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Abstract: The bandwidth shortage has motivated the exploration of the millimeter wave (mmWave)
frequency spectrum for future communication networks. To compensate for the severe propagation
attenuation in the mmWave band, massive antenna arrays can be adopted at both the transmitter
and receiver to provide large array gains via directional beamforming. To achieve such array gains,
channel estimation (CE) with high resolution and low latency is of great importance for mmWave
communications. However, classic super-resolution subspace CE methods such as multiple signal
classification (MUSIC) and estimation of signal parameters via rotation invariant technique (ESPRIT)
cannot be applied here due to RF chain constraints. In this paper, an enhanced CE algorithm is
developed for the off-grid problem when quantizing the angles of mmWave channel in the spatial
domain where off-grid problem refers to the scenario that angles do not lie on the quantization grids
with high probability, and it results in power leakage and severe reduction of the CE performance.
A new model is first proposed to formulate the off-grid problem. The new model divides the
continuously-distributed angle into a quantized discrete grid part, referred to as the integral grid
angle, and an offset part, termed fractional off-grid angle. Accordingly, an iterative off-grid turbo
CE (IOTCE) algorithm is proposed to renew and upgrade the CE between the integral grid part
and the fractional off-grid part under the Turbo principle. By fully exploiting the sparse structure
of mmWave channels, the integral grid part is estimated by a soft-decoding based compressed
sensing (CS) method called improved turbo compressed channel sensing (ITCCS). It iteratively
updates the soft information between the linear minimum mean square error (LMMSE) estimator
and the sparsity combiner. Monte Carlo simulations are presented to evaluate the performance of
the proposed method, and the results show that it enhances the angle detection resolution greatly.

Keywords: channel estimation; millimeter wave communication; off-grid algorithm

1. Introduction

Thanks to the large bandwidth available at millimeter wave (mmWave) frequencies, mmWave
communication technology has become a promising technology to meet the experientially increasing
demands of future wireless networks [1]. The small wavelength at the mmWave band enables the
integration of a massive number of antennas at both the transmitter and receiver. The directional
beamforming technique can be used to achieve a sufficient link margin to compensate for the severe
propagation attenuation in mmWave bands [2,3]. Since the channel state information, especially the
angle of departure (AoD) and angle of arrival (AoA), are essential for the beamforming and coherent
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detection, CE with high resolution and efficiency is one of the key requirements in mmWave systems.
Due to the high cost and high power consumption of mmWave radio frequency (RF) devices, only a
very limited number of RF chains can be integrated in the mmWave systems, which results in much
less RF chains than antennas. Therefore, classic angle estimation methods with super-resolution,
such as multiple signal classification (MUSIC) and estimation of signal parameters via rotation
invariant technique (ESPRIT)-based algorithms [4,5], cannot be directly applied in mmWave systems
because these methods require the channel observations at each receive antenna in the digital domain.
However, in the mmWave systems, the received signals at each antenna are firstly combined in the
analog domain and thus no direct output information from each antenna is available for these classic
angle estimation methods. Therefore, new CE algorithms with high-resolution should be developed
and tailored to mmWave communications.

Recently, many research efforts have been devoted to the CE for the mmWave systems [6–10].
As adopted in IEEE 802.15.3c standard [6], a polling mechanism is employed to select the best beam
vector pair from the known codebooks with p beams at the transmitter and q beams at the receiver.
This method consumes pq time slots to achieve angle resolution O(1/p) and O(1/q). In [7], an
adaptive compressive sensing (ACS) method has been developed, which iteratively bisections the
beam space and tries to find the grid that the path falls in via space match filtering. It needs
2L3log2(p/L) + 2L3log2(q/L) time slots to achieve the resolution O(1/p) at the transmitter and
O(1/q) at the receiver for an mmWave channel with L paths. This large time slot payload is
unacceptable in practical mobile communication systems with massive antenna arrays, especially in
the outdoor wireless coverage scenarios. So far, most existing mmWave CE methods, such as [8–10],
are based on the on-grid channel model, i.e., all path angles are assumed to be located at the
quantization grids exactly, which is not the case in practical systems because the angles are usually
continuously distributed. When path angles do not lie on the quantization grids, which we refer to
as the “off-grid” channel model, a power leakage effect happens and results in the degradation of CE
performance [11]. Since the product of the number of simultaneously supported multi-users and the
number of the multi-streams depends on the RF chains, it is preferable that higher angle resolution
is achieved by advanced channel estimation methods to separate densely distributed users such that
spatial multiplexing methods can be employed to support more users [12]. In this ”off-grid” case,
the gap to the theoretic lower bound is pretty large, and more antennas are required to enhance the
resolution of angle estimation at the cost of more hardware and antennas [13]. Therefore, a new
method is necessary to enhance the angle detection performance. So far, few works concentrate on
the off-grid problem in the mmWave systems with RF constraints. In [14], the continuous angle
estimation was formulated as a sparse regularization problem by taking into account the noises in
both the observations and the dictionary by modeling the grid points as noisy, which is hard to be
applied in CE because the spectral norm of the noise is much bigger than that of the dictionary. In [15],
a continuous basis-based compressed sensing (CS) method was proposed to solve the reconstruction
problem in sensing applications where the atoms of the dictionary are used to describe a continuous
field, such as frequency and angle. However, the first order approximation of Taylor expansion for
the array steering vector in the multi-antenna systems is hard to formulate.

