DNA-Redox Cation Interaction Improves the Sensitivity of an Electrochemical Immunosensor for Protein Detection
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Materials
2.2. Substrate Modification and Immunosensor Preparation
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. DNA-Redox Cation Interaction Enhanced Electrochemical Immunoassay for hCG Detection
3.2. Selectivity and Performance Optimization
3.3. Real Sample Testing and Validation
4. Conclusions
Acknowledgments
Author Contributions
Conflict of Interest
References
- Wild, D. The Immunoassay Handbook, 3rd ed.; Elsevier Science: London, UK, 2005. [Google Scholar]
- Huels, C.; Muellner, S.; Meyer, H.E.; Cahill, D.J. The impact of protein biochips and microarrays on the drug development process. Drug Discov. Today 2002, 7, s119–s124. [Google Scholar] [CrossRef]
- Morris, B.A.; Clifford, M.N.; Jackman, M.N. Immunoassays for Veterinary and Food Analysis-1; Elsevier Applied Science Publisher Ltd.: Barking, Essex, UK, 1988. [Google Scholar]
- Knopp, D. Immunoassay development for environmental analysis. Anal. Bioanal. Chem. 2006, 385, 425–427. [Google Scholar] [CrossRef] [PubMed]
- Heineman, W.R.; Halsall, H.B. Strategies for electrochemical immunoassay. Anal. Chem. 1985, 57, 1321A–1331A. [Google Scholar] [CrossRef] [PubMed]
- Lequin, R.M. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem. 2005, 51, 2415–2418. [Google Scholar] [CrossRef] [PubMed]
- Engvall, E.; Perlmann, P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry 1971, 8, 871–874. [Google Scholar] [CrossRef]
- Josephy, P.D.; Eling, T.; Mason, R.P. The horseradish peroxidase-catalyzed oxidation of 3, 5, 3′, 5′-tetramethylbenzidine. J. Biol. Chem. 1982, 257, 3669–3675. [Google Scholar] [PubMed]
- Basu, A.; Shrivastav, T.G.; Maitra, S.K. Development of isotopic and non-isotopic microwell based immunoassays for hCG using 125I and biotin labeled hCG. J. Immunoass. Immunochem. 2005, 26, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Hamaguchi, Y.; Kato, K.; Fukui, H.; Shirakawa, I.; Okawa, S.; Ishikawa, E.; Kobayashi, K.; Katunuma, N. Enzyme-linked sandwich immunoassay of macromolecular antigens using the rabbit antibody-coupled glass rod as a solid phase. Eur. J. Biochem. 1976, 71, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.C.W.; Nie, S. Quantum dot biochnjugates for ultrasensitive nonisotopic detection. Science 1998, 281, 2016–2018. [Google Scholar] [CrossRef]
- Immoos, C.E.; Lee, S.J.; Grinstaff, M.W. DNA-PEG-DNA triblock macromolecules for reagentless DNA detection. J. Am. Chem. Soc. 2004, 10814–10815. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Li, Y.; Gu, H.; Xia, F.; Zuo, X. Recent development of sandwich assay based on the nanobiotechnologies for proteins, nucleic acids, small molecules, and ions. Chem. Rev. 2014, 114, 7631–7677. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Liu, B.; Chen, G.; Tang, D. Redox and catalysis “all-in-one” infinite coordination polymer for electrochemical immunosensor of tumor markers. Biosens. Bioelectron. 2015, 64, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Ren, J. In situ amplified electrochemical immunoassay for carcinoembryonic antigen using horseradish peroxidase-encapsulated nanogold hollow microspheres as labels. Anal. Chem. 2008, 80, 8064–8070. [Google Scholar] [CrossRef] [PubMed]
