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Abstract:

 In non-destructive testing (NDT) of metal welds, weld line tracking is usually performed outdoors, where the structured light sources are always disturbed by various noises, such as sunlight, shadows, and reflections from the weld line surface. In this paper, we design a cross structured light (CSL) to detect the weld line and propose a robust laser stripe segmentation algorithm to overcome the noises in structured light images. An adaptive monochromatic space is applied to preprocess the image with ambient noises. In the monochromatic image, the laser stripe obtained is recovered as a multichannel signal by minimum entropy deconvolution. Lastly, the stripe centre points are extracted from the image. In experiments, the CSL sensor and the proposed algorithm are applied to guide a wall climbing robot inspecting the weld line of a wind power tower. The experimental results show that the CSL sensor can capture the 3D information of the welds with high accuracy, and the proposed algorithm contributes to the weld line inspection and the robot navigation.
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1. Introduction

NDT is very important to guarantee the safe operation of lots of industry facilities, such as wind turbine towers and oil storage tanks. In these industrial situations, automatic weld line tracking can navigate moving wall climbing robots and improve the testing performance significantly. From the perspective of sensors, structured light is a typical vision sensor, which possesses the merits of simplicity, noncontact, strong anti-interference abilities and others. It has been widely used in many fields, such as robot navigation [1], automatic welding [2], industry inspection [3,4], 3D measurement [5,6,7] and quality control [8,9]. Unlike weld seam detection in a welding process, weld line tracking for NDT is usually performed outdoors; therefore the sensor is challenged by noise and illumination intensity variations.

The structured light actually has two subclasses: multi-pattern (coded-pattern) and fixed-pattern. The multi-pattern approaches are accurate in the controlled environment of stationary scenes due to their high signal-to-noise ratio (SNR), whereas fixed-pattern methods are robust to ambient lighting changes, but they have less accuracy [10]. Generally, methods for 3D measurement and reconstruction of an object use coded-pattern structured light with high precision and fast speed. However, these methods need to be operated in relatively ideal scenes (indoors). In outdoor scenes, the coded-pattern may fail due to ambient noises and reflections from the object surface [11,12,13]. Thus, the methods based on fixed-pattern (that is, typical liner structured light) are more appropriate for vision navigation of robots in outdoor scenes. The structured light with single laser stripe is the most widely-used approach in industrial environments. For instance, Usamentiaga and Molleda et al. [14] used single laser stripes to inspect and control the flatness of steel strips in real-time. For removing the effects of vibrations, two and multiple laser stripes are also used in uncontrolled environments [5,15].

When using a structured light sensor, robust stripe segmentation is a decisive step that determines the accuracy of tracking and localization of the weld line to be considered, because it describes the local 3D details of the weld line surface. Most research focuses on the peak detection which is used to construct the skeleton of the laser stripe afterwards. The most common methods are the search for the maximum intensity or the detection of the center of the stripe in the image with the use of Linear Approximation, Center of Mass, Gaussian Approximation, Parabolic Estimator, Blais and Rioux Detector. Fisher et al. [16] gave a comparison of several most common approaches ranging from simple methods to complex ones and concluded that all of them displayed performance within the same range. Haug indicated that the center of mass method produces the best results [17]. Strobl et al. [18] presented a stripe segmentation algorithm also based on the center of mass. They detected the stripe edge by using the Sobel operator, then modified the edge points by means of a color look-up table and width limits, both of which need a clean background. Li et al. proposed to use temporal data association to filter out the illumination noise from arc lights or splashes in video sequences [19]. However, it is difficult to extend this approach to outdoor scenes because the illumination variation in outdoor scenes is quite different from arc lights or splashes. Molleda et al. proposed a valid method based on the center of mass [20,21]. They use interferential filters to acquire parts of the image which match the laser wavelength and this reduces greatly noises. The laser stripe is segmented with the use of an improved Split-and-Merge approach from the central points. In their paper, several different approximation functions (linear, quadratic, and Akima splines) are evaluated. Ofner et al. used a line walking algorithm to merge the line gaps, which segment the stripe by looking for maximum values which are higher than a certain threshold in the adjacent row [22]. Forest et al. used a FIR filter approach to detect the peak position of the laser stripe under different noise levels (at different signal-to-noise ratios) [23]. However, the problem of long-duration variation of illumination intensity has remained a challenge to segment stripe approaches.

Most peak detection approaches assume that the distribution of the laser illumination approximates a Gaussian distribution. In these researches, researchers segment laser stripe only under low-level noise conditions according to local information. Thus these approaches are sensitive to the environmental illumination and can only be applied to scenes with high contrast between the laser illumination and background. Because of the above demerits, these methods cannot be directly applied in outdoor and industrial environments with strong illumination and high noise.

Some approaches segment the laser stripe according to global information. In [24], based on the snake model, the spring model improves the segmentation results and shows insensitivity to local noise. The method is robust to the low-quality images caused by laser speckle and illumination variations along the laser line. It is worth noting that it obtains an accurate, complete, robust and smooth centerline of the stripe. In many other studies, most of detection methods concentrate on the detection accuracy of the stripe, often at the expense of robustness and effectiveness.

