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Abstract: In non-destructive testing (NDT) of metal welds, weld line tracking is usually 

performed outdoors, where the structured light sources are always disturbed by various 

noises, such as sunlight, shadows, and reflections from the weld line surface. In this paper, 

we design a cross structured light (CSL) to detect the weld line and propose a robust laser 

stripe segmentation algorithm to overcome the noises in structured light images. An 

adaptive monochromatic space is applied to preprocess the image with ambient noises. In 

the monochromatic image, the laser stripe obtained is recovered as a multichannel signal 

by minimum entropy deconvolution. Lastly, the stripe centre points are extracted from the 

image. In experiments, the CSL sensor and the proposed algorithm are applied to guide a 

wall climbing robot inspecting the weld line of a wind power tower. The experimental 

results show that the CSL sensor can capture the 3D information of the welds with  

high accuracy, and the proposed algorithm contributes to the weld line inspection and the 

robot navigation. 

Keywords: structured light sensor; laser stripe segmentation; weld line tracking; wall 

climbing robot 
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1. Introduction 

NDT is very important to guarantee the safe operation of lots of industry facilities, such as wind 

turbine towers and oil storage tanks. In these industrial situations, automatic weld line tracking can 

navigate moving wall climbing robots and improve the testing performance significantly. From the 

perspective of sensors, structured light is a typical vision sensor, which possesses the merits of simplicity, 

noncontact, strong anti-interference abilities and others. It has been widely used in many fields, such as 

robot navigation [1], automatic welding [2], industry inspection [3,4], 3D measurement [5–7] and quality 

control [8,9]. Unlike weld seam detection in a welding process, weld line tracking for NDT is usually 

performed outdoors; therefore the sensor is challenged by noise and illumination intensity variations. 

The structured light actually has two subclasses: multi-pattern (coded-pattern) and fixed-pattern.  

The multi-pattern approaches are accurate in the controlled environment of stationary scenes due to 

their high signal-to-noise ratio (SNR), whereas fixed-pattern methods are robust to ambient lighting 

changes, but they have less accuracy [10]. Generally, methods for 3D measurement and reconstruction 

of an object use coded-pattern structured light with high precision and fast speed. However, these 

methods need to be operated in relatively ideal scenes (indoors). In outdoor scenes, the coded-pattern 

may fail due to ambient noises and reflections from the object surface [11–13]. Thus, the methods 

based on fixed-pattern (that is, typical liner structured light) are more appropriate for vision navigation 

of robots in outdoor scenes. The structured light with single laser stripe is the most widely-used 

approach in industrial environments. For instance, Usamentiaga and Molleda et al. [14] used single 

laser stripes to inspect and control the flatness of steel strips in real-time. For removing the effects of 

vibrations, two and multiple laser stripes are also used in uncontrolled environments [5,15]. 

When using a structured light sensor, robust stripe segmentation is a decisive step that determines 

the accuracy of tracking and localization of the weld line to be considered, because it describes the 

local 3D details of the weld line surface. Most research focuses on the peak detection which is used to 

construct the skeleton of the laser stripe afterwards. The most common methods are the search for the 

maximum intensity or the detection of the center of the stripe in the image with the use of Linear 

Approximation, Center of Mass, Gaussian Approximation, Parabolic Estimator, Blais and Rioux 

Detector. Fisher et al. [16] gave a comparison of several most common approaches ranging from simple 

methods to complex ones and concluded that all of them displayed performance within the same range. 

Haug indicated that the center of mass method produces the best results [17]. Strobl et al. [18] presented 

a stripe segmentation algorithm also based on the center of mass. They detected the stripe edge by 

using the Sobel operator, then modified the edge points by means of a color look-up table and width 

limits, both of which need a clean background. Li et al. proposed to use temporal data association to 

filter out the illumination noise from arc lights or splashes in video sequences [19]. However, it is 

difficult to extend this approach to outdoor scenes because the illumination variation in outdoor scenes 

is quite different from arc lights or splashes. Molleda et al. proposed a valid method based on the 

center of mass [20,21]. They use interferential filters to acquire parts of the image which match the 

laser wavelength and this reduces greatly noises. The laser stripe is segmented with the use of an 

improved Split-and-Merge approach from the central points. In their paper, several different 

approximation functions (linear, quadratic, and Akima splines) are evaluated. Ofner et al. used a line 

walking algorithm to merge the line gaps, which segment the stripe by looking for maximum values 
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which are higher than a certain threshold in the adjacent row [22]. Forest et al. used a FIR filter 

approach to detect the peak position of the laser stripe under different noise levels (at different  

signal-to-noise ratios) [23]. However, the problem of long-duration variation of illumination intensity 

has remained a challenge to segment stripe approaches. 

Most peak detection approaches assume that the distribution of the laser illumination approximates 

a Gaussian distribution. In these researches, researchers segment laser stripe only under low-level 

noise conditions according to local information. Thus these approaches are sensitive to the 

environmental illumination and can only be applied to scenes with high contrast between the laser 

illumination and background. Because of the above demerits, these methods cannot be directly applied 

in outdoor and industrial environments with strong illumination and high noise. 

Some approaches segment the laser stripe according to global information. In [24], based on the 

snake model, the spring model improves the segmentation results and shows insensitivity to local 

noise. The method is robust to the low-quality images caused by laser speckle and illumination 

variations along the laser line. It is worth noting that it obtains an accurate, complete, robust and 

smooth centerline of the stripe. In many other studies, most of detection methods concentrate on the 

detection accuracy of the stripe, often at the expense of robustness and effectiveness. 