In this paper, we study the off-grid problem and propose an enhanced method to improve
the resolution of angle estimation in mmWave systems with massive antenna arrays and RF
chain constraints. Firstly, we formulate the signal model to describe the off-grid problem in the angle
quantization of the mmWave channel, which decomposes each continuously-distributed angle into
the integral grid part and fractional off-grid part. Accordingly, an iterative off-grid turbo CE (IOTCE)
algorithm is developed to renew and upgrade the CE between the integral grid and fractional off-grid
angle information under the Turbo principle. By fully exploiting the sparse structure of mmWave
channels, a soft-decoding based CS method, termed improved turbo compressed channel sensing
(ITCCS), is developed to estimate the integral grid angle information, which iteratively updates
the soft information between the linear minimum mean square error (LMMSE) estimator and the
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sparsity combiner. Simulation results show that the proposed CE method can achieve a higher
resolution than the existing ones.

The rest of the paper is organized as follows. The mmWave system model is introduced in
Section 2. Then, a new off-grid formulation is specified in Section 3 and the proposed IOTCE
algorithm is detailed in Section 4. Section 5 presents the simulation results and Section 6 concludes
the paper.

Notations: Fonts A, a, a and A denote a matrix, a column vector, a scalar and a set, respectively.
AT and AH are the transpose and Hermitian of A. 1N ∈ CN×1 is an all-ones vector and I is an
identity matrix. eN(i) ∈ CN×1 is a unit vector with 1 at its i-th entry and 0 elsewhere. The operator
⊗ are used to denote the Kronecker product. Vect(A) is the matrix vectorization operator that
transforms a matrix into a vector by stacking its column vectors, and Diag(a) stands for a diagonal
matrix with the entries of a on its diagonal. [A]R,P consists of row vectors and column vectors of the
matrix A whose indices contained in the set R and P , respectively. E(·) represents the expectation.
δ(·) is the Dirac delta function and I(·) is the indicator function.

2. System Model

According to [16], typical mmWave channels feature much stronger line-of-sight (LoS) path
than non-LoS (NLoS) paths, and the numerical results in [17] show that approximating the sparse
mmWave channel with only one LoS path results in a little capacity loss when employing the steerable
directional antennas. Thus, single-path mmWave channel model is used in this paper. When the
mmWave channel cannot be approximated as a single-path channel, the proposed algorithm cannot
be applied directly. New algorithms need to be developed to deal with independently but not
identically distributed multi-paths. Consider a downlink mmWave system consisting of a base station
(BS) and a mobile station (MS), where the BS is configured with NB antennas and KB RF chains with
KB � NB while the MS is configured with NM antennas and KM RF chains with KM � NM, as shown
in Figure 1. The BS applies the beamforming matrix WB ∈ CNB×KB and the MS employs the matrix
WM ∈ CNM×KM to combine the received signal y ∈ CKM×1. The received signal at the MS can be
written as:

y = W T
M HWBx + z (1)

where H ∈ CNM×NB is the channel matrix, x ∈ CKB×1 represents the transmitted pilot signal, and
z ∈ CKN×1 is the Gaussian noise with E(zzH) = σ2 I.