In this paper, we design a cross-structure light sensor for weld line detection and tracking of a wall climbing robot working in outdoor environments. The laser stripe projected by CSL can reflect the height of weld convexity and detect horizontal and vertical weld lines simultaneously. When the robot moves along a weld line, only a stripe is used to detect the weld line. As the robot is close to a T-intersection of two weld lines, two convex arcs will appear at the strips. The sensor can simultaneously detect two weld lines, which are used to plan the motion path of the robot (make a turn). The problem of the stripe segmentation and centre points localization is formulated through three steps: firstly, to eliminate the effect of illumination, the best monochromatic value space is calculated by the minimum entropy model. Secondly, the minimum entropy deconvolution model is used to acquire the enhancement of the laser stripe. Thirdly, based on the results of the two steps above, all centre points of the stripe are localized by Steger’s method [25]. The proposed algorithm segments the stripe according to global information and overcomes gaps and strong noises.

In the experimental results, the stripe segmentation method is used in a CSL sensor of wall climbing robot. We quantitatively compare the proposed approach with four other approaches to verify the performance of the segmenting stripe. Besides, 3D measurement results of the weld line and path tracing of the wall climbing robot are shown. The controller of the robot is described in [26] and the weld line localization is described in [27], so the details of both are omitted in this paper.

The remainder of this paper is organized as follows: in Section 2, a wall climbing robot and CSL sensor are introduced. In Section 3, the approaches of segmenting the laser stripe and localizing centre points are presented. In Section 4, the experimental results and discussion are presented. The conclusions of the paper are given in Section 5.



2. Cross Structured Light Sensor


2.1. The Robot Platform

The quality inspection system of the weld line is shown in Figure 1a. It is composed of a wall climbing robot, an ultrasonic NDT device and a CSL sensor. Figure 1b,c illustrate the laser projector and image capturing CCD on a straight weld line and cross weld lines, respectively. Two cross laser planes are projected from the laser projector, forming a convex light stripe around the weld line of the welding surface. The laser projector is fixed on the robot and perpendicular to the welding. Two stripes s1 and s2 are formed by the intersection lines between the weld and two orthogonal laser planes L1 and L2. According to the triangulation measurement method, the 3D information of the weld surface can be calculated by transforming the points of the stripes from the image coordinate system to the global coordinate system.

Figure 1. Illustration of the weld line inspection system composed of a wall climbing robot, an NDT device and a CSL sensor. (a) The system; (b) Detecting a straight weld line; and (c) T-intersection of weld lines.
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In general, when the robot moves along the straight weld line, only a convex arc exists on the stripe s2, as shown in Figure 1b. When the robot is close to a T-intersection of vertical and horizontal weld lines, two convex arcs will appear at the strips, as shown in Figure 1c. The sensor can simultaneously detect the locations of the horizontal and the vertical weld lines, which are used to plan the motion path of the robot.



2.2. Model of CSL Sensor

According to the above principle, Figure 2 describes the model of the CSL sensor. oc-xcyczc denotes the camera coordinate system. ocoi = f denotes the focal length of the camera. oi-xiyi denotes the image coordinate system. In camera coordinate system, two mutually orthogonal laser planes L1 and L2 are defined as:

Figure 2. Model of the CSL sensor.
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(1)




where a1a2 + b1b2 + c1c2 = 0.


There is an arbitrary point P on the stripe s1. Pc = [xcp, ycp, zcp,]T denotes the coordinate of point P in camera coordinate system and Pu = [xup, yup]T denotes the coordinate of point P in the image coordinate system. The pixel location of pu is represented by [uup, vup]T. Assuming the width and height of a pixel are dx(mm) and dy(mm), respectively, in the image coordinate system the transformational relation from millimeter coordinate to pixel coordinate is described as:
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(2)




where, the point [u0, v0]T is the intersection coordinates of the optical axis and the image plane, i.e., the principal point of the camera in the image plane. According to the pinhole model, the transformational relation from image coordinate to camera coordinate is described as:


[image: there is no content]



(3)




where [image: there is no content], [image: there is no content]; K is the camera’s intrinsic matrix.
Actual lenses do not obey the ideal pinhole model due to lens distortion [28]. When modeling the camera, correction of radial distortions and tangential distortions is often used to improve the measurement precision [29,30]. In Figure 2 point pu is the unobservable distortion free image coordinates, and pd = [xd, yd]T is the corresponding coordinates with distortion correction. pu and pd are decided by the positions of the points in the image plane and described by:
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(4)




where parameters (k1, k2) of radial distortion and parameters (p1, p2) of tangential distortion are used to model the camera. According to Equations (1)–(4), we can calculate the parameters of the camera model and the coordinates of points on the laser stripe.


