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Abstract: Monitoring ocean waves plays a crucial role in, for example, coastal 

environmental and protection studies. Traditional methods for measuring ocean waves are 

based on ultrasonic sensors and accelerometers. However, the Global Positioning System 

(GPS) has been introduced recently and has the advantage of being smaller, less expensive, 

and not requiring calibration in comparison with the traditional methods. Therefore, for 

accurately measuring ocean waves using GPS, further research on the separation of the 

wave signals from the vertical GPS-mounted carrier displacements is still necessary. In 

order to contribute to this topic, we present a novel method that combines complementary 

ensemble empirical mode decomposition (CEEMD) with a wavelet threshold denoising 

model (i.e., CEEMD-Wavelet). This method seeks to extract wave signals with less 

residual noise and without losing useful information. Compared with the wave parameters 

derived from the moving average skill, high pass filter and wave gauge, the results show 

that the accuracy of the wave parameters for the proposed method was improved with 

errors of about 2 cm and 0.2 s for mean wave height and mean period, respectively, 

verifying the validity of the proposed method. 
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1. Introduction 

As a significant kind of oceanographic phenomenon, ocean waves play an important role in  

coastal engineering, port operations, offshore resources investigation, and disaster prevention [1,2].  

While buoys equipped with accelerometers and tilt sensors have been widely used to collect routine 

ocean wave measurements for decades, recently, Global Positioning System (GPS) receivers have been 

introduced with the advantages of being generally smaller, less expensive, and not requiring  

calibration [3]. Following the development of GPS technology, many studies on the application of 

GPS for measuring ocean waves have been reported in the literature. The early differential GPS 

(DGPS) and then Real Time Kinematic (RTK) positioning methods have been used for wave 

measurement due to their highly accurate localization [4–8]. However, these methods require an 

additional onshore GPS reference station no more than 20 km away, restricting GPS buoys to 

measuring ocean waves only in near-shore applications. In order to eliminate the restriction of a 

measurable distance, De Vries et al. [9] introduced the concept of measuring waves using a single GPS 

receiver, and computed the moving speed of the buoy from the Doppler-shifted frequency. The velocity 

integration method was also presented to obtain precise velocity information for GPS buoys, which was 

applied to measure wave direction and wave height [10–12]. Additionally, Bender et al. [13] evaluated 

the performance of the determination of wave heights and periods by using post- processed kinematic 

(PPK) positioning and precise point positioning (PPP) methods, which showed good agreement with 

accelerometer data. They have pointed out that the GPS measurements are a reliable estimate of the 

vertical motion of the sea surface when the heel of the buoy is not excessive. Furthermore,  

Doong et al. [2] presented a novel methodology to derive wave parameters from GPS velocity signals 

by applying the transformation from a velocity spectrum to a displacement spectrum. They compared 

the GPS-derived with buoy-measured displacement spectra and directional wave spectra, showing 

good consistency. 

Although many studies have focused on the feasibility of wave measurement using various GPS 

positioning and velocity determination methods, as far as we know little attention has been paid to the 

separation of wave signals, which is the foundation of GPS wave measurement, from noise. In this 

context, the moving average (MA) skill and high pass filter (HPF) are widely used to extract the wave 

signals, namely the wave-induced carrier (buoy, small vessel, etc.) displacements, from its real 

displacement in engineering. Joodaki et al. [14] proposed a procedure for selecting a reasonable cut-off 

frequency based on root mean square (RMS) differences in vertical buoy displacements, which is 

somewhat based on HPF. The MA and HPF divide the vertical carrier displacements into two parts, 

and the higher-frequency signal involved with noise is used for wave measurement, leading to 

overestimation of the wave parameters. Therefore, it is vital to reduce the noise to acquire more reliable 

wave parameters. 