In this paper, we also assume:

• uniform linear arrays (ULAs) with half-wavelength spacing are deployed at both the BS and MS;
• far-field scattering and block-fading are held, which means the signal waves arrive at different

antennas with the same fading amplitudes but distinct phases and the channel fadings are kept
constant during the CE precedure.

Under these assumptions, the single-path channel between the BS and MS can be expressed as:

H = βaM(θM)aT
B(θB) (2)

where β is the fading weight, θB ∈ [−π
2 , π

2 ), and θM ∈ [−π
2 , π

2 ) are, respectively, AoD and AoA.
aB and aM are the array steering vector at the BS and the combining vector at the MS, respectively.
Denoting sin θB

2 by φB ∈ [− 1
2 , 1

2 ) and sin θM
2 by φM ∈ [− 1

2 , 1
2 ), aB and aM can be written as:

aB(φB) =
1√
NB

[
1 ej2πφB · · · ej2π(NB−1)φB

]T
(3)
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aM(φM) =
1√
NM

[
1 ej2πφM · · · ej2π(NM−1)φM

]T
(4)

The (m, n)-th element of the channel can be rewritten as:

[H]m,n = βej2π(m−1)φM ej2π(n−1)φB

=
∫ 1

2

− 1
2

∫ 1
2

− 1
2

h(φ̃M, φ̃B)ej2π(m−1)φ̃M ej2π(n−1)φ̃B dφ̃M dφ̃B (5)

where h(φ̃M, φ̃B) = βδ(φ̃M − φM)δ(φ̃B − φB) is the channel impulse response (CIR).
By discretizing Equation (5) at the angle period [− 1

2 , 1
2 ),

[H]m,n(k, i) =
NM/2−1

∑
k=−NM/2

NB/2−1

∑
i=−NB/2

h(k/NM, i/NB)ej2π(m−1)(k+δM)/NM ej2π(n−1)(i+δB)/NB (6)

where δM and δB are the discretization errors corresponding to the φM and φB, respectively.
The on-grid algorithms, such as [6–10], can estimate the AoA/AoD effectively, by ignoring the
discretization errors and assuming that the AoA/AoD are taken from a uniform grid of N points,
i.e., φ ∈ {− 1

2 ,− 1
2 + 1

N , ..., 1
2 −

1
N }, where N stands for the number of antennas and φ stands for

the angle. In practice, the number of antennas is limited and the AoA/AoD are actually continuous,
which causes the leakage of power, and, in turn, leads to the degradation of CE performance.
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Figure 1. Block diagram of structure with beamforming at the base station (BS) and combining at the
mobile station (MS).

3. Off-Grid Channel Formulation

In order to suppress the negative effect caused by the off-grid problem, a specific and operable
virtual channel representation model is introduced. From this virtual model, an enhanced off-grid
angle estimation model is developed.
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The continuously-distributed AoA can be written as:

φM = −1
2
+

φM,k

NM
+

δM
NM

(7)

where φM,k = k − 1 is the nearest k-th (k = 1, 2, ..., NM) discrete quantization grid of φM, which is
referred to as the integral grid angle, and |δM| < 1

2 stands for the deviation between φM and φM,k,
termed fractional off-grid angle. Similarly, the discrete form of the AoD is formulated as:

φB = −1
2
+

φB,i

NB
+

δB
NB

(8)

where φB,i = i− 1 (i = 1, 2, ..., NB) and |δB| < 1
2 are, respectively, the integral grid part and fractional

off-grid part of the angle. Then, the fractional off-grid angle vectors dM ∈ CNM×1 and dB ∈ CNB×1

can be rewritten as:

dM(δM) =
[
1 ej2πδM/NM · · · ej2π(NM−1)δM/NM

]T
(9)

dB(δB) =
[
1 ej2πδB/NB · · · ej2π(NB−1)δB/NB

]T
(10)

Accordingly, the channel matrix in Equation (2) can be reformulated as:

H = βDiag(dM(δM))TaM(−1
2
+

φM,k

NM
)aT

B(−
1
2
+

φB,i

NB
)Diag(dB(δB))