In this paper, we design a cross-structure light sensor for weld line detection and tracking of a wall 

climbing robot working in outdoor environments. The laser stripe projected by CSL can reflect the 

height of weld convexity and detect horizontal and vertical weld lines simultaneously. When the robot 

moves along a weld line, only a stripe is used to detect the weld line. As the robot is close to a  

T-intersection of two weld lines, two convex arcs will appear at the strips. The sensor can 

simultaneously detect two weld lines, which are used to plan the motion path of the robot (make a 

turn). The problem of the stripe segmentation and centre points localization is formulated through three 

steps: firstly, to eliminate the effect of illumination, the best monochromatic value space is calculated 

by the minimum entropy model. Secondly, the minimum entropy deconvolution model is used to 

acquire the enhancement of the laser stripe. Thirdly, based on the results of the two steps above, all 

centre points of the stripe are localized by Steger’s method [25]. The proposed algorithm segments the 

stripe according to global information and overcomes gaps and strong noises. 

In the experimental results, the stripe segmentation method is used in a CSL sensor of wall climbing 

robot. We quantitatively compare the proposed approach with four other approaches to verify the 

performance of the segmenting stripe. Besides, 3D measurement results of the weld line and path 

tracing of the wall climbing robot are shown. The controller of the robot is described in [26] and the 

weld line localization is described in [27], so the details of both are omitted in this paper. 

The remainder of this paper is organized as follows: in Section 2, a wall climbing robot and CSL 

sensor are introduced. In Section 3, the approaches of segmenting the laser stripe and localizing centre 

points are presented. In Section 4, the experimental results and discussion are presented. The 

conclusions of the paper are given in Section 5. 
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2. Cross Structured Light Sensor 

2.1. The Robot Platform 

The quality inspection system of the weld line is shown in Figure 1a. It is composed of a wall 

climbing robot, an ultrasonic NDT device and a CSL sensor. Figures 1b,c illustrate the laser projector 

and image capturing CCD on a straight weld line and cross weld lines, respectively. Two cross laser 

planes are projected from the laser projector, forming a convex light stripe around the weld line of the 

welding surface. The laser projector is fixed on the robot and perpendicular to the welding. Two stripes 

s1 and s2 are formed by the intersection lines between the weld and two orthogonal laser planes L1 and 

L2. According to the triangulation measurement method, the 3D information of the weld surface can be 

calculated by transforming the points of the stripes from the image coordinate system to the global 

coordinate system. 

 
(a) 

(b) (c) 

Figure 1. Illustration of the weld line inspection system composed of a wall climbing 

robot, an NDT device and a CSL sensor. (a) The system; (b) Detecting a straight weld line; 

and (c) T-intersection of weld lines. 

In general, when the robot moves along the straight weld line, only a convex arc exists on the stripe 

s2, as shown in Figure 1b. When the robot is close to a T-intersection of vertical and horizontal weld 

lines, two convex arcs will appear at the strips, as shown in Figure 1c. The sensor can simultaneously 

detect the locations of the horizontal and the vertical weld lines, which are used to plan the motion path 

of the robot. 
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2.2. Model of CSL Sensor 

According to the above principle, Figure 2 describes the model of the CSL sensor. oc-xcyczc denotes 

the camera coordinate system. ocoi = f denotes the focal length of the camera. oi-xiyi denotes the image 

coordinate system. In camera coordinate system, two mutually orthogonal laser planes L1 and L2 are 

defined as: 

1 c 1 1

2 2 2

1 0

1 0
c c

c c c

a x b y c z

a x b y c z

+ + + =
 + + + =

 (1)

where a1a2 + b1b2 + c1c2 = 0. 

 

Figure 2. Model of the CSL sensor. 

There is an arbitrary point P on the stripe s1. Pc = [xcp, ycp, zcp,]T denotes the coordinate of point Pin 

camera coordinate system and Pu = [xup, yup]T denotes the coordinate of point P in the image coordinate 

system. The pixel location of pu is represented by [uup, vup]T. Assuming the width and height of a pixel 

are dx(mm) and dy(mm), respectively, in the image coordinate system the transformational relation 

from millimeter coordinate to pixel coordinate is described as: 

0

0

1 0

0 1
up up

up up

u x udx

v y vdy

      
= +      
      

 (2)

where, the point [u0, v0]T is the intersection coordinates of the optical axis and the image plane, i.e., the 

principal point of the camera in the image plane. According to the pinhole model, the transformational 

relation from image coordinate to camera coordinate is described as: 

0

0

0

0

1 0 0 1 1 1

up x cp cp cp cp

up y cp cp cp cp

u k u x z x z

v k v y z K y z

       
       = =       
              

 (3)

where x

f
k

dx
= , y

f
k

dy
= ; K is the camera’s intrinsic matrix. 
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Actual lenses do not obey the ideal pinhole model due to lens distortion [28]. When modeling the 

camera, correction of radial distortions and tangential distortions is often used to improve the 

measurement precision [29,30]. In Figure 2 point pu is the unobservable distortion free image 

coordinates, and pd = [xd, yd]T is the corresponding coordinates with distortion correction. pu and pd are 

decided by the positions of the points in the image plane and described by: 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

2 22 2 2 2 2 2 2
1 2 1 2

2 22 2 2 2 2 2 2
1 2 2 1

2 2

2 2

up d d d d d d d d d d d

up d d d d d d d d d d d

x k x x y k x x y p x x y p x y

y k y x y k y x y p y x y p x y

 = + + + + + + +

 = + + + + + + +


 (4)

where parameters (k1, k2) of radial distortion and parameters (p1, p2) of tangential distortion are used to 

model the camera. According to Equations (1)–(4), we can calculate the parameters of the camera 

model and the coordinates of points on the laser stripe. 