2.3. Calibration of CSL Sensor

In the sensor calibration process, the intrinsic parameters of the camera and laser planes parameters need to be computed. Table 1 lists these corresponding parameters and their physical meanings. Where or-xryrzr denotes the robot coordinate system.


Table 1. Parameters of the CSL sensor.



	
Category

	
Parameters

	
Physical Meaning






	
Camera intrinsic parameters

	
(fx, fy)

	
Focal length in the x, y direction




	
(u0, v0)

	
Principle point coordinates




	
(k1, k2)

	
Radial distortion parameters




	
(p1, p2)

	
Tangential distortion parameters




	
Light plane equations

	
(a1, b1, c1)

	
Laser plane L1 equation coefficients




	
(a2, b2, c2)

	
Laser plane L2 equation coefficients




	
∠ l1ol2

	
Angle between L1 and L2




	
Global parameters

	
Rcr

	
Rotation from oc-xcyczc to or-xryrzr




	
Tcr

	
Translation from oc-xcyczc to or-xryrzr











The camera and the planar checkerboard target can move freely. The relative camera positions of the checkerboard among different poses are randomly located, as shown in Figure 3. At each position, the camera respectively captures an image with laser stripe and an image without laser stripe by on-off control of the laser projector. The image with laser stripe is used to calculate the equations of the laser planes, and the image without laser stripe is used to calibrate the intrinsic parameters. A known target and Zhang’s method [31] are used to determine the intrinsic parameters of the camera, in which a camera observes a planar checkerboard target from different perspectives. The calibration procedure gives a closed form solution, followed by a nonlinear refinement based on the maximum likelihood criterion.

Figure 3. Sensor calibration.
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In Figure 3 the planar checkerboard target is also used to calibrate the laser planes. ot-xtytzt is a target coordinate system of the target plane and it is used as the global coordinate system during calibration. Under this condition, the z coordinates of all points of the target plane equals zero. From a 3D target plane coordinate system to 2D image coordinate system, the translation is given as:
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(5)




where [image: there is no content] are the homogeneous coordinates of [image: there is no content]; [image: there is no content] are the homogeneous coordinates of [image: there is no content] in the 2D target plane; s is an arbitrary scale factor; [image: there is no content] matrix [image: there is no content] and [image: there is no content] matrix [image: there is no content] are the rotation matrix and translation vector between two coordinate systems, respectively. According to [image: there is no content] on the target plane, the translation between [image: there is no content] and [image: there is no content] is described as:


[image: there is no content]



(6)




where the homography matrix H is given as [image: there is no content] ([image: there is no content], i = 1, 2 or 3 is row vector of H); [image: there is no content]. H can be coarsely calculated with Equation (5) with at least four non-collinear points. Then a maximum likelihood estimation method is used to calculate the accurate H by minimizing the objective function:
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(7)




where [image: there is no content] and [image: there is no content] are the homogeneous coordinates of the ith feature point in image coordinate system and its corresponding point in target plane coordinate system, respectively. The minimizing problem can be solved by the Levenberg-Marquardt algorithm [32]. The initial value can be obtained from a linear least squares method.


After the cameral calibration, we follow the flowchart shown in Figure 4 to calculate the equations of the laser planes. On the checkerboard, the intersection points of the edges of black/white squares and the stripes are defined as feature points, as shown in Figure 5. The checkerboard is placed at different positions to get the camera coordinates of sufficient points on the stripes (Figure 3). The space equations of laser planes L1 and L2 are fitted using a least square method (LSM).

Figure 4. Flowchart of the feature point coordinate calculation.
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Figure 5. Image used for calibration of laser planes. (a) Capturing image with laser stripes; and (b) extracting feature points on the stripes.
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3. Laser Stripe Segmentation and Centre Points Localization

Outdoors the noise caused by sunlight has a distinguishing characteristic: the values of the R, G and B components are nearly equal. Sometimes the needed information of the image may not show clearly in RGB color space. Therefore, transforming the color space to a monochromatic value space may be helpful to highlight the characteristics of the laser and conveniently segment the stripe. In the paper, a linear transformation is used to obtain a monochromatic value image from RGB images.


3.1. Preprocessing Based on Monochromatic Value Space

In a discrete color image cij (with a size of [image: there is no content]), color values of a pixel are given as three corresponding tristimulus Rij, Gij, and Bij. The linear transformation is defined as Equation (8):



[image: there is no content]



(8)




In the Equation (8), Iij is the desired monochromatic value image, and [image: there is no content], [image: there is no content], ωr, ωg, and ωb [image: there is no content]R. In order to segment the stripe the characteristics of laser should be take into consideration. An objective function needs defining to search the optimal ωr, ωg, and ωb.