= DT
M HDDB (11)

where HD = βaM(− 1
2 +

φM,k
NM

)aT
B(−

1
2 +

φB,i
NB

) represents the channel matrix only containing
the integral grid part, and the diagonal matrices DM = Diag(dM(δM)) ∈ CNM×NM and
DB = Diag(dB(δB)) ∈ CNB×NB represent the fractional off-grid angle matrixes. From the virtual
channel model in the [18], HD can be rewritten as:

HD = FT
MGFB (12)

where FB ∈ CNB×NB is the discrete Fourier transform (DFT) matrix whose (mB, nB)-th entry is
1√
NB

ej2πmB
nB
NB , 0 ≤ mB, nB ≤ NB − 1, and FM ∈ CNM×NM is also a DFT matrix whose (mM, nM)-th

entry is 1√
NM

ej2πmM
nM
NM , 0 ≤ mM, nM ≤ NM − 1. G ∈ CNM×NB is referred to as the integral virtual

channel matrix in angle domain with only one non-zero element, and [G]k,i denotes the nearest
integral grid point to the actual angle. The row and column labels of the non-zero element, k and
i, are connected to the φM,k and φB,i via

φM,k = k− 1 (13)

φB,i = i− 1 (14)

Then, the virtual representation model of the mmWave channel with continuously-distributed
angle can be written as:

H = DT
MFT

MGFBDB (15)

where DM and DB are unitary matrices. It is interesting that the channel matrix H can be regarded as
a two-dimensional (2D) orthogonal transform from the spatial domain to the beamforming domain.
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More specifically, the 2D orthogonal transform becomes the 2D DFT when the AoA/AoD locate at
the quantization grids exactly.

4. The Off-Grid Turbo Channel Estimation Algorithm

In order to facilitate the operation of the proposed CE algorithm, the codebook designed in [17] is
employed to divide the AoA/AoD estimation into two steps to estimate AoA and AoD separately at
the BS and MS in adjacent time slots. Moreover, it can also be adopted here to estimate the fractional
off-grid parts of AoA and AoD. Without loss of generality, the codebook design for AoA estimation
at the MS is introduced as an example, and the same process can be employed at the BS to estimate
the AoD. The process of training mode design is summarized as follows:

• Training mode at the transmitter. The training signal is designed to hold the form of
x = 1KB , and only one column of the beamforming matrix WB is chosen as [WB]:,no = eNB(io),
no ∈ {1, 2, . . . , KB}, io ∈ {1, 2, . . . , NB} while all other columns are zero vectors, where [WB]:,no

denotes the no-th column vector of matrix WB. The training signals x are transmitted from KB RF
chains and beamformed with the same WB in the successive R time slots.

• Training mode at the receiver. The combining matrix at the r-th time slot, W r
M, r = 1, 2, . . . , R,

is designed in a way that its n-th column vector is [W r
M]:,n = eNM (irn), n = 1, 2, . . . , KM,

where {ir1, ir2, . . . , irKM
} , P r

M ⊂ Rr
M, with P r

M being randomly chosen from Rr
M and

R1
M , {1, 2, . . . , NM},R2

M = {1, 2, . . . , NM} \ P1
M, . . . ,Rr

M = {1, 2, . . . , NM} \ {P1
M ∪ · · · ∪ P

r−1
M }.

In this way, the received signal at the MS can be written as:

yr = (W r
M)T DT

MFT
MGFBDBWBx + z (16)

Stacking yr into a vector, we have

y = [yT
1 yT

2 · · · yT
R] (17)

= W DFg + z

where W ,
[
W1

M W2
M · · ·W R

MK
]T ∈ CRK×N , with N and K being the number of antennas and RF

chains, respectively. F ∈ CN×N is a DFT matrix, and g ∈ CN×1 is the integral virtual channel vector
only containing the AoA of the LoS path seen by the MS. D ∈ CN×N is the fractional off-grid angle
matrix corresponding to the AoA. Apparently, W is a permutation matrix created by choosing K rows
from an identity matrix I.

From Equation (17), the CE is accomplished by estimating the integral virtual channel, which,
in turn, defines integral grid angle, and the fractional off-grid angle matrix, which stands for the
fractional off-grid angle. As shown in Figure 2, an iterative off-grid turbo CE (IOTCE) algorithm is
developed, which consists of two components: the integral grid angle estimator and the fractional
off-grid angle estimator.

IOTCE

integral grid angle estimator fractional off-grid angle estimator
y

 g  ̂ ĝ
1t !

t

 
1t !