2.3. Calibration of CSL Sensor 

In the sensor calibration process, the intrinsic parameters of the camera and laser planes parameters 

need to be computed. Table 1 lists these corresponding parameters and their physical meanings. Where  

or-xryrzr denotes the robot coordinate system. 

Table 1. Parameters of the CSL sensor. 

Category Parameters Physical Meaning 

Camera intrinsic parameters 

(fx, fy) Focal length in the x, y direction 
(u0, v0) Principle point coordinates 
(k1, k2) Radial distortion parameters 
(p1, p2) Tangential distortion parameters 

Light plane equations 
(a1, b1, c1) Laser plane L1 equation coefficients 
(a2, b2, c2) Laser plane L2 equation coefficients 
∠l1ol2 Angle between L1 and L2 

Global parameters 
Rcr Rotation from oc-xcyczc to or-xryrzr 
Tcr Translation from oc-xcyczc to or-xryrzr 

The camera and the planar checkerboard target can move freely. The relative camera positions of 

the checkerboard among different poses are randomly located, as shown in Figure 3. At each position, 

the camera respectively captures an image with laser stripe and an image without laser stripe by on-off 

control of the laser projector. The image with laser stripe is used to calculate the equations of the laser 

planes, and the image without laser stripe is used to calibrate the intrinsic parameters. A known target 

and Zhang’s method [31] are used to determine the intrinsic parameters of the camera, in which a 

camera observes a planar checkerboard target from different perspectives. The calibration  

procedure gives a closed form solution, followed by a nonlinear refinement based on the maximum  

likelihood criterion. 
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Figure 3. Sensor calibration. 

In Figure 3 the planar checkerboard target is also used to calibrate the laser planes. ot-xtytzt is a 

target coordinate system of the target plane and it is used as the global coordinate system during 

calibration. Under this condition, the z coordinates of all points of the target plane equals zero. From a 

3D target plane coordinate system to 2D image coordinate system, the translation is given as: 

[ ][ ] [ ]1 2 3 1
T

t t tsm A r r r t x y z A R t M= =   (5)

where [ ]1
T

m u v=  are the homogeneous coordinates of [ ]T
m u v= ; [ ]1

T

t t tM x y z=  are the 

homogeneous coordinates of [ ]T

t t tM x y z=  in the 2D target plane; s is an arbitrary scale factor; 

3  3×  matrix ( )1 2 3R r r r=  and 3  1×  matrix ( )1 2 3

T
t t t t=  are the rotation matrix and 

translation vector between two coordinate systems, respectively. According to 0tz =  on the target 

plane, the translation between m  and M  is described as: 

[ ]1 2

1
m A r r t M HM

s
′ ′= =   (6)

where the homography matrix H is given as [ ]1 2 3

T
H h h h=  ( ih , i = 1, 2 or 3 is row vector of H); 

[ ]1
T

t tM x y′ = . H can be coarsely calculated with Equation (5) with at least four non-collinear 

points. Then a maximum likelihood estimation method is used to calculate the accurate H by 

minimizing the objective function: 

2

1

3 2

1
min

T
i

i T T
i i i

h M
F m

h M h M

 
= −  

  
  (7)

where ( )1
T

i i im u v=  and ( )1
T

i i iM x y=  are the homogeneous coordinates of the ith feature 

point in image coordinate system and its corresponding point in target plane coordinate system, 

respectively. The minimizing problem can be solved by the Levenberg-Marquardt algorithm [32]. The 

initial value can be obtained from a linear least squares method. 
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Figure 4. Flowchart of the feature point coordinate calculation. 

After the cameral calibration, we follow the flowchart shown in Figure 4 to calculate the equations 

of the laser planes. On the checkerboard, the intersection points of the edges of black/white squares 

and the stripes are defined as feature points, as shown in Figure 5. The checkerboard is placed at 

different positions to get the camera coordinates of sufficient points on the stripes (Figure 3). The 

space equations of laser planes L1 and L2 are fitted using a least square method (LSM). 

 
(a) (b) 

Figure 5. Image used for calibration of laser planes. (a) Capturing image with laser stripes; 

and (b) extracting feature points on the stripes. 

3. Laser Stripe Segmentation and Centre Points Localization 

Outdoors the noise caused by sunlight has a distinguishing characteristic: the values of the R, G and 

B components are nearly equal. Sometimes the needed information of the image may not show clearly 

in RGB color space. Therefore, transforming the color space to a monochromatic value space may be 

helpful to highlight the characteristics of the laser and conveniently segment the stripe. In the paper, a 

linear transformation is used to obtain a monochromatic value image from RGB images. 

