capability and system noise. The test 

procedure and corresponding device and setting parameters for all the indexes can be found in  

Figure 8. Table 1 gives a summary of the performance. The testbed for input impedance is presented in 

appendix Figure 1. The skew rate of 1% has demonstrated the performance in input impedance with 

the input impedance larger than 5 MΩ, and thus is in accordance with YY1139-2000. Appendix  

Figure 2 gives the testbed for frequency response. The sine waves with frequency varying from 0.5 Hz 

to 80Hz were inputted sequentially to verify the performance of frequency response. We evaluated the 

antijaming capability in terms of CMRR, which can be found in appendix Figure 3. The screen height 

of 4.2 mm demonstrated the CMRR was larger than 85 dB, and thus complied with YY1139-2000 

perfectly. The testbed for system noise is presented in appendix Figure 4, a screen height of 0.4 mm 

showed the system noise was less than 15 μV, and also adhered to the rule in YY1139-2000. 

Table 1. Performance summary of the ECG sensor hardware. 

Technology CMOS 0.18 μm 

Supply Voltage 3 V 

Chip Size 1.3 mm × 1.1 mm 

Input Impedance >5 MΩ 

Frequency Response <20 Hz for 8 inputted frequency 

CMRR >85 dB 

System Noise <15 μV 

Gain 360 

Sampling Rate 150 Hz, 250 Hz, 500 Hz 

Data Bit-Width 32 bit 

As the power consumption is a very important parameter for long-term continuously monitoring, we 

evaluated the total power consumption including AFE, MCU, SD card and other modules. The testbed 

for computing the power is demonstrated in Figure 6b, in which a DC power supply (GPS-2303C) is 

used to generate the voltage and an oscilloscope to exhibit the output current. The power is computed 

by product of the voltage and the current under the voltage. The power consumption computation was 

performed on each module separately and then the total device from a 3 V supply. For example, with 

the power supply of 3 V, this AFE consumes around 100 µA typically and its shutdown current is less 

than 1 µA, and thus the power consumption is 0.3 mW. For the long term monitoring or home-based 

application scenario, we don’t need to view the real-time signal but transmit the data once a day. So 

the wireless module is off at most time and the power consumption can be ignored while discussing the 

total power dissipation of the system. 

Table 2 summarizes the power consumption of the proposed acquisition device and each module 

separately. It can be seen that the presented device only consumes around 12.5 mW total power 

dissipation, and the proposed AFE only consumes 2.4% of total power consumption. The main part of 

power consumption focus on the SD card, due to the writing process. However, the process of writing 

the acquired ECG data to SD card only takes tens of milliseconds, in most of time it is inactive. 
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Table 2. Power consumption of the proposed ECG acquisition device. 

 AFE MCU SD Card Power Module and Other Circuits 

Power Dissipation (mW) 0.3 2.67 6 (on average) 3.53 

Power Dissipation (%) 2.4 21.36 48 28.24 

Total Power (mW) 12.5 

Device Lifetime 30 h (one 130 mAh AA battery) 

Table 3 summarizes the comparison of this work with other recent similar works and some 
commercial products in the market. In which the power consumption of other works are evaluated 
based on their data sheets. It can be seen that this work performs better than other works in those 
proposed aspects. In the future, the performance of higher CMRR, lower power consumption and 
lower noise, lower weight is our objective. 

To validate the reliability of the proposed sensor on acquiring ECG data, we evaluated the sensor 

following the procedures presented in [29]. The validation protocol is comprised of two phases: The 

first phase is a laboratory test for evaluating the performance of the proposed sensor using an ECG 

signal generator; the second phase is a real-life experiment on subjects while performing a standard 

procedure including sitting, sit-to-stand, standing, stand-to-sit using the BIOPAC MP150  

multi-channel physiological instrument. 

Table 3. Performance comparison between our system and other recent similar works. 