Owing to the concentration and the strong brightness of the laser beam, one of the remarkable characteristics of laser is the high concentration of energy, which makes the stripe show a waveform with a few spikes (as shown in Figure 6b, a laser profile example, which is obtained through showing all the image row vectors). It means that the contrast between the laser stripe and background is high. The objective function should retain and enhance the feature so that it will become much easier to segment the laser stripe after transformation. Thus, the contrast can be used to construct the objective function. In Figure 6a, intensity values of the pixels within the laser stripe are close to their average. In these areas, the greater the energy concentration is, the higher the contrast will be and the higher the Kurtosis will be. Therefore, it is reasonable to define the contrast as kurtosis:

Figure 6. Example of laser profiles. (a) Captured image including the cross lasers stripe on the weld line; (b) Superposition of the luminance values row by row.
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(9)




In the Equation (9), kurtosis K is defined as the ratio of fourth-order cumulant (FOC) κ4 to square of the second-order cumulant (SOC) [image: there is no content]. [image: there is no content] and [image: there is no content] are respectively the fourth central moment and the standard deviation of the energy distribution of the laser.



The transformation result of the stripe is expected to be an impulse-like signal which is orderly and furnished with high kurtosis. The background is of great disorder and low kurtosis. For instance, in a communication system, disorder is equivalent to the concept of entropy. There is a positive correlation between the entropy and the random nature of information. For this reason, Wiggins [33] first presented the minimum entropy deconvolution technique. He proposed to maximize a norm function called the Varimax Norm, which is equivalent to maximized kurtosis with assumed zero-mean [34]. The transformation model can be named as minimum entropy model. When K < 0, the Equation (9) can be modified as the Equation (10):



[image: there is no content]



(10)




Thereupon, a maximized function of Equation (10) which is differentiable everywhere can be defined as the square of kurtosis, as shown in Equation (11):
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(11)




If the image is taken as a multi-channel signal (with N segments and M elements per segment), the Kurtosis can be written as:



[image: there is no content]



(12)




In the Equation (12), μj is the mean of column j in the transform image Iij. To obtain the solution of the maximizing Equation (12), K and ω need to satisfy the Equation (13):



[image: there is no content]



(13)




Obviously, it is difficult to solve Equation (13), but the maximum value of K can be approximately calculated according to [35]. An infinite color feature space set is determined by the continuous coefficients in Equation (8). ωr, ωg, and ωb can be learned from training data by the maximum likelihood estimation or the maximum posteriori estimation. For the convenience of calculation, ωr, ωg, and ωb are discretized as integers, and their value range is limited in [−2, 2]. Then Equation (13) is solved by the exhaustion method. Considering that red laser light is used in the experiments, the R component of the captured image has higher intensity, so it is reasonable to define ωr ≥ 0, that is, ωr [image: there is no content] {0, 1, 2}, ωg, ωb [image: there is no content] {−2, −1, 0, 1, 2}, (ωr, ωg, ωb) ≠ (0, 0, 0). Then, the parameters can be solved by the traversal method.



In Figure 7, the optimal coefficient vector of the monochromatic value image is (ωr, ωg, ωb) = (1, −1, 0), and the monochromatic value space is R-G. Compared with the color value R of the stripe and grayscale (i.e., (ωr, ωg, ωb) = (0.30, 0.59, 0.11)) of the original image, R-G is more effective in suppressing noise and improving the SNR. On the one hand, it distinguishes the laser from the background more efficiently. On the other hand, it has much smaller amount of data (one-third of Figure 7a) than that of the original image.

Figure 7. The color transport result: (a) captured image; (b) R component; (c) Grayscale;(d) the monochromatic value of R-G.



[image: Sensors 15 13725 g007 1024]







3.2. Stripe Segmentation Based on Minimum Entropy Deconvolution(MED)

Ideally, the horizontal (and vertical) illumination distributions of stripes are independent, and their intensity conforms to a Gaussian distribution. When the laser projects onto the surface of an object, the distribution form will not change, but the stripe will deform with the change of the object surface geometrical shape. In an ideal situation, the laser peaks are in the center of the stripe composed of the intensity maximum along each column (or row). The laser stripe can be segmented only according to the peaks. However, in real environments, captured images contain various noises such as laser speckle, ambient noise, electrical noise, quantization noise, energy diffusion and excessive saturation [23]. Because of these noises, it is difficult to produce reliable stripe centers by simply calculating the maximum intensity along each profile of the laser stripe. The laser intensity does not always conform to Gaussian distribution and the maximum-valued locations of some columns (or rows) may not be in the center of the stripe. In Figure 8, it shows that some points off the center of stripe replace the stripe’s center points as the maximum points. From the prospect of signal processing, the structure information and the consistency of laser stripe signal are destroyed. Hence some actions should be taken to enhance the energy concentration of the laser stripe to return to their original locations.

Figure 8. Laser peaks and their locations.
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After an appropriate monochromatic value space is chosen, to improve the image quality, the next step is to reset the peak points (theoretical maximum) back to their original positions. This process can be described as 2D image deconvolution. Figure 9 shows the algorithmic model [33,35,36].