3.1. Preprocessing Based on Monochromatic Value Space 

In a discrete color image cij (with a size of  M N× ), color values of a pixel are given as three 

corresponding tristimulus Rij, Gij, and Bij. The linear transformation is defined as Equation (8): 

ij r ij g ij b ijI R G B= ω + ω + ω  (8)
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In the Equation (8), Iij is the desired monochromatic value image, and [ ]i 1,2,...,M∈ , [ ]j 1,2,...,N∈ , 

ωr, ωg, and ωb ∈  R. In order to segment the stripe the characteristics of laser should be take into 

consideration. An objective function needs defining to search the optimal ωr, ωg, and ωb. 

Owing to the concentration and the strong brightness of the laser beam, one of the remarkable 

characteristics of laser is the high concentration of energy, which makes the stripe show a waveform 

with a few spikes (as shown in Figure 6b, a laser profile example, which is obtained through showing 

all the image row vectors). It means that the contrast between the laser stripe and background is high. 

The objective function should retain and enhance the feature so that it will become much easier to 

segment the laser stripe after transformation. Thus, the contrast can be used to construct the objective 

function. In Figure 6a, intensity values of the pixels within the laser stripe are close to their average. In 

these areas, the greater the energy concentration is, the higher the contrast will be and the higher the 

Kurtosis will be. Therefore, it is reasonable to define the contrast as kurtosis: 

4 4
2 4
2

3K
κ μ= = −
κ σ

 (9)

In the Equation (9), kurtosis K is defined as the ratio of fourth-order cumulant (FOC)  to square 

of the second-order cumulant (SOC) 2
2κ . 4μ  and σ  are respectively the fourth central moment and the 

standard deviation of the energy distribution of the laser. 

(a) (b) 

Figure 6. Example of laser profiles. (a) Captured image including the cross lasers stripe on 

the weld line; (b) Superposition of the luminance values row by row. 

The transformation result of the stripe is expected to be an impulse-like signal which is orderly and 

furnished with high kurtosis. The background is of great disorder and low kurtosis. For instance, in a 

communication system, disorder is equivalent to the concept of entropy. There is a positive correlation 

between the entropy and the random nature of information. For this reason, Wiggins [33] first 

presented the minimum entropy deconvolution technique. He proposed to maximize a norm function 

called the Varimax Norm, which is equivalent to maximized kurtosis with assumed zero-mean [34]. 
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The transformation model can be named as minimum entropy model. When K < 0, the Equation (9) 

can be modified as the Equation (10): 

( ) 4
4

3 abs K
μ= −
σ

 (10)

Thereupon, a maximized function of Equation (10) which is differentiable everywhere can be 

defined as the square of kurtosis, as shown in Equation (11): 

( )( ) ( )
2

24 4
4 4

max 3 max 3abs K K
μ μ = − ⇔ = − σ σ 

 (11)

If the image is taken as a multi-channel signal (with N segments and M elements per segment), the 

Kurtosis can be written as: 

( )

( )

2

4

2 1
2

21

1

3

M

ij jN
i

M
j

ij j
i

I
K

I

=

=

=

 
 − μ
 = −   − μ    





 (12)

In the Equation (12), μj is the mean of column  in the transform image Iij. To obtain the solution 

of the maximizing Equation (12), K and ω need to satisfy the Equation (13): 

0,  0,  0 
r g b

K K K∂ ∂ ∂= = =
∂ω ∂ω ∂ω

 (13)

Obviously, it is difficult to solve Equation (13), but the maximum value of K can be approximately 

calculated according to [35]. An infinite color feature space set is determined by the continuous 

coefficients in Equation (8). ωr, ωg, and ωb can be learned from training data by the maximum 

likelihood estimation or the maximum posteriori estimation. For the convenience of calculation, ωr, ωg, 

and ωb are discretized as integers, and their value range is limited in [−2, 2]. Then Equation (13) is 

solved by the exhaustion method. Considering that red laser light is used in the experiments, the R 

component of the captured image has higher intensity, so it is reasonable to define ωr ≥ 0, that is,  

ωr ∈  {0, 1, 2}, ωg, ωb ∈  {−2, −1, 0, 1, 2}, (ωr, ωg, ωb) ≠ (0, 0, 0). Then, the parameters can be solved 

by the traversal method.  

(a) (b) (c) (d) 

Figure 7. The color transport result: (a) captured image; (b) R component; (c) Grayscale; 

(d) the monochromatic value of R-G. 

j
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In Figure 7, the optimal coefficient vector of the monochromatic value image is (ωr, ωg, ωb) = (1, −1, 0), 

and the monochromatic value space is R-G. Compared with the color value R of the stripe and 

grayscale (i.e., (ωr, ωg, ωb) = (0.30, 0.59, 0.11)) of the original image, R-G is more effective in 

suppressing noise and improving the SNR. On the one hand, it distinguishes the laser from the 

background more efficiently. On the other hand, it has much smaller amount of data (one-third of 

Figure 7a) than that of the original image. 