 This Work Sensors 2013[30] ISITME 2011 

IEEE 

EMBC 

2006 

[31] 

Holter ECG 

System  

(TLC4000) 

[32] 

Holter Recording 

(DMS3004A) 

[33] 

Channel 1 1 1 3 12 12 

Size 5.8 × 5.0 × 1.0 cm3 
5.8 × 5.0 × 0.4 cm3 

(Without Package) 

5.5 × 3.4 × 1.6 cm3 

(Without Package) 
N/A N/A 8.8 × 5.5 × 2.1 cm3 

Supply (V) 3 3 3.3 3 3 1.5 

Power 

(mW) 
12.5 84.83 115 375 312.5 25 

Storage SD Card SD Card N 
SD 

Card 

Build-in 

memory 
Build-in memory 

Weight (g) 20 38 (exclude battery) 
20.7 (exclude 

battery) 
N/A N/A 100 

In the first phase, simulated ECG signals with six rates varying from 30 to 200 BPM and  

four amplitudes from 0.15 to 1 mV were generated by the ECG generator. Each signal was recorded 

firstly by attaching the BIOPAC to the ECG generator to acquire 50 ECG waveforms for each 

amplitude and frequency setting, then the same measurements were repeated using the proposed 

sensor. The testbed is presented in appendix Figure 5a. We compared the two sets of signals in terms 

of cross-correlation coefficient of the signal and the QRS amplitude ratio, which can be seen in  

Tables 4 and 5. From Tables 4 and 5 we can see, the signals acquired from the proposed sensor are 

almost identical to those generated from the ECG generator. In the second phase, seven healthy 

subjects (five males and two females) were recruited to perform the following typical daily activities 
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presented in Table 6 sequentially for 3 times. The baseline characteristics of the experimental subjects 

are: age 24.4 ± 6.05 years, height 173.7 ± 5.3 cm, and body mass index 21.1 ± 2.3 kg/m2. BIOPAC and 

the proposed sensor were used to collect the ECG signals simultaneously and the testbed is presented 

in appendix Figure 5b. We compared the acquired ECG signals between the BIOPAC and the 

proposed sensor in terms of QRS detection error, QRS amplitude ratio, QRS cross correlation and QRS 

detection delay, which were defined in [29]. The test results are presented in Table 7. From Table 7 we 

can see, the signals acquired from the proposed sensor are closely correlated to those collected from 

standard device in real-life settings. 

Table 4. Average signal cross correlation between ECG generator device and the proposed sensor. 

Frequency (BPM) 

Amplitudes (mV) 
30 60 80 120 160 

0.15 0.985 0.983 0.983 0.984 0.985 

0.3 0.983 0.985 0.984 0.984 0.983 

0.5 0.984 0.983 0.983 0.986 0.983 

1 0.983 0.984 0.983 0.984 0.985 

Table 5. Average QRS amplitude ratio between ECG generator device and the proposed sensor. 

Frequency (BPM) 

Amplitudes (mV) 
30 60 80 120 160 

0.15 1 1 1 1 1 

0.3 1 1 1 1 1 

0.5 1 1 1 1 1 

1 1 1 1 1 1 

Table 6. Daily life activity. 

Activity Time Duration 

Sitting 30 s 
Sit-to-Stand 5 s 

Standing 30 s 
Stand-to-Sit 5 s 

Table 7. Performance comparison between the proposed sensor and BIOPAC in real-life setting. 

Performance 

Activity 

QRS Detection Error No. 

(Avg ± std) 

QRS Amplitude 

Ratio (Avg ± std) 

QRS Cross 

Correlation 

(Avg ± std) 

QRS Detection 

Delay No.  

(Avg ± std) 

Sitting 0.825 ± 0.836 0.987 ± 0.154 0.928 ± 0.137 0.687 ± 0.704 

Sit-to-Stand 0.259 ± 0.117 1.082 ± 0.057 0.896± 0.106 0.524 ± 0.442 

Standing 0.793 ± 0.689 1.061 ± 0.072 0.908 ± 0.174 0.712 ± 0.812 

Stand-to-Sit 0.296 ± 0.124 0.899 ± 0.043 0.886 ± 0.157 0.465 ± 0.385 
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3.3. Physical Activity Recognition Result 

In order to demonstrate the effectiveness of the proposed system, the recruited seven healthy 

subjects (five males and two females) were asked to perform the three activities (rest, walking and 

running) wearing the proposed ECG sensor on their chest and a smartphone in their any trousers 

pockets, as presented in Figure 5. We first evaluate the performance of physical activity recognition by 

smartphone’s built-in sensors for everyday activities. The subjects were asked to perform the activities 

in their own style and in a random order for overall 10 min. The speed was set to 4 km/h for walking 

and 8 km/h for running with a treadmill. All the activity data collected from the seven subjects were 

mingled together to establish an independent dataset. The overall amount of the three activities  

(rest, walking, running) were 1697, 2320 and 2006 separately. 