The wavelet denoising model is one of the most effective techniques with respect to complicated 

signal analysis, but its pre-divided frequency feature limits its signal processing ability according to the 

inherent characteristics of the signal. The empirical mode decomposition (EMD) [15] is an adaptive data 

analysis method that represents nonlinear and nonstationary signal as sums of amplitude and frequency 

modulated zero-mean signals, termed intrinsic mode functions (IMFs). Flandrin et al. [16] and  

Wu et al. [17] developed the significance IMF test procedure in a first attempt to use EMD as a denoising 
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tool. In the denoising scenario, the IMFs that carry primarily noise are simply discarded, which may 

simultaneously cause the loss of any useful information in these IMFs. It is necessary and possible to 

further extract the useful information from the noisy IMFs using wavelet denoising models. Although 

EMD has been proved quite useful as a dyadic filter bank, it has a serious drawback, i.e., the mode 

mixing problem. To deal with this problem, Wu et al. [18] proposed the Ensemble EMD (EEMD), 

which essentially resolves the mode mixing problem by performing the EMD over an ensemble of the 

original signal plus Gaussian white noise. However, this method is time consuming due to the large 

size of the ensemble. In order to overcome this disadvantage, Yeh et al. [19] proposed the complementary 

ensemble EMD (CEEMD), which offers the same performance as EEMD, but the computational 

efficiency is greatly improved. 

Hence, the aim of this work is to present a method that combines CEEMD with a wavelet threshold 

denoising model in order to extract clean wave signals with less remaining noise. Thus, we use the 

significance IMF test procedure, firstly proposed by Wu et al. [17], to identify the noisy IMFs 

generated from the decomposition of the vertical carrier displacements by CEEMD, and then the noisy 

IMFs are denoised using wavelet threshold denoising model. In order to verify the validity of the 

proposed method, the mean wave heights and mean periods are compared amongst the three different 

methods: MA, HPF and CEEMD-Wavelet, as well as observations from wave gauges. 

2. Estimation of Wave Power Spectrum 

Ocean waves are generally regarded as an ergodic stationary stochastic process, whose power 

spectrum can be estimated using the finite-duration wavefront records of a fixed point. For a stochastic 

process X(t), its autocorrelation function is expressed as: 

R( ) E[ X ( t ) X ( t )]τ = + τ ⋅  (1)

According to the Wiener-Khintchine theorem, the power spectrum S(ω) is given by Fourier 

transform of the autocorrelation function, that is: 

iS( ) R( )e d
∞ − ωτ

−∞
ω = τ τ  (2)

where ω = 2πf is the circular frequency, f is the frequency. Only if the stationary stochastic process is 

ergodic, X(t) can be replaced by any function of the stochastic process, say x(t). The periodogram is 

applied to estimate the power spectrum: 
21

4
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−→∞
ω =   (3)

However, the signal that we can actually get is always finite. For a signal as long as T, sampled at 
the interval of Δt for N points, n nx x( t )=  for n = 0, 1,···, N−1, the corresponding discrete form can be 

written as:  
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where nt n t= Δ , m mω = Δω , Δω is estimated by 2 TΔω = π , which is the lowest frequency that can be 

distinguished. Besides, mŜ( )ω  is an even function with respect to m, hence m = 0, 1,···, N/2.  

The spectral curve is jagged and can be smoothed, for example, by: 

1

2 1

p

m m i
i p

ˆS( ) S( )
p +

=−

ω = ω
+   (5)

where p can be approximated by N/80 ~ N/160. It is sufficient to compute the mŜ( )ω  for N/(2p + 1) 

points at regular intervals, not all the ωm. 

The mean wave height H  and the mean period T  can then be derived, respectively, from the 

power spectrum as: 

02H M= π  (6)

and: 

0 22T M M= π  (7)

where M0 and M2 are the zero- and the second orders of the energy distribution, respectively. 

3. The CEEMD-Wavelet Wave Separation Method 

3.1. CEEMD 

EMD adaptively decomposes a signal into a (usually) small number of IMFs through repeated 

subtraction of the envelope means. To be considered as an IMF, a signal must satisfy two conditions: 

(1) the number of extrema and the number of zero crossings must be equal or differ at most by one;  

(2) the upper and lower envelope must be locally symmetric about the timeline. For a given signal s(t), 

EMD ends up with a representation of the form as: 

1

IMF
K

k
k

s( t ) r( t )
=

= +  (8)

where IMFk is the k-th IMF and r(t) is the residue, which is the mean trend of s(t). 

However, the IMFs suffer from the mode mixing problem, which is defined as the presence of very 

disparate scales in an IMF, or a signal residing in different IMFs [20]. EEMD is an extension to EMD, 

aiming at solving the mode mixing problem. Due to the uniform distribution of the white noise, the 

intrinsic oscillations in the signal may automatically associate with the added noise, so that the 

oscillations can be filtered adaptively via EMD. The residue of added white noises should decrease 

following the well-established statistical rule [19]: 

n
N

εε =  (9)

where N is the size of ensemble, ε is the amplitude of the added noise, and εn is the final standard 

deviation of error. To minimize εn, N should be large enough, resulting in a huge computational cost. 