3.2. Stripe Segmentation Based on Minimum Entropy Deconvolution(MED) 

Ideally, the horizontal (and vertical) illumination distributions of stripes are independent, and their 

intensity conforms to a Gaussian distribution. When the laser projects onto the surface of an object, the 

distribution form will not change, but the stripe will deform with the change of the object surface 

geometrical shape. In an ideal situation, the laser peaks are in the center of the stripe composed of the 

intensity maximum along each column (or row). The laser stripe can be segmented only according to 

the peaks. However, in real environments, captured images contain various noises such as laser 

speckle, ambient noise, electrical noise, quantization noise, energy diffusion and excessive  

saturation [23]. Because of these noises, it is difficult to produce reliable stripe centers by simply 

calculating the maximum intensity along each profile of the laser stripe. The laser intensity does not 

always conform to Gaussian distribution and the maximum-valued locations of some columns (or 

rows) may not be in the center of the stripe. In Figure 8, it shows that some points off the center of 

stripe replace the stripe’s center points as the maximum points. From the prospect of signal processing, 

the structure information and the consistency of laser stripe signal are destroyed. Hence some  

actions should be taken to enhance the energy concentration of the laser stripe to return to their  

original locations. 

 

Figure 8. Laser peaks and their locations. 
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After an appropriate monochromatic value space is chosen, to improve the image quality, the next 

step is to reset the peak points (theoretical maximum) back to their original positions. This process can 

be described as 2D image deconvolution. Figure 9 shows the algorithmic model [33,35,36]. 

S B
W

I

U

H ⊗
 

Figure 9. The model for 2D deconvolution. 

It can be generally formulated as: 

( )I U H S= ∗  (14)

B W I= ∗  (15)

Because the image is a set of the discrete points, Equations (14) and (15) are described as the 

following equations: 

1, 1
,

ij kl i k j l
k l

I U H S − + − +

 
=  

 
  (16)

1, 1
,

ij kl i k j l
k l

B W I − + − +=  
(17)

In the Equations (14)–(17): 

 S denotes the laser stripe; 

 H denotes the point spread function of the optical imaging system; 

 U denotes a noise function; 

 I denotes the acquired image; 
 * denotes the 2D convolution operator; 

 (i, j) is discrete spatial coordinates; 

 W denotes the finite impulse response (FIR) filter, W = 0 if i < 1or j < 1, and W*H = δi-Δi,j-Δj, 

where δij is the Krönecker delta (discrete impulse signal) [37], and Δi, Δj are the phase delay; 

 B denotes the recovered image. 

The goal of solving the deconvolution is to find the convolution kernel W by the maximized 

kurtosis K, so that Bij ≈ αSi-Δi,j-Δj, in which α is a scale factor. MED is an effective technique for 

deconvolving the impulsive sources from a mixture signals. In [38], an iterative deconvolution 

approach is proposed. A FIR filter is used to minimize the entropy of the filtered signal, i.e., it searches 

for an optimum set of filter coefficients, which can recover the output signal with the maximum value 

of Kurtosis. This process will eventually enhance energy concentration and the structured information 

in the output signal [39–41], recovering an impulsive signal which will be more consistent than before. 

Taking the input image as a multi-channel signal in columns (with N segments and M elements per 

segment) or in rows (with M segments and N elements per segment), in the former case, the horizontal 

component of the laser stripe is largely restored, and meanwhile, the vertical component information is 

suppressed, and vice versa. Then the whole recovered information of the laser stripe can be obtained 
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by executing the two operations separately. The model in columns to extract the horizontal laser line 

can be formulated as: 

1,
1

, ( 1,..., )
L

ij k i k j
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In Equations (18) and (19), μBj is the mean of column j of Bij, and L is the order of the filter, both of 

which have significant impact on the MED outputs. The form of objective function can be described by 

Equation (19). 

The above model is similar to Wiggins’ method except for the objective function, and it will not 

influence the solution procedure. The MED searches an optimum set of filter Wk coefficients that 

recover the output signal with the maximum value of kurtosis. For convenience, the filter can be 

normalized as: 

2

1

1
L

k
k

W
=

=  (20)

In accordance with this constraint, it is feasible to conclude that Iij is converted into Bij, with its 

energy preserved and its entropy reduced. The reason can be found through explaining Equation (18) 

mathematically. In Equation (18), it can be seen that Bij is obtained by weighting, shifting, overlapping 

and adding the corresponding components of Iij (1 < L < N). (i) If L = 1, the filter has no impact on the 

output; (ii) if L ≥ N, the last L − N + 1 elements has no impact on the output; (iii) it is a well-posed 

estimation problem because there are fewer parameters than those in [42]. Generally, the greater L is, 

the more easily the kurtosis K converges to a high value. An appropriate L should balance kurtosis, the 

energy and the computation. Therefore, from the prospect of minimal entropy or maximal kurtosis, the 

criterion is not the optimal but an acceptable result. Gonzalez suggests that the L value should lie 

between 50% and 100% of the number of elements per segment [38]. In our experiments, L is 

empirically defined as 50% which satisfy the experiment requirements. The deconvolution model 

(Figure 9) of this problem can be described as Figure 10.  

 

Figure 10. The MED model of the multichannel signal. 
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The extremum of Equation (19) is obtained by Equation (21): 
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An iteratively converging local-maximum solution can be derived as: 
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and Wk is iteratively selected. The general procedure is listed in Table 2. 

Table 2. General Procedure of MED. 

Step Algorithm 

1 Initializing the adaptive FIR filter, and setting Wk = [11...1...11]/ L , K = 0. 
2 Computing the output signal Bij according to Equation (11). 
3 Inputting Bij to Equations (22)–(24), Wk is obtained. 
4 Inputting Bij to Equation (19) to compute kurtosis K and KΔ . 

5 
Repeating step 2 and 3 to make sure that a specified number of iterations is achieved and that the change 
in K between iterations is less than a specified small value. 