Figure 2. Flow chart of the iterative off-grid turbo channel estimation algorithm.
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4.1. The Integral Grid Angle Estimator

Equation (17) degenerates into a CS recovery algorithm with W being the sampling matrix and
D× F being the transform matrix when the fractional off-grid angle δ is given. As the application of
the TCCS algorithm in [19], the ITCCS algorithm is adopted to iteratively estimate the integral virtual
channel vector g from the Equation (17). g ∈ CN×1 is a sparse signal to be estimated with L non-zero
elements, following the Bernoulli–Gaussian distribution with λ = L

N being the sparsity.
Let f , Fg and q , D f , and Equation (17) can be rewritten as:

y = Wq + z (18)

As illustrated in Figure 3, the ITCCS algorithm consists of two modules: module A, the LMMSE
estimator, and module B, the sparsity combiner. The LMMSE estimator provides an estimate of q by
the linear minimum mean square estimation (LMMSE) method, from which an estimate of g can be
obtained through constraints. Using the probability density estimation method, the sparsity combiner
refines the estimate by exploiting the Bernoulli–Gaussian distribution. The specific realization of the
algorithm can be seen in [19].

Sparsity

combiner

Module B

pri ext

B B A 
!g g

post

B
g post

Bf

ext

ext

B A g

IFFT

pri ext

A B A"!f f
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Ag
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Af

LMMSE 
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FFT

FFT
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B
f

ext

B A"
f

pri

Ag
y

ext

post

A
q

pri

A
q

post

Bg

H
D

D

Figure 3. Flow chart of the improved turbo compressed channel sensing algorithm. FFT and IFFT
denote the fast Fourier transform processing and the inverse transform processing, respectively.
The modules D and DH denote the transform from f to q and the reverse processing.

Therefore, by fixing δ and using the constraints Equations (9) and (10), we get the corresponding
fractional off-grid angle vector d(δ) and matrix D, to estimate the integral virtual channel vector g
at the sparsity λ = L

N (L = 1) using the ITCCS algorithm, where the value of δ is zero at the first
iteration and is fed back from the fractional off-grid angle estimator at the iteration. For the purposes
of this article, ITCCS (W T , Diag(dt), 1

N , σ2) is used to make the description of the output, which is the
estimate of g, and the parameters in brackets present the input of the algorithm.

4.2. The Fractional Off-Grid Angle Estimator

By fixing the integral virtual channel g, and as a result of the equivalence of an elementary row
operation and premultiplication by a permutation matrix according to the theory of linear algebra,
the Equation (17) can be rewritten as:

y = W D f + z (19)

= [d(δ)]R ◦ [ f ]R + z

whereR = {n1, n2, ..., nK} is a set who is constituted by the row indices that are selected from I to W
and the operator ◦ denotes the element-wise product. Equation (19) can be solved by the least square
(LS) approach.

According to the proposed iteration, the IOTCE algorithm is illustrated in Algorithm 1, which
presents a structure of a nested loop. In addition, the corresponding explanation of parameters in the
IOTCE algorithm is listed in Table 1. The inner loop iterates the integral grid angle between sparsity
and linearity, while the integral part and the fractional part are updated in turn during each iteration
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of the outer loop by following a fixed relationship. As the estimation of integral grid angle improves,
the estimation of the fractional off-grid angle enhances via the outer loop.

Table 1. Explanation of parameters in the iterative off-grid turbo channel estimation algorithm.

Parameters Explanation

N the number of antennas at receiver
g the integral virtual channel vector

W the combining matrix at receiver
δ the fractional off-grid angle
d the corresponding fractional off-grid angle

Algorithm 1 The Iterative Off-grid Turbo Channel Estimation Algorithm

Input:

• Received signal y ∈ CRK×1;
• Sampling matrix W ∈ CRK×N , noise power σ2.

Output:

• Estimate of g, gt;
• Estimation of δ, δt.