Table 8 shows the confusion matrix of the proposed solution for recognizing physical activities, in 

which each row shows how the model classified one class and each column shows which classes one 

type of classification by the model actually belongs to. The overall accuracy of 97.7% has 

demonstrated the performance of the proposed physical activity recognition approach. Therefore, the 

utilization of built-in-sensors in the smartphone for activity recognition for the proposed context-aware 

ECG system is feasible. 

Table 8. Confusion matrix of J48 decision tree. 

Model 
Actual 

Walking Running Rest 

Walking 2268 51 1 
Running 68 1938 0 

Rest 16 0 1681 

3.4. Performance of the Proposed Context-Aware ECG Monitoring System 

The ECG signal is amplified and filtered by the chip of AFE module, then the analog signal from 

AFE is converted to digital signal in MCU module. After processed with wavelet processing algorithm 

and feature extraction comparison algorithms, the generated digital signal are recorded in the memory 

cells or transmitted to the personal phone for data fusion and analysis. 

When the monitoring process completed, the features of subjects’ acquired ECG signal were 

extracted using WABS method and MLE method and according to these features a brief report aiming 

to detect 10-type arrhythmias and HRV analysis was given, as shown in Figure 9. The full names of 

the abbreviations are given in Table 9. The diagnostic capability was also validated using the  

muli-parameter simulator (MEDSIM 300B). The testbed is presented in appendix Figure 6, in which 

the multi-parameter simulator was used to generate ECG signals with different arrhythmias types. We 

evaluated the discrimination ability of in terms of half total error rate (HTER), which equals to (false 

acceptance rate (FAR) + false rejection rate (FRR))/2. The technical report is demonstrated in  

Table 10, from the Table 10 we can see, the software on smartphone can realize a good discrimination 

performance in recognizing abnormal pattern with high reliability. 
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(a) (b) 

Figure 9. Screenshot of smartphone (a) abnormal ECG signal; (b) the brief report. 

Table 9. Abbreviations in the report. 

Abbreviations Full Name 

BG Bigeminy 

TBG Trigeminy 

SA Sinus arrhythmia 

MB Missed beat 

VPB Ventricular premature beats 

APB Atrial premature beats 

IVBP Interpolated ventricular premature beat 

VT Ventricular tachycardia 

PB Pause Beat 

Table 10. Discrimination ability of the proposed software. 

Items 
True 

Positive 

False 

Negative 

True 

Negative 

False 

Positive 

Discrimination 

Ability (HTER) 

Arrhythmias Type 

BG 444 3 2024 0 0.34% 

TBG 258 0 2213 0 0 

SA 200 0 2271 0 0 

MB 125 1 2345 0 0.345% 

VPB 149 3 2315 4 1.04% 

APB 247 1 2220 3 0.27% 

PB 49 1 2421 0 1% 

VT 287 3 2179 0 0.5% 

Tachycardia 200 0 2271 0 0 

In the sensor fusion application, the subject wore the ECG acquisition sensor on the chest with the 

smartphone in any trousers pockets. Figure 10 gives a visible presentation of our experiment with one 

subject as the example. On the treadmill, the subject was running at the speed of 8 km/h. Moreover, the 

screenshot of the smartphone was also displayed in Figure 10. “HR” represents “Heart rate” in the 
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figure, which indicates that the heart rate of the subject was 115 at this time. “Speed” represents the 

ambulation speed of the specific time duration, which can help to evaluate human efforts while 

performing the activity. The green line was the ECG signal at the real time, while the blue line 

indicated physical activity of the subject. When the blue line was located at the top, middle, bottom, it 

demonstrated that the subject was running, walking and resting at this moment, respectively. 

 

Figure 10. The experiment of ECG Acquisition system with physical activity recognition 

on a treadmill. 

A case for continuously monitoring one subject’s context-aware ECG with the proposed system is 

presented in Figure 11. From Figure 11a we can see, the subject is with a heart rate of 56 while resting. 

When the subject changed his activity status from walking to running, there was a sharp increase in 

heart rate of the subject from 67 to 120. Then, after running, the subject rested 30 s with a heart rate of 

91. When the subject was resting 300 s after running, heart rate of the subject recovered to the value 

before running. From the above report we can see, the context-aware system is necessary to evaluate 

the user’s real health condition. For example, a heart rate of 120 is usually deemed as tachycardia from 

professional experience. However, it is acceptable if the user is running or taking exercise, which can 

be reflected from the activity recognition solution. In addition, the monitoring on the variation of ECG 

with the physical activity provides a useful tool to evaluate one’s cardiac function on the adaption to 

the change of status. 