 

 
(a) 

 
(b) 

Figure 11. The comparison of energy concentration before and after MED processing.  

(a) waveform of the input signal in the columns; (b) waveform of the output signal in  

the columns. 
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Figure 11 shows the comparison of energy concentration between the input signal and output signal 

(deconvolved signal by MED). 

Obviously, after MED processing, SNR is higher and the peaks of laser stripe are much steeper. For 

the segmentation of the vertical laser stripe, its process is the same as that of the horizontal laser stripe.  

3.3. Centre Points Localization of Laser Stripe 

The comparison between a group of delay in rows (or columns) and the ideal curve should be taken 

into account. This phase shift can be computed according to 2D convolution theorem. The  

Equation (25) can be obtained by Equation (18): 

ij
k ij

B
W I

Z

 
∗ =  

 
 (25)

where Z is a (L − 1) × N zeros matrix, and: 

I Wi P PΔ = + , 0jΔ =  (26)

in which PI and PW are the phases of Iij and Wk, respectively. Δi and Δj are vertical and horizontal 

displacements from the segmented stripe to the original stripe, respectively. In the same way, the 

vertical phases and displacements can be calculated. Therefore, to segment the vertical laser stripe in 

rows has the same process. 

Based on the above results of stripe segmentation and illumination restoration, Steger’s method is 

used to extract the centre points of laser stripes [25]. The method provides good localization results of 

centre points using Gaussian filtering and edge detection. Figure 12 shows the localization results of 

the centre points. 

 

Figure 12. Localization results of the centre points. 

4. Results and Discussion 

Three experiments are conducted, which are the segmentation of the stripe in a weld line image, 3D 

measurement of the weld line, and tracking the weld line on wall-climbing robot. The proposed sensor 

and approach are tested in five sets of video data captured from the robot on a wind power tower. The 

configuration of the CSL sensor is listed in Table 3. These algorithms are implemented in C++ and are 

tested on an Intel Core i3-2130CPU of 3.4 GHz. 
  

(j)
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Table 3. Configuration of the CSL sensor. 

Device Parameters 

Camera 

CCD: SONY: 1/4 inch 
Resolution: 640 × 480 pixels 
Pixel size: 5.6 μm × 5.6 μm 

Frame rate: 20 fps 
Focal length: 8 mm 
Field of view: 43.7° 

Laser projector 

Size: φ 9 × 23 mm 
Wavelength: 700 nm 

Operating voltage: DC 5 V 
Operating current: 20–50 mA 

Output power: 250 mW 
Fan angle: 60° 

4.1. CSL Sensor Calibration 

A checkerboard is used as a target board of the cameral calibration. On the checkerboard, the side 

length of each black/white square is equal to 25 mm. There are 10 × 7 corner points on the target 

board. There are nine captured images of target board in different positions, as shown in Figure 13. 

The sets of images are used to calibrate camera and calculate equations of laser planes. The 

coordinates of feature points of laser stripe are extracted by the method in Section 3. Based on the 

method described in Section 2, the feature points of camera coordinate system are calculated, and then 

the equations of laser planes are fitted. A plane equation can be obtained by at least three non-collinear 

feature points. The calibration results of the CSL sensor are listed in Table 4. 

 

Figure 13. Calibration checkerboard with laser stripe. 
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Table 4. The calibration results of the CSL sensor. 

Category Parameters Values 

Camera intrinsic parameters 

(fx, fy) (922.4350, 917.3560)
 

(u0, v0) (329.1680, 2705660) 
(k1, k2) (−291.459 × 10−3, 157.027 × 10−3) 
(p1, p2) (−0.1354 × 10−3, −0.2682 × 10−3) 

Light plane equations 
(a1, b1, c1) (−0.18 × 10−3, 1.86 × 10−3, 1.39 × 10−3) 
(a2, b2, c2) (−90.11 × 10−3, 2.463 × 10−3, 8.935 × 10−3)
∠l1ol2 89.9981° 

Global parameters 
Rcr 

0.680 0.961 0.001

0.732 0.704 0.027

0.019 0.705 0.999

− 
 − 
  

 

Tcr [ ]1.618 350.480 59.871
T− −  

It can be seen in Table 5 that the dot product of the coefficients of the two plane equations is equal 

to a1a2 + b1b2 + c1c2 = 3.322 × 10−5, which is close to zero. The measurement accuracy of the CSL is 

evaluated by comparing standard values and measured values [43]. The standard value is the 

coordinates of the intersection points of the target board and rays of light between the optical center and 

feature points, as shown in Figure 3. The measured value is the coordinates of the intersection points of the 

laser planes and rays of light between optical center and feature point. In a random position, 18 feature 

points are selected to evaluate measurement accuracy of the system using the laser plane equations. 

Table 5. Measurement accuracy. 