Figure 9. The model for 2D deconvolution.
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It can be generally formulated as:
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(14)
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(15)




Because the image is a set of the discrete points, Equations (14) and (15) are described as the following equations:
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(16)
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(17)




In the Equations (14)–(17):


	S denotes the laser stripe;


	H denotes the point spread function of the optical imaging system;


	U denotes a noise function;


	I denotes the acquired image;


	* denotes the 2D convolution operator;


	(i, j) is discrete spatial coordinates;


	W denotes the finite impulse response (FIR) filter, W = 0 if i < 1or j < 1, and W*H = δi-Δi,j-Δj, where δij is the Krönecker delta (discrete impulse signal) [37], and Δi, Δj are the phase delay;


	B denotes the recovered image.




The goal of solving the deconvolution is to find the convolution kernel W by the maximized kurtosis K, so that Bij ≈ αSi-Δi,j-Δj, in which α is a scale factor. MED is an effective technique for deconvolving the impulsive sources from a mixture signals. In [38], an iterative deconvolution approach is proposed. A FIR filter is used to minimize the entropy of the filtered signal, i.e., it searches for an optimum set of filter coefficients, which can recover the output signal with the maximum value of Kurtosis. This process will eventually enhance energy concentration and the structured information in the output signal [39,40,41], recovering an impulsive signal which will be more consistent than before.

Taking the input image as a multi-channel signal in columns (with N segments and M elements per segment) or in rows (with M segments and N elements per segment), in the former case, the horizontal component of the laser stripe is largely restored, and meanwhile, the vertical component information is suppressed, and vice versa. Then the whole recovered information of the laser stripe can be obtained by executing the two operations separately. The model in columns to extract the horizontal laser line can be formulated as:
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(18)
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(19)




In Equations (18) and (19), μBj is the mean of column j of Bij, and L is the order of the filter, both of which have significant impact on the MED outputs. The form of objective function can be described by Equation (19).

The above model is similar to Wiggins’ method except for the objective function, and it will not influence the solution procedure. The MED searches an optimum set of filter Wk coefficients that recover the output signal with the maximum value of kurtosis. For convenience, the filter can be normalized as:
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(20)




In accordance with this constraint, it is feasible to conclude that Iij is converted into Bij, with its energy preserved and its entropy reduced. The reason can be found through explaining Equation (18) mathematically. In Equation (18), it can be seen that Bij is obtained by weighting, shifting, overlapping and adding the corresponding components of Iij (1 < L < N). (i) If L = 1, the filter has no impact on the output; (ii) if L ≥ N, the last L − N + 1 elements has no impact on the output; (iii) it is a well-posed estimation problem because there are fewer parameters than those in [42]. Generally, the greater L is, the more easily the kurtosis K converges to a high value. An appropriate L should balance kurtosis, the energy and the computation. Therefore, from the prospect of minimal entropy or maximal kurtosis, the criterion is not the optimal but an acceptable result. Gonzalez suggests that the L value should lie between 50% and 100% of the number of elements per segment [38]. In our experiments, L is empirically defined as 50% which satisfy the experiment requirements. The deconvolution model (Figure 9) of this problem can be described as Figure 10.

Figure 10. The MED model of the multichannel signal.
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The extremum of Equation (19) is obtained by Equation (21):
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(21)




An iteratively converging local-maximum solution can be derived as:
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(22)




where:
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(23)






[image: there is no content]



(24)




and Wk is iteratively selected. The general procedure is listed in Table 2.




Figure 11 shows the comparison of energy concentration between the input signal and output signal (deconvolved signal by MED).

Figure 11. The comparison of energy concentration before and after MED processing. (a) waveform of the input signal in the columns; (b) waveform of the output signal in the columns.
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Obviously, after MED processing, SNR is higher and the peaks of laser stripe are much steeper. For the segmentation of the vertical laser stripe, its process is the same as that of the horizontal laser stripe.



Table 2. General Procedure of MED.


	Step
	Algorithm





	1
	Initializing the adaptive FIR filter, and setting Wk = [11...1...11]/[image: there is no content], K = 0.



	2
	Computing the output signal Bij according to Equation (11).



	3
	Inputting Bij to Equations (22)–(24), Wk is obtained.



	4
	Inputting Bij to Equation (19) to compute kurtosis K and [image: there is no content].



	5
	Repeating step 2 and 3 to make sure that a specified number of iterations is achieved and that the change in K between iterations is less than a specified small value.








3.3. Centre Points Localization of Laser Stripe

The comparison between a group of delay in rows (or columns) and the ideal curve should be taken into account. This phase shift can be computed according to 2D convolution theorem. The Equation (25) can be obtained by Equation (18):



[image: there is no content]



(25)




where Z is a (L − 1) × N zeros matrix, and:


[image: there is no content]



(26)




in which PI and PW are the phases of Iij and Wk, respectively. Δi and Δj are vertical and horizontal displacements from the segmented stripe to the original stripe, respectively. In the same way, the vertical phases and displacements can be calculated. Therefore, to segment the vertical laser stripe in rows has the same process.
Based on the above results of stripe segmentation and illumination restoration, Steger’s method is used to extract the centre points of laser stripes [25]. The method provides good localization results of centre points using Gaussian filtering and edge detection. Figure 12 shows the localization results of the centre points.