CEEMD is an improved algorithm based on EMD, proposed to improve the computational 

efficiency while solving the mode mixing problem. In CEEMD, positive and negative Gaussian white 
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noises are added in pairs to the original signal to generate two sets of ensemble IMFs, respectively. 

There might be a computational time saving, because the paired noises could effectively reduce the 

final white noise residual without the need of large size of ensemble. The CEEMD algorithm process 

can be described as follows: 

(1) Add a pair of opposite phase Gaussian white noises g(t) to s(t) with the same amplitude, 

generating two signals as follows: 

s ( t ) s( t ) g( t )
s ( t ) s( t ) g( t )

+

−
= +
= −  (10)

(2) Decompose s ( t )+  and s ( t )−  by EMD a few times, derive IMFk
+  and IMFk

−  by averaging the 

corresponding IMFk
−s obtained over two ensembles of trials. 

(3) Finally, the IMFk  is the mean of IMFk
+  and IMFk

− , that is: 

IMF IMF
IMF

2
k k

k

+ −+=  (11)

3.2. Wavelet Threshold Denoising Model 

A wavelet transform decomposes a signal with the expression of a set of shifted and scaled versions 

of a single prototype mother wavelet, and obtains the wavelet decomposition coefficients, which 

represent the signal in the wavelet domain. A wavelet threshold denoising model deals with the 

wavelet decomposition coefficients using a threshold related to the noise level. The wavelet transform 

is expected to distribute the energy of the useful information in a few wavelet coefficients leading 

themselves to high amplitudes, while the others attributed to the noise are small. Normally, those 

wavelet coefficients with smaller magnitudes than the threshold are set to zero, while the others with 

larger magnitudes than the threshold are used to reconstruct the denoised signal. Hard and soft 

thresholding are the two major thresholding operators defined by: 

{0
i , ji , j

i , j
i , j

w Tw
ŵ

w T

≥
=

<
 (12)

and: 

0
i , ji , j i , j

i , j
i , j

w Tsign( w ) ( w T )ŵ
w T

≥ ⋅ −=  <
 (13)

where wi,j is the wavelet coefficient, i and j represent the wavelet decomposition level and  

scale, respectively. 

In our study, the Symmlet 5 is chosen as the mother wavelet, which has some advantages (e.g., 

biorthogonality, compact support, approximate symmetry) to perform discrete wavelet transform. 

Coefficient selection is done by soft thresholding, using the thresholds determined with the Stein’s 

unbiased risk estimate (SURE) method. 
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3.3. CEEMD-Wavelet Method 

In the study of the characteristics of white noise, Wu et al. [17] explored the relationship between 

the energy density and the average period of IMFs by a Monte Carlo test. Based on the distribution of 

energy densities versus their corresponding average periods for the IMFs, they proposed a significance 

IMF test procedure to determine which IMFs contain statistically significant information, and  

which IMFs are primarily noise. In the Monte Carlo test, two parameters, energy density and its 

corresponding averaged period, were defined to characterize the targeted IMF. The energy density and 

average period, respectively, are calculated by the following equations [18]: 

2

1

1
IMF

N

k k
n

E [ ( n )]
N =

=   (13)

and: 

1
k lnT ,k lnT ,k

d lnT
T S d lnT( S )

T
−=    (14)

where Ek is the energy density of IMFk, N is the length of the signal, SlnT,k is the Fourier spectrum of 

IMFk as a function of ln(T), T is period, and kT  is the averaged period of IMFk. 

For normalized white noise, the relationship between the energy density and the average period can 

be expressed as: 

0k kln E lnT+ =  (15)

Furthermore, the distribution of ln(Ek) is deduced as [17]: 

2 3

1
2 2 3

kNE ( y y ) ( y y )
( y ) C exp y

! !

  − − − ρ = − + + +  
   

  (16)

where y = ln(Ek), and 2kNE /C N= . From Equation (16), it is possible to determine the spread of different 

confidence levels. 
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Figure 1. The flowchart of CEEMD-Wavelet wave separation method. 