Iteration:

Step 1: Initialization

t = 0, δ0 = 0

Step 2: Estimation of g
(1) Fixing δ,

dt =
[
1 ej2πδt/N ej2π2δt/N · · · ej2π(N−1)δt/N

]T

gt+1 = ITCCS(W T , Diag(dt),
1
N

, σ2)

Step 3: Estimation of δ
(1) Fixing g,

[dt+1]R = y� [gt+1]R

where � denotes the element-wise division operation.
(2) Calculating δt+1 by linear fitting after phase extraction from the equation,

[dt+1]R =
[
ej2π(n1−1)δt+1/N ej2π(n2−1)δt+1/N · · · ej2π(nK−1)δt+1/N

]T

Step 4: Iteration of loop
IF iteration stopping condition is satisfied

output the estimated value.
ELSE

t = t + 1.
Then, and turn to Step 2.

5. Simulation Results

In this section, we evaluate the performance of the proposed algorithm in the mmWave
communication systems. The simulation system consists of a BS and an MS, and the same ULA
with NB = NM = N half-wavelength spaced antennas and KB = KM = K RF chains is configured
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at both the BS and MS. Typical mmWave channels featuring much stronger LoS paths than NLoS
paths are simulated, and a one-path channel model is used to approximate the typical mmWave
channel in the low signal-to-noise ratio (SNR) region. The fading weight of the path follows Rayleigh
distribution with variance 1, and the continuously-valued AoA/AoD are uniformly-distributed in
the range [−π

2 , π
2 ).

The simulation results of the average angle estimation error (AAEE), defined as E[|φ− φ̂|], with φ̂

being the estimate of the true angle φ, are presented in Figure 4, where the on-grid algorithm in [17]
and the lower bound of the AAEE for on-grid algorithms, which is 1

N , are also presented for reference
in two cases of N = 1024 and N = 512. From the curves in Figure 4, we can observe that the proposed
method outperforms the on-grid method and achieves AAEE of 10−2 at SNR γ =−4 dB. As expected,
the AAEE of the proposed algorithm exceeds the lower bound of the on-grid algorithms as SNR
increases, which validates the AAEE performance of our algorithm. For example, the gaps between
the simulated AAEE and the lower bound are 0.00139 and 0.0007 when γ = 20 dB for N = 512 and
N = 1024, respectively. The gap shrinks from 0.00139 to 0.0007 by the increase in N, because the less
sparsity (λ = 1

N ) can achieve a the better recovery performance at the given samplings according to
the theory of CS [20].

-4 -2 0 2 4 6 8 10 12 14 16 18 20
10-4

10-3

10-2

10-1

 

 

A
A
EE

SNR

 N=512, on-grid algorithm in [13]
 N=512, lower bound of on-grid algorithms
 N=512, IOTCE, simulated
 N=1024, on-grid algorithm in [13]
 N=1024, IOTCE, simulated
 N=1024, lower bound of on-grid algorithms

Figure 4. The average angle estimation error (AAEE) versus signal-to-noise ratio (SNR) for the
proposed algorithm for different values of N.

-4 -2 0 2 4 6 8 10 12 14 16 18 20
10-3

10-2

10-1

 

 

A
PI
EE

SNR

 N=512
 N=1024

Figure 5. The average probability of integral grid point estimation error (APIEE) versus
signal-to-noise ratio (SNR) for the proposed algorithm for different values of N.
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The average probability of integral grid point estimation error (APIEE) performance, which
is defined as E[I(φk 6= φ̂k)], with φ̂k being the estimate of the real integral grid angle φk, is also
simulated, and the simulation results are illustrated in Figure 5. As clearly shown, the bigger N leads
to the better APIEE performance at a given K. For example, at the APIEE of 10−2, the algorithm with
N = 1024 almost enhances by 4 dB with respect to N = 512.

6. Conclusions

The shortage of spectrum at present will be alleviated by advances in the mmWave
communication systems, and directional precoding/beamforming with large antenna arrays appears
to be inevitable to support longer outdoor links and to provide sufficient received signal power
than before. In this paper, an enhanced CE algorithm is developed for the off-grid problem in the
mmWave systems with massive antenna arrays and RF chain constraints. First, we developed an
off-grid formulation to catch the quantization problem. Then, an iterative method, which depends on
the developed off-grid formulation is proposed to renew and upgrade the CE between the integral
and fraction angle information under the Turbo principle. Simulation results show the efficiency and
high resolution of the proposed method. For future work, it would be more practical to consider
the multi-paths channel with independently but not identically distributed paths, and develop an
efficient method to calculate the Log Likelihood Ratio (LLR) information.
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