To demonstrate the usefulness of context-aware ECG to recognize physical activity while 

monitoring ECG, we also performed a statistical analysis on the improvement on the diagnosis 

accuracy combined with physical activity. Table 11 gives the abnormal patterns detected before and 

after combined with context information and the comparison with the actual patterns from the 

clinician’s diagnosis. The overall heartbeat number is 7100. VT is often classified as three or more 

beats on an ECG that are at a rate of more than 100 beats per minute in static status, however, when 

transferring from walking status to running status, the heart rate increased rapidly, perhaps in a range 

of 120–180. Therefore, VT can be defined as three or more beats are with a rate of more than 180 beats 

per minute in running status, as the volunteers are around 24 years old. In order to demonstrate the 

discrimination performance of the proposed context-aware ECG system, except for an intuitive 

presentation in Table 11, we also compared the HTER between the single ECG sensor and the  

context-aware ECG system on recognizing abnormal patterns, which can be seen in Table 12. From the 
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table we can see, the discrimination ability was improved in a certain degree by combination of 

physical activity with a HTER of 2.6%, compared with 2.8% with the single ECG sensor, and thus 

demonstrated the effectiveness of the proposed context-aware ECG system in real-life application. In 

addition, the proposed system can identify the most frequent abnormal ECG patterns in different 

activities for each subject, and accordingly, we can provide helpful suggestions for him to be careful 

during this type of activity. For example, as our experiment is carried out on healthy subjects, the 

abnormal patterns have a very low rate; however, we also found that most abnormal patterns are 

occurring at running status. In another words, a lot of asymptomatic ECG patterns can be detected 

through monitoring context-aware ECG. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 11. The screenshot of smartphone (a) the subject was resting; (b) the subject was 

walking on the treadmill; (c) the subject was running on the treadmill; (d) the subject 

rested 30 s after running; (e) the subject rested 90 s after running; (f) the subject rested  

300 s after running. 
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Table 11. Statistical analysis on the performance of proposed context-aware ECG system. 

Abnormal Patterns Detected from ECG Sensor Detected from Context-Aware ECG Sensor Actual 

BG 0 0 0 

TBG 0 0 0 

SA 0 0 0 

MB 0 0 0 

PB 0 0 0 

VPB 4 4 (3 in running, 1 in walking) 4 

APB 5 5 (3 in running, 1 in walking, 1 in rest) 5 

IVBP 0 0 0 

VT 31 9 (8 in running, 1 in walking) 10 

Tachycardia 6 0 0 

Table 12. Discrimination ability comparison between the proposed context-aware ECG 

system and single ECG sensor. TP: true positive, FN: false negative, TN: true negative,  

FP: false positive. 

 ECG Beat Number Discrimination 

Ability (HTER) TP FN TN FP 

Single ECG Sensor 18 1 7054 27 2.8% 

Context-Aware ECG System 18 1 7081 0 2.6% 

4. Conclusions 

A wearable context-aware ECG monitoring system, which is comprised of a self-designed  

fully-integrated low-power ECG monitoring sensor and three built-in kinematic sensors of the 

smartphone for physical activity recognition and automatically arrhythmias detection, is presented in 

this paper. In the proposed system, a wearable ECG acquisition sensor with a total power dissipation of 

12.5 mW is developed, and the whole sensor is very small with a size of 58 × 50 × 10 mm for wearable 

monitoring application. From the experimental results, the presented AFE and acquisition device can 

offer comparable performance to standard device on measuring ECG signal with less power 

consumption. Integrated with the built-in kinetic sensors of the smartphone, the system can recognize 

user’s physical activity with high accuracy and thus helps evaluate the real status which abnormal 

patterns of ECG at. The experimental results have also demonstrated its feasibility in improving 

accuracy for the diagnosis of arrhythmias. The proposed wearable and power-efficient ECG 

monitoring system is qualified for medical applications and will serve as a patient-friendly alternative 

option for continuous ECG monitoring. We anticipate it will become a more efficient platform for 

further data fusion and analysis. 

However, the experimental data is still small with seven healthy subjects and three activities 

involved. In the future, we will dedicate to a comprehensive study on the impact of more activity types 

and human efforts on ECG signals from a large number of experiments based on the proposed system. 

Moreover, an updated ECG monitoring system will be further optimized with not only smaller size, 

lower weight, lower power consumption and higher CMRR, but also automatically identifying the 
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abnormal patterns during daily activities. Further, a remote healthcare system with context-aware ECG 

monitoring will be developed with the help of a private cloud platform [34]. 
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