Figure 12. Localization results of the centre points.
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4. Results and Discussion

Three experiments are conducted, which are the segmentation of the stripe in a weld line image, 3D measurement of the weld line, and tracking the weld line on wall-climbing robot. The proposed sensor and approach are tested in five sets of video data captured from the robot on a wind power tower. The configuration of the CSL sensor is listed in Table 3. These algorithms are implemented in C++ and are tested on an Intel Core i3-2130CPU of 3.4 GHz.


Table 3. Configuration of the CSL sensor.



	
Device

	
Parameters






	
Camera

	
CCD: SONY: 1/4 inch




	
Resolution: 640 × 480 pixels




	
Pixel size: 5.6 μm × 5.6 μm




	
Frame rate: 20 fps




	
Focal length: 8 mm




	
Field of view: 43.7°




	
Laser projector

	
Size: [image: there is no content] 9 × 23 mm




	
Wavelength: 700 nm




	
Operating voltage: DC 5 V




	
Operating current: 20–50 mA




	
Output power: 250 mW




	
Fan angle: 60°












4.1. CSL Sensor Calibration

A checkerboard is used as a target board of the cameral calibration. On the checkerboard, the side length of each black/white square is equal to 25 mm. There are 10 × 7 corner points on the target board. There are nine captured images of target board in different positions, as shown in Figure 13. The sets of images are used to calibrate camera and calculate equations of laser planes. The coordinates of feature points of laser stripe are extracted by the method in Section 3. Based on the method described in Section 2, the feature points of camera coordinate system are calculated, and then the equations of laser planes are fitted. A plane equation can be obtained by at least three non-collinear feature points. The calibration results of the CSL sensor are listed in Table 4.

Figure 13. Calibration checkerboard with laser stripe.
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Table 4. The calibration results of the CSL sensor.



	
Category

	
Parameters

	
Values






	
Camera intrinsic parameters

	
(fx, fy)

	
(922.4350, 917.3560)




	
(u0, v0)

	
(329.1680, 2705660)




	
(k1, k2)

	
(−291.459 × 10−3, 157.027 × 10−3)




	
(p1, p2)

	
(−0.1354 × 10−3, −0.2682 × 10−3)




	
Light plane equations

	
(a1, b1, c1)

	
(−0.18 × 10−3, 1.86 × 10−3, 1.39 × 10−3)




	
(a2, b2, c2)

	
(−90.11 × 10−3, 2.463 × 10−3, 8.935 × 10−3)




	
∠l1ol2

	
89.9981°




	
Global parameters

	
Rcr
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Tcr
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It can be seen in Table 5 that the dot product of the coefficients of the two plane equations is equal to a1a2 + b1b2 + c1c2 = 3.322 × 10−5, which is close to zero. The measurement accuracy of the CSL is evaluated by comparing standard values and measured values [43]. The standard value is the coordinates of the intersection points of the target board and rays of light between the optical center and feature points, as shown in Figure 3. The measured value is the coordinates of the intersection points of the laser planes and rays of light between optical center and feature point. In a random position, 18 feature points are selected to evaluate measurement accuracy of the system using the laser plane equations.


Table 5. Measurement accuracy.



	
Image Coordinates

	
Standard Value

	
Measured Value

	
Errors of Coordinates




	
(u,v)/(pixels)

	
x (mm)

	
y (mm)

	
z (mm)

	
x (mm)

	
y (mm)

	
z (mm)

	
Δx (mm)

	
Δy (mm)

	
Δz (mm)