Figure 1 shows the flowchart of CEEMD-Wavelet wave separation method. Firstly, decompose the 

vertical carrier displacements into a number of IMFs via CEEMD. The cut-off frequency is set as  
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0.03 Hz to separate out the high frequency IMFs and low frequency IMFs, because the period of ocean 

waves are generally less than 33 s. The Monte Carlo test is used to identify the noisy IMFs, which are 

further denoised using a wavelet threshold denoising model. Finally, the wave signal can be reconstructed 

by summing the non-noisy IMFs and the extracted useful information from the noisy IMFs. 

4. Experimental Analysis 

A field test was carried out in the Yellow Sea area near Qingdao City, China, from 11 to 13 October 

2010. Figure 2 shows the trial area of Qingdao. A GPS receiver equipped with a choke ring antenna 

was mounted on a small surveying vessel firmly, acting as a buoy, to measure the ocean wave at a 

sampling rate of 1 Hz. Additionally, a DataWell Waverider MKIII wave gauge was deployed about  

10 m away from the vessel. The accelerometer of the wave gauge can measure wave height for  

wave periods of 1.6 to 30 s with an accuracy of 0.5% of the amplitudes of the measured value [21].  

The results of the wave gauge are used to assess the accuracy of the wave parameters computed from 

the proposed method. 

 

Figure 2. Field test area near Qingdao, China. (a) The location of Qingdao and the GPS 

reference station at Shanghai Astronomical Observatory (SHAO) of the International 

GNSS Service (IGS); (b) The small surveying vessel [22]; (c) The choke ring antenna [22]; 

(d) The DataWell Waverider MKIII wave gauge [21,22]. 

4.1. Computation of the Vertical Carrier Displacements 

We used TRACK (version 1.29), the the differential kinematic positioning module of the 

GAMIT/GLOBK software [23], to perform epoch-by-epoch solutions of the GPS data and obtain the 

vertical carrier displacements, that is, the vertical displacement of the GPS antenna mounted on  

the vessel. TRACK uses the ionosphere-free combination and the Melbourne-Wubbena wide-lane 

combination, with ionospheric delay constraints, to determine integer ambiguities at each epoch, 

adopting Kalman-filter smoothing while estimating atmospheric delays. Avallone et al. [24] analyzed 

the noise level of the solutions derived from TRACK and the PPP module of GIPSY/OASIS II [25], 

showing accuracy of the order of sub-centimeter for kinematic positioning, and the consistency of the 

two solutions within ±1 cm. Taking the International Global Navigation Satellite Systems (GNSS) 

Service (IGS) site of Shanghai Astronomical Observatory (SHAO) (Figure 2), located about 550 km 



Sensors 2015, 15 19423 

 

 

away from Qingdao, as the reference station to form a baseline with the carrier, the vertical carrier 

displacements are resolved via TRACK as shown in Figure 3a,b. It is possible to see the frequency 

distribution histogram of double difference phase root mean square (RMS) of each epoch, namely, 

RMS of unit weight for each epoch solution. The double difference phase RMS follows approximate 

Gamma distribution, and the double difference phase RMS of over 99% epochs are below 1 cm, 

verifying the sub-centimeter positioning accuracy of TRACK solution. 

(a) (b) 

Figure 3. The solution of TRACK. (a) Vertical carrier displacements; (b) Frequency 

distribution histogram of double difference phase RMS. 

4.2. Validation of Wave Spectra and Parameters 

Figure 4 depicts the IMFs decomposed from the vertical carrier displacements via CEEMD  

using 20 pairs of added white noises, whose amplitude is 0.2 times the standard deviation of  

the displacements. 

 

Figure 4. The decomposition results of the vertical carrier displacements via CEEMD. 
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The dominant frequency decreases along with the increase of IMF number. The Fourier spectrum of 

each IMF reveals that the frequency ranges of IMFs 7 to 9 are under 0.03 Hz, and the other IMFs are 

HF IMFs. A Monte Carlo test was used to separate the noisy IMFs from the HF IMFs. The Monte 

Carlo test of the HF IMFs is shown in Figure 5, where 1000 synthetically generated normalized white 

noise samples, with an identical length of the vertical carrier displacements, are decomposed into 

IMFs. The point groups from upper left to the lower right are the scattered distributions of paired 

values of the energy density and averaged period for IMFs 1 to 9 of the 1000 samples. The blue solid 

line is the theoretical expectation line derived from Equation (15). The dashed blue lines are the 

theoretical spread lines of the first and 99th percentiles. The red triangles are the energy density and 

averaged period for the HF IMFs. It should be noted that the vertical carrier displacements are 

normalized by z-score for the test according to the significance IMF test procedure proposed by  

Wu et al. [17]. It is clear that two red triangles for IMF2 and IMF6 locate between the two dashed blue 

lines, which indicate that IMF2 and IMF6 are the noisy IMFs. 