Image Coordinates Standard Value Measured Value Errors of Coordinates 

(u,v)/(pixels) x (mm) y (mm) z (mm) x (mm) y (mm) z (mm) Δx (mm) Δy (mm) Δz (mm) 

434.812, 216.242 224.751 −61.644 237.893 224.542 −61.586 237.671 −0.209 0.058 −0.222 

521.702, 339.656 208.124 −60.198 231.686 207.856 −60.121 231.388 −0.268 0.077 −0.298 

520.861, 304.699 191.494 −58.802 225.479 191.424 −58.781 225.397 −0.070 0.021 −0.082 

519.817, 272.006 174.863 −57.407 219.272 174.962 −57.439 219.395 0.099 −0.032 0.123 

518.237, 238.050 166.850 −56.695 216.280 166.851 −56.695 216.281 0.001 0 0.001 

516.309, 220.555 158.236 −55.971 213.065 158.309 −55.996 213.163 0.073 −0.025 0.098 

515.171, 204.063 141.610 −54.515 206.858 141.588 −54.507 206.826 −0.022 0.008 −0.032 

512.486, 170.342 124.986 −53.019 200.650 124.763 −52.925 200.291 −0.223 0.094 −0.359 

508.894, 138.080 177.332 57.495 216.540 177.262 57.472 216.455 −0.070 −0.023 −0.085 

577.181, 225.223 175.097 32.586 216.503 175.014 32.571 216.399 −0.083 −0.015 −0.104 

565.821, 224.684 172.689 7.687 216.400 172.695 7.687 216.408 0.006 0 0.008 

554.325, 223.663 170.521 −17.226 216.388 170.473 −17.221 216.328 −0.048 0.005 −0.060 

539.553, 223.101 168.219 −42.131 216.325 168.197 −42.126 216.297 −0.022 0.005 −0.028 

525.946, 222.546 165.957 −67.039 216.278 165.937 −67.031 216.251 −0.02 0.008 −0.027 

510.778, 220.525 163.709 −91.947 216.235 163.683 −91.932 216.200 −0.026 0.015 −0.035 

494.025, 219.462 161.487 −116.857 216.202 161.441 −116.823 216.14 −0.046 0.034 −0.062 

477.062, 218.398 159.212 −141.763 216.150 159.175 −141.730 216.099 −0.037 0.033 −0.051 

457.027, 217.322 156.884 -166.667 216.078 156.884 −166.667 216.078 0 0 0 

RMS errors (mm) -- -- -- -- -- -- 0.094 0.034 0.120 
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Table 5 lists the measurement accuracy evaluation data. There are Root-Mean-Square (RMS) errors of 

(0.094, 0.034, 0.120) in the three directions. The measurement errors are shown in Figures 14 and 15. 

 

Figure 14. Measurement errors in x, y and z directions. 

 

Figure 15. The absolute errors in feature points. 

4.2. Accuracy and Speed of Stripe Segmentation 

This paper quantitatively contrasts the performance of the proposed approach (MED), Centre of 

mass (CM), Linear approximation (LA), quadratic approximation (QA), and Akima splines 

approximation (AA). The different monochromatic value spaces (R or R-G), absolute errors and 

running time are computed, respectively. 

(a) (b) (c) (d) (e) 

Figure 16. Cont. 



Sensors 2015, 15 13743 

 

 

(f) (g) (h) (i) (j) 

Figure 16. The segmentation result of the above methods in R component space and R-G 

space: (a–e) and (f–j) are results of CM, LA, QA, AA and MED in R and R-G respectively. 

In the test images, the segmentation quality of the comparison algorithms and the proposed 

algorithm are shown in Table 6, Figures 16 and 17. The runtime per image is the mean value obtained 

by the processing of 1000 images. As a whole, it can be seen from the following table and figures that 

(i) the component R-G is better than R in all methods; (ii) the method of segmenting laser stripe based 

on MED is more robust, accurate, and fast than other approaches. It is worth noting that the data of 

vertical laser stripe obtained in R is so tough that the time it consumed is too long to afford in practice. 

Taking this factor into account, it is unfeasible to use LA, QA, AA and MED to fit the vertical laser stripe. 

 
(a) (b) 

 

(c) (d) 

 

(e) (f) 

Figure 17. Cont. 

(f) (g) (h) (i) (j)
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(g) (h) 

 
(i) (j) 

Figure 17. The errors of the above methods in R and R-G: (a–e) are errors of the horizontal 

stripe using CM, LA, QA, AA and MED in R and R-G respectively; (f–j) are errors of the 

vertical stripe using CM, LA, QA, AA and MED in R and R-G respectively. 

Table 6. Laser Stripe Segmentation Performance. 

Laser 
Stripe 

Color 
Space 

Method
Index 

CM LA QA AA MED 

Horizontal 
Laser 
stripe 

R 
Average error (mm) 0.432 0.667 0.271 0.311 0.231 

Running time (ms) 18.3 320.2 168.1 130.3 22.3 

R-G 
Average error (mm) 0.330 0.416 0.267 0.291 0.231 

Running time (ms) 17.9 314.0 167.6 196.6 20.9 

Vertical 
Laser 
stripe 

R 
Average error (mm) 1.001 66.710 73.334 70.350 71.050 

Running time (ms) 18.8 ∞ ∞ ∞ 20.6 

R-G 
Average error (mm) 0.700 0.431 0.295 0.327 0.235 

Running time (ms) 17.6 120.2 147.2 166.6 19.9 

“∞”means that the time is too long to afford in practice, num = 500. 

Nonetheless, the error of MED overall is smaller than the former. Furthermore, they are smoother 

than the fitting data obtained by LA, QA, and AA in R-G. This phenomenon is determined by the more 

flat distribution of the former error, though most of its elements are larger and they have similar offsets 

relative to the true data. Another contribution of the proposed method is that the errors of the vertical 

stripe by MED are only larger than those of LA in R-G space, which results from different reasons. 