- Tran, H.V.; Piro, B.; Reisberg, S.; Nguyen, L.H.; Nguyen, T.D.; Duc, H.T.; Pham, M.C. An electrochemical ELISA-like immunosensor for miRNAs detection based on screen-printed gold electrodes modified with reduced grapheme oxide and carbon nanotubes. Biosens. Bioelectron. 2014, 62, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Chen, X.; Yang, M. Enzyme modified peptide nanowire as label for the fabrication of electrochemical immunosensor. Sens. Actuators B 2014, 196, 189–193. [Google Scholar] [CrossRef]
- Akanda, M.R.; Aziz, M.A.; Jo, K.; Tamilavan, V.; Hyun, M.H.; Kim, S.; Yang, H. Optimization of phosphatase- and redox cycling-based immunosensors and its application to ultrasensitive detection of troponin I. Anal. Chem. 2011, 83, 3926–3933. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Song, Y.; Chai, Y.; Pan, G.; Li, T.; Yuan, Y.; Yuan, R. Electrochemical immunosensor for detecting the spore wall protein of Nosema biobycis based on the amplification of hemin/G-quadruplex DNAzyme concatamers functionalized Pt@Pd nanowires. Biosens. Bioelectron. 2014, 60, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Gang, X.; Zhou, X.; Zhang, G.; Huang, H.; Zhang, X.; Wang, L. Electrochemical immunosensor with graphene/gold nanoparticles platform and ferrocene derivatives label. Talanta 2013, 103, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Zhang, Q.; Guo, L.-H. Part-per-trillion level detection of estradiol by competitive fluorescence immunoassay using DNA/dye conjugate as antibody multiple labels. Anal. Chim. Acta 2008, 624, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-Z.; Luo, C.-Y.; Sankar, C.G.; Sen, D. Voltammetric procedure for examining DNA-modified surfaces: Quantitation, cationic binding activity, and electro-transfer kinetics. Anal. Chem. 2003, 75, 3902–3907. [Google Scholar] [CrossRef] [PubMed]
- Lapthorn, A.J.; Harris, D.C.; Littlejohn, A.; Lustbader, J.W.; Canfield, R.E.; Machin, K.J.; Morgan, F.J.; Isaacs, N.W. Crystal structure of human chorionic gonadotropin. Nature 1994, 369, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Chard, T. Pregnancy tests: A review. Hum. Reprod. 1992, 7, 701–710. [Google Scholar] [PubMed]
- Li, X.; Weng, S.; Ge, B.; Yao, Z.; Yu, H.-Z. DVD technology-based molecular diagnosis platform: Quantitative pregnancy test on a disc. Lab Chip 2014, 14, 1686–1694. [Google Scholar] [CrossRef] [PubMed]
- Vartiainen, J.; Alfthan, H.; Lehtovirta, P.; Stenman, U.-H. Elevated hCG and a high proportion of hCGβ in serum preceding the diagnosis of trophoblastic disease by seven months. BJOG 2002, 109, 589–590. [Google Scholar] [CrossRef]
- Cole, L.A. Quantitative hCG Assays in Human Chorionic Gonadotropin (hCG); Elsevier Insights: Burlington, VT, USA, 2010; pp. 223–228. [Google Scholar]
- Bidart, J.M.; Birken, S.; Berger, P.; Krichevsky, A. Immunochemical mapping of hCG and hCG-related molecules. Scand. J. Clin. Lab. Investig. Suppl. 1993, 216, 118–136. [Google Scholar] [CrossRef]
- Cheng, A.K.H.; Ge, B.; Yu, H.-Z. Aptamer-based biosensors for label-free voltammetric detection of lysozyme. Anal. Chem. 2007, 79, 5158–5164. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Ho, C.; Cheng, A.K.H.; Yu, H.-Z. Immobilization of redox-labeled hairpin DNA aptamers on gold: Electrochemical quantitation of epithelial tumor marker mucin 1. Electrochim. Acta 2013, 110, 139–145. [Google Scholar] [CrossRef]
- Ge, B.; Huang, Y.-C.; Sen, D.; Yu, H.-Z. Electrochemical investigation of DNA- modified surfaces: From quantitation methods to experimental conditions. J. Electroanal. Chem. 2007, 602, 156–162. [Google Scholar] [CrossRef]