 

Figure 5. Illustration of the Monte Carlo test. 

Here, the wavelet threshold denoising model is only used for noise reduction of IMF2, and IMF6 is 

omitted for its small amplitudes. The wave signal is reconstructed by summing IMF1, IMFs 3 to 5, and 

the extracted useful information from IMF2. The MA skill is used to extract the wave signal by simply 

subtracting the low-pass signal from the vertical carrier displacements. The cut-off frequency is also 

set as 0.03 Hz for extraction of the wave signal using HPF method. The power spectra of different 

wave signals are estimated using the periodogram method, and smoothed with p = N/120, as shown in 

Figure 6. As we can see, the energy density of HPF-derived and MA-derived wave signals are higher 

than the others, due to the fact that they also contain the energy part of noise. The CEEMD-derived 

wave signal is generated by summing IMF1 and IMFs 3 to 5, has the lowest energy, resulting from the 

loss of useful information while simply discarding noisy IMFs. 



Sensors 2015, 15 19425 

 

 

The wave parameters for HPF, MA, CEEMD, and CEEMD-Wavelet, as well as wave gauge, are 

compared in Table 1. The mean wave heights for MA and CEEMD-Wavelet show a good agreement 

with the observations provided by wave gauge within about 2 cm, while the results of HPF and 

CEEMD have a larger discrepancy. The differences of the mean periods between HPF, MA, CEEMD, 

CEEMD-Wavelet and the wave gauge range from 0.14 s to almost 0.5 s, and the consistency between 

CEEMD-Wavelet and wave gauge is within 0.2 s. Thus, it is possible to conclude that CEEMD-Wavelet 

is the best method when both parameters are taken into account. Considering the fact that the derived 

wave signals involve noise for HPF and MA, the mean wave heights may be overestimated, and the 

wave heights for CEEMD is underestimated for the loss of useful information. In addition, the 

surveying vessel is larger and heavier than the wave gauge, and it has a certain ability of filtering due to 

its volume and mass, resulting in the differences among the results to some extent as well. 
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Figure 6. Smoothed power spectrum. 

Table 1. Comparison of wave parameters among different methods. 

Parameters Wave Gauge HPF MA CEEMD CEEMD-Wavelet 

H  (m) 0.34 0.3626 0.3593 0.3073 0.3179 
T  (s) 3.38 3.8667 3.6271 3.5191 3.5722 

5. Conclusions 

We have described a new method that aims to separate wave signals from the vertical carrier 

displacements with low noise contamination. The proposed method is based on the combination of 

CEEMD and a wavelet threshold denoising model, i.e., CEEMD-Wavelet. The proposed method 

jointly takes the advantage of CEEMD, which can adaptively decompose the signal into a number of 

IMFs with low computational effort, and the wavelet denoising model, which is an effective approach 

to extract the useful information from noisy IMFs that can be identified through the Monte Carlo test. 

We assessed the effectiveness of the proposed method by comparing the measured GPS data with 
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wave gauge measurements. Firstly, the vertical carrier displacements were resolved using TRACK, 

and the sub-centimeter positioning accuracy of TRACK solution was verified. Comparisons of  

the wave parameters (i.e., mean wave height and mean period) among MA, HPF, CEEMD,  

CEEMD-Wavelet and wave gauge show that the derived wave signals involved with noise is the main 

cause of overestimation of the mean wave heights for HPF and MA, and the mean wave heights for 

CEEMD is underestimated for the loss of useful information. Meanwhile, the mean wave height and 

mean period for CEEMD-Wavelet show good agreement with the wave gauge results, with errors of 

about 2 cm and 0.2 s, respectively. Though the accuracy of the wave parameters for CEEMD-Wavelet 

has not been improved significantly, the wave signal results, which contains less noise, are more 

reliable. Future work will involve the application of the proposed method for GPS-based measurement 

of wave parameters at different sites along the coastline of China. 
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