	
434.812, 216.242

	
224.751

	
−61.644

	
237.893

	
224.542

	
−61.586

	
237.671

	
−0.209

	
0.058

	
−0.222




	
521.702, 339.656

	
208.124

	
−60.198

	
231.686

	
207.856

	
−60.121

	
231.388

	
−0.268

	
0.077

	
−0.298




	
520.861, 304.699

	
191.494

	
−58.802

	
225.479

	
191.424

	
−58.781

	
225.397

	
−0.070

	
0.021

	
−0.082




	
519.817, 272.006

	
174.863

	
−57.407

	
219.272

	
174.962

	
−57.439

	
219.395

	
0.099

	
−0.032

	
0.123




	
518.237, 238.050

	
166.850

	
−56.695

	
216.280

	
166.851

	
−56.695

	
216.281

	
0.001

	
0

	
0.001




	
516.309, 220.555

	
158.236

	
−55.971

	
213.065

	
158.309

	
−55.996

	
213.163

	
0.073

	
−0.025

	
0.098




	
515.171, 204.063

	
141.610

	
−54.515

	
206.858

	
141.588

	
−54.507

	
206.826

	
−0.022

	
0.008

	
−0.032




	
512.486, 170.342

	
124.986

	
−53.019

	
200.650

	
124.763

	
−52.925

	
200.291

	
−0.223

	
0.094

	
−0.359




	
508.894, 138.080

	
177.332

	
57.495

	
216.540

	
177.262

	
57.472

	
216.455

	
−0.070

	
−0.023

	
−0.085




	
577.181, 225.223

	
175.097

	
32.586

	
216.503

	
175.014

	
32.571

	
216.399

	
−0.083

	
−0.015

	
−0.104




	
565.821, 224.684

	
172.689

	
7.687

	
216.400

	
172.695

	
7.687

	
216.408

	
0.006

	
0

	
0.008




	
554.325, 223.663

	
170.521

	
−17.226

	
216.388

	
170.473

	
−17.221

	
216.328

	
−0.048

	
0.005

	
−0.060




	
539.553, 223.101

	
168.219

	
−42.131

	
216.325

	
168.197

	
−42.126

	
216.297

	
−0.022

	
0.005

	
−0.028




	
525.946, 222.546

	
165.957

	
−67.039

	
216.278

	
165.937

	
−67.031

	
216.251

	
−0.02

	
0.008

	
−0.027




	
510.778, 220.525

	
163.709

	
−91.947

	
216.235

	
163.683

	
−91.932

	
216.200

	
−0.026

	
0.015

	
−0.035




	
494.025, 219.462

	
161.487

	
−116.857

	
216.202

	
161.441

	
−116.823

	
216.14

	
−0.046

	
0.034

	
−0.062




	
477.062, 218.398

	
159.212

	
−141.763

	
216.150

	
159.175

	
−141.730

	
216.099

	
−0.037

	
0.033

	
−0.051




	
457.027, 217.322

	
156.884

	
-166.667

	
216.078

	
156.884

	
−166.667

	
216.078

	
0

	
0

	
0




	
RMS errors (mm)

	
--

	
--

	
--

	
--

	
--

	
--

	
0.094

	
0.034

	
0.120











Table 5 lists the measurement accuracy evaluation data. There are Root-Mean-Square (RMS) errors of (0.094, 0.034, 0.120) in the three directions. The measurement errors are shown in Figure 14 and Figure 15.

Figure 14. Measurement errors in x, y and z directions.



[image: Sensors 15 13725 g014 1024]





Figure 15. The absolute errors in feature points.
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4.2. Accuracy and Speed of Stripe Segmentation

This paper quantitatively contrasts the performance of the proposed approach (MED), Centre of mass (CM), Linear approximation (LA), quadratic approximation (QA), and Akima splines approximation (AA). The different monochromatic value spaces (R or R-G), absolute errors and running time are computed, respectively.



In the test images, the segmentation quality of the comparison algorithms and the proposed algorithm are shown in Table 6, Figure 16 and Figure 17. The runtime per image is the mean value obtained by the processing of 1000 images. As a whole, it can be seen from the following table and figures that (i) the component R-G is better than R in all methods; (ii) the method of segmenting laser stripe based on MED is more robust, accurate, and fast than other approaches. It is worth noting that the data of vertical laser stripe obtained in R is so tough that the time it consumed is too long to afford in practice. Taking this factor into account, it is unfeasible to use LA, QA, AA and MED to fit the vertical laser stripe.

Figure 16. The segmentation result of the above methods in R component space and R-G space: (a–e) and (f–j) are results of CM, LA, QA, AA and MED in R and R-G respectively.
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Figure 17. The errors of the above methods in R and R-G: (a–e) are errors of the horizontal stripe using CM, LA, QA, AA and MED in R and R-G respectively; (f–j) are errors of the vertical stripe using CM, LA, QA, AA and MED in R and R-G respectively.
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Table 6. Laser Stripe Segmentation Performance.



	
Laser Stripe

	
Color Space

	

	
Method

	
CM

	
LA

	
QA

	
AA

	
MED




	
Index

	






	
Horizontal Laser stripe

	
R

	
Average error (mm)

	
0.432

	
0.667

	
0.271

	
0.311

	
0.231




	
Running time (ms)

	
18.3

	
320.2

	
168.1

	
130.3

	
22.3




	
R-G

	
Average error (mm)

	
0.330

	
0.416

	
0.267

	
0.291

	
0.231




	
Running time (ms)

	
17.9

	
314.0

	
167.6

	
196.6

	
20.9




	
Vertical Laser stripe

	
R

	
Average error (mm)

	
1.001

	
66.710

	
73.334

	
70.350

	
71.050




	
Running time (ms)

	
18.8

	
∞

	
∞

	
∞

	
20.6




	
R-G

	
Average error (mm)

	
0.700

	
0.431

	
0.295

	
0.327

	
0.235




	
Running time (ms)

	
17.6

	
120.2

	
147.2

	
166.6

	
19.9






“∞”means that the time is too long to afford in practice, num = 500.