- Su, L.; Sen, D.; Yu, H.-Z. Voltammetric study of the ion-exchange binding of non-electroactive metal cations to DNA-modified surfaces. Analyst 2006, 131, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Pang, D.-W.; Abruña, H.D. Interactions of benzyl viologen with surface-bound single- and double-stranded DNA. Anal. Chem. 2000, 72, 4700–4706. [Google Scholar] [CrossRef] [PubMed]
- Pang, D.-W.; Abruña, H.D. Micromethod for the investigation of the interactions between DNA and redox-active molecules. Anal. Chem. 1998, 70, 3162–3169. [Google Scholar] [CrossRef] [PubMed]
- Cole, L.A.; Ladner, D.G. Background hCG in non-pregnant individuals: Need for more sensitive point-of-care and over-the-counter pregnancy tests. Clin. Biochem. 2009, 42, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Tawa, K.; Kondo, F.; Sasakawa, C.; Nagae, K.; Nakamura, Y.; Nozaki, A.; Kaya, T. Sensitive detection of a tumor marker, α-Fetoprotein, with a sandwich assay on a plasmonic chip. Anal. Chem. 2015, 87, 3871–3876. [Google Scholar] [CrossRef] [PubMed]
- Rucker, V.C.; Havenstrite, K.L.; Herr, A.E. Antibody microarrays for native toxin detection. Anal. Biochem. 2005, 339, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Vareiro, M.M.L.M.; Liu, J.; Knoll, W.; Zak, K.; Williams, D.; Jenkins, A.T.A. Surface plasmon fluorescence measurement of human chorionic gonadotrophin: Role of antibody orientation in obtaining enhanced sensitivity and limit of detection. Anal. Chem. 2005, 77, 2426–2431. [Google Scholar] [CrossRef] [PubMed]
- Englebienne, P. Use of colloidal gold surface plasmon resonance peak shift to infer affinity constants from the interactions between protein antigens and antibodies specific for single or multiple epitopes. Analyst 1998, 123, 1599–1603. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.H.; Liu, M.; Nolting, B.; Go, J.G.; Gervay-Hague, J.; Liu, G.-Y. A nanoengineering approach for investigation and regulation of protein immobilization. ACS Nano 2008, 2, 2374–2384. [Google Scholar] [CrossRef] [PubMed]
- Ulloa-Aquirre, A.; Damián-Matsumura, P.; Jiménez, M.; Zambrano, E.; Díaz-Sánchez, V. Biological characterization of the isoforms of urinary human follicle-stimulating hormone contained in a purified commercial preparation. Hum. Reprod. 1992, 7, 1371–1378. [Google Scholar]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, P.; Ge, B.; Ou, L.M.-L.; Yao, Z.; Yu, H.-Z. DNA-Redox Cation Interaction Improves the Sensitivity of an Electrochemical Immunosensor for Protein Detection. Sensors 2015, 15, 20543-20556. https://doi.org/10.3390/s150820543
Li P, Ge B, Ou LM-L, Yao Z, Yu H-Z. DNA-Redox Cation Interaction Improves the Sensitivity of an Electrochemical Immunosensor for Protein Detection. Sensors. 2015; 15(8):20543-20556. https://doi.org/10.3390/s150820543
Chicago/Turabian StyleLi, Ping, Bixia Ge, Lily M.-L. Ou, Zhihui Yao, and Hua-Zhong Yu. 2015. "DNA-Redox Cation Interaction Improves the Sensitivity of an Electrochemical Immunosensor for Protein Detection" Sensors 15, no. 8: 20543-20556. https://doi.org/10.3390/s150820543
APA StyleLi, P., Ge, B., Ou, L. M. -L., Yao, Z., & Yu, H. -Z. (2015). DNA-Redox Cation Interaction Improves the Sensitivity of an Electrochemical Immunosensor for Protein Detection. Sensors, 15(8), 20543-20556. https://doi.org/10.3390/s150820543