Firstly, the vertical laser stripe is fitted by linear approximation of LA, and it is a straight line in the 

image. Secondly, since only a few points with a lager error value have useful information, the 

breakpoints detection is absent in MED, which makes the method more effective and robust than LA. 

And the vertical laser stripe by MED is smoother than LA. Therefore, the performance of MED is better. 
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Figure 18 shows the laser stripes extraction results in four frames captured in the wild environment. 

Despite high illumination and varying intensity of light in the frames, the algorithm exhibits good 

performance. All the calculations are based on the full image. It can be seen that the speed of MED is 

fast enough to be applied in the real environments. If the region of interest is selected, the running 

speed will become faster. 

  
(a) (b) (c) (d) 

Figure 18. Laser stripe segmentation results with different illumination interferences.  

(a,b) Cross and straight weld line in the sunshine; (c) The weld line with reflections 

surface; (d) The weld line in the shadow. 

4.3. Weld Line Detection and Tracking of Wall Climbing Robot 

In order to verify the feasibility of the CSL sensor, the calibrated sensor is tested on a wind power 

tower by a wall climbing robot platform, as shown in Figure 19. Figure 20 describes the conversion of 

the camera coordinate system, the robot coordinate system and the calibration target coordinate 

system. In which (Rcr, Tcr), (Rtr, Ttr) and (Rtc, Ttc) denote rotation matrixes and translational matrixes 

between three coordinate systems, respectively. The location of the weld line is detected by the method 

in [27]. According to the detection results, the robot can follow the weld line and perform NDT.  

 
(a) (b) 

Figure 19. Wall climbing robot prototype. (a) Robot with the CSL device; (b) Robot 

working in vertical and horizontal direction. 

In the paper, the measured object is the weld line of a wind power tower. The tower is a bulky cone 

with a height of about 30–50 m and a diameter of about 2.2–4 m. Therefore, the structured light sensor 

may not reconstruct 3D information of the whole tower. We just reconstruct the local 3D information 

around the weld line. Figure 21 shows the detection and measurement experiments in the wild 

environment. The robot coordinate system is supposed to be the global coordinate system.  

In practice, the speed of the wall climbing robot is about 30 mm/s (about 1.5 mm/frame given a video 
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frame rate of 20 fps). For the captured image with 640 × 480 pixels, the difference between  

two successive frames is about 5~6 row pixels. Therefore, the percent overlap is about 99%. Under the 

circumstances of high illumination and excessive noise, the robustness of the sensor stands out.  

Figure 21b shows the extracted laser stripe on the weld lines. Figure 21c illustrates the detection results 

of the T-intersection weld lines and Figure 21d shows the measurement results of the T-intersection 

weld lines. Both vertical and horizontal weld lines appear in the video sequence. It can be seen that the 

CSL sensor can detect and measure both vertical and horizontal weld lines when the robot moves close 

to the intersection part of the two weld lines. From the image space to the object space the coordinate 

transforming relation is: 

[ ] [ ]1, , , ,  1
T T

r r r cr crx y z R K u v T−= +  (27)

 

Figure 20. The conversion of the camera coordinate system, the robot coordinate system 

and the calibration target coordinate system. 

 
(a) (b) 

Figure 21. Cont. 
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(c) (d) 

Figure 21. Measurement and 3D coordinates of straight and cross weld lines. (a) Measure 

straight weld line; (b) 3D coordinates of the straight weld line; (c) Measure cross weld line; 

(d) 3D coordinates of the cross weld line. 

When the robot moves along the straight weld lines, the measured weld line locations can be used 

directly for navigation. When the robot moves close to T-intersection weld lines, we can get two 

convex arcs on the laser stripes, and the vertical and horizontal locations of the weld lines can be 

extracted simultaneously using the CSL sensor. In Figure 22, we show the navigation and motion 

trajectories of the robot at the T-intersection of the weld lines. The average tracking error is less than  

2 mm to ideal central line. 

 
(a) (b) (c) 

Figure 22. Weld line tracking results of the wall climbing robot. (a) Central lines of two 

cross weld lines (ground-truth); (b) Motion trail of the robot; (c) The tracking errors. 

The camera does not have any optical filter, so that the segmentation process becomes more 

adaptive and lower cost compared with other ways used in the industry. Although a high noise level 

exists in low-quality images, the sensor and the proposed algorithm are robust enough to segment the 

laser stripe and detect weld lines accurately. 
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5. Conclusions 

This paper proposes a structured light sensor with cross stripes and a segmentation algorithm of the 

stripe for vision navigation of a wall climbing robot in outdoor environments. The simple but effective 

cross structured light device provides an example for weld line measurement, while we provide a 

general methodology based on MED for a kind of measurement problems in industrial applications. 

The proposed algorithm chooses an adaptive monochromatic value space for preprocessing, and then 

recovers the laser stripe after the deconvolution process. 

To process a color image with 640 × 480 pixels resolution, the average running time is about 20 ms. 

In cameral calibration, RMS of measurement errors is within 0.120 mm. In the field experiments, the 

absolute measurement error is less than 0.3 mm. In the robot navigation experiments, the average 

tracking error is less than 2 mm. The results of the experiments demonstrate that the designed sensor 

and the proposed algorithm have high accuracy, robustness and efficiency for measurement and navigation. 
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