Nonetheless, the error of MED overall is smaller than the former. Furthermore, they are smoother than the fitting data obtained by LA, QA, and AA in R-G. This phenomenon is determined by the more flat distribution of the former error, though most of its elements are larger and they have similar offsets relative to the true data. Another contribution of the proposed method is that the errors of the vertical stripe by MED are only larger than those of LA in R-G space, which results from different reasons. Firstly, the vertical laser stripe is fitted by linear approximation of LA, and it is a straight line in the image. Secondly, since only a few points with a lager error value have useful information, the breakpoints detection is absent in MED, which makes the method more effective and robust than LA. And the vertical laser stripe by MED is smoother than LA. Therefore, the performance of MED is better.

Figure 18 shows the laser stripes extraction results in four frames captured in the wild environment. Despite high illumination and varying intensity of light in the frames, the algorithm exhibits good performance. All the calculations are based on the full image. It can be seen that the speed of MED is fast enough to be applied in the real environments. If the region of interest is selected, the running speed will become faster.

Figure 18. Laser stripe segmentation results with different illumination interferences. (a,b) Cross and straight weld line in the sunshine; (c) The weld line with reflections surface; (d) The weld line in the shadow.
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4.3. Weld Line Detection and Tracking of Wall Climbing Robot

In order to verify the feasibility of the CSL sensor, the calibrated sensor is tested on a wind power tower by a wall climbing robot platform, as shown in Figure 19. Figure 20 describes the conversion of the camera coordinate system, the robot coordinate system and the calibration target coordinate system. In which (Rcr, Tcr), (Rtr, Ttr) and (Rtc, Ttc) denote rotation matrixes and translational matrixes between three coordinate systems, respectively. The location of the weld line is detected by the method in [27]. According to the detection results, the robot can follow the weld line and perform NDT.

Figure 19. Wall climbing robot prototype. (a) Robot with the CSL device; (b) Robot working in vertical and horizontal direction.
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Figure 20. The conversion of the camera coordinate system, the robot coordinate system and the calibration target coordinate system.
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In the paper, the measured object is the weld line of a wind power tower. The tower is a bulky cone with a height of about 30–50 m and a diameter of about 2.2–4 m. Therefore, the structured light sensor may not reconstruct 3D information of the whole tower. We just reconstruct the local 3D information around the weld line. Figure 21 shows the detection and measurement experiments in the wild environment. The robot coordinate system is supposed to be the global coordinate system. In practice, the speed of the wall climbing robot is about 30 mm/s (about 1.5 mm/frame given a video frame rate of 20 fps). For the captured image with 640 × 480 pixels, the difference between two successive frames is about 5~6 row pixels. Therefore, the percent overlap is about 99%. Under the circumstances of high illumination and excessive noise, the robustness of the sensor stands out. Figure 21b shows the extracted laser stripe on the weld lines. Figure 21c illustrates the detection results of the T-intersection weld lines and Figure 21d shows the measurement results of the T-intersection weld lines. Both vertical and horizontal weld lines appear in the video sequence. It can be seen that the CSL sensor can detect and measure both vertical and horizontal weld lines when the robot moves close to the intersection part of the two weld lines. From the image space to the object space the coordinate transforming relation is:

Figure 21. Measurement and 3D coordinates of straight and cross weld lines. (a) Measure straight weld line; (b) 3D coordinates of the straight weld line; (c) Measure cross weld line; (d) 3D coordinates of the cross weld line.
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(27)








When the robot moves along the straight weld lines, the measured weld line locations can be used directly for navigation. When the robot moves close to T-intersection weld lines, we can get two convex arcs on the laser stripes, and the vertical and horizontal locations of the weld lines can be extracted simultaneously using the CSL sensor. In Figure 22, we show the navigation and motion trajectories of the robot at the T-intersection of the weld lines. The average tracking error is less than 2 mm to ideal central line.

Figure 22. Weld line tracking results of the wall climbing robot. (a) Central lines of two cross weld lines (ground-truth); (b) Motion trail of the robot; (c) The tracking errors.
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The camera does not have any optical filter, so that the segmentation process becomes more adaptive and lower cost compared with other ways used in the industry. Although a high noise level exists in low-quality images, the sensor and the proposed algorithm are robust enough to segment the laser stripe and detect weld lines accurately.




5. Conclusions

This paper proposes a structured light sensor with cross stripes and a segmentation algorithm of the stripe for vision navigation of a wall climbing robot in outdoor environments. The simple but effective cross structured light device provides an example for weld line measurement, while we provide a general methodology based on MED for a kind of measurement problems in industrial applications. The proposed algorithm chooses an adaptive monochromatic value space for preprocessing, and then recovers the laser stripe after the deconvolution process.

To process a color image with 640 × 480 pixels resolution, the average running time is about 20 ms. In cameral calibration, RMS of measurement errors is within 0.120 mm. In the field experiments, the absolute measurement error is less than 0.3 mm. In the robot navigation experiments, the average tracking error is less than 2 mm. The results of the experiments demonstrate that the designed sensor and the proposed algorithm have high accuracy, robustness and efficiency for measurement and navigation.
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