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Abstract: Compensation of the temperature dependence of the Verdet constant in a polarimetric
extrinsic Faraday sensor is of major importance for applying the magneto-optical effect to AC current
measurements and magnetic field sensing. This paper presents a method for compensating the
temperature effect on the Faraday rotation in a Bi12GeO20 crystal by sensing its optical activity effect
on the polarization of a light beam. The method measures the temperature of the same volume
of crystal that effects the beam polarization in a magnetic field or current sensing process. This
eliminates the effect of temperature difference found in other indirect temperature compensation
methods, thus allowing more accurate temperature compensation for the temperature dependence of
the Verdet constant. The method does not require additional changes to an existing ∆/Σ configuration
and is thus applicable for improving the performance of existing sensing devices.
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1. Introduction

Fiber optic magnetic field sensors (and current sensors by extension—FOCS) have been under
investigation as an important new technology suitable for industrial application at voltage levels
ranging from low voltages to hundreds of kilovolts [1–4]. Advances in electronic processing and
the abundance of fiber types ease manufacture and offer suitable connectivity options as required
by industry.

The development of FOCS has resulted in two mainstream configurations (intrinsic vs. extrinsic)
using two Faraday Effect sensing techniques (polarimetric vs. interferometric) [5]. Extrinsic polarimetric
types offer easier construction due to their simplicity and ability to match the Faraday medium (usually
a crystal) to any particular task and, unlike the intrinsic type, can be made portable. If the sensing
crystal is appropriately chosen, extrinsic FOCS does not suffer from linear birefringence that it is
inevitable in a coiled sensing fiber [6].

The temperature dependence of a Faraday medium has been identified as an important
issue [7–14] requiring compensation in order for the sensor to attain the required level of precision.
The choices of the Faraday crystal and the measurement technique are essential for maintaining the
extrinsic FOCS advantages as well as for temperature compensation. The magneto-optical quality
(the ratio of the Verdet constant and the absorption coefficient) represents the major characteristic of
a Faraday crystal since the sensitivity is a function of it. A Faraday crystal should possess no linear
birefringence. Circular birefringence reduces sensitivity but can be used for temperature compensation,
as will be shown in this paper. The ∆/Σ measurement technique provides normalization to the light
source intensity across the whole spectrum and can be realized in both free space and measurement
head [15].
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This paper will present a new method for sensing the temperature of the crystal bulk (core)
without changing the sensor ∆/Σ measurement setup. Only signal processing changes are required
and then only in the processing software in order to extract the crystal temperature and compensate
for the temperature dependence on the sensor. Compensation involves a simple correction calculation
that considerably improves the accuracy of the sensor.

2. Materials and Methods

Bismuth germanium oxide (BGO) Bi12GeO20 is a good choice for the Faraday crystal. It possesses no
linear birefringence, can be easily grown by the Czochralski technique, and has a large magneto-optical
quality. BGO also possesses optical activity. A change of the working temperature of the sensor can
reduce sensor sensitivity through temperature dependent optical activity. On the other hand, the
optical activity can provide temperature compensation of the sensor output. A BGO crystal in the
∆/Σ measurement configuration and calcite as the beam splitter were used, as depicted in Figure 1.
The polarization prism converts polarization fluctuations of the laser to intensity fluctuations that
are canceled by the ∆/Σ setup. If the gains of two channels are equalized by matching gains of
transimpedance stages and the input polarization is set so that the output polarization in absence of the
magnetic field is at 45 degrees with respect to the fast and slow axis of calcite, the output voltages are

U1 =
kI0

2
(1 + sin (2θ)) , and (1)

U1 =
kI0

2
(−sin (2θ)), (2)

where I0 is the intensity of the light source, and k is a constant that includes all optical losses, as well as
the optoelectronic conversion efficiency. Thus, the sensor transfer function can be expressed as

θ = arcsin
∆
Σ

= arcsin
U1 − U2

U1 + U2
. (3)

It is common practice to express the rotation of the plane of polarization of the light beam (θ) as a
function of the sensed quantity, i.e., the sensor transfer function:

θ (T) = V (T) BL, (4)

where V(T) is the temperature dependent Verdet constant, L is the crystal length, and B is the magnetic
induction component parallel to the light beam. The crystal length is assumed not to be a function
of temperature since the coefficient of thermal expansion of a BGO crystal is small with the value of
α = 16.8 × 10−6 K−1 [16].

From Equation (4), it is possible to calculate the magnetic field induction,

B (T) =
θ

V (T) L
, (5)

and determine the sensed current from the known sensor geometry. If V(T) is not known, V is taken to
be a constant, and this creates an error in measurement due to temperature variations.

Polarization rotation contains two components: rotation due to the optical activity of the crystal
(θ0) and rotation due to the Faraday effect θC. The proposed setup measures:

θ = θC (T) + ∆θ0 (T), (6)

where ∆θ0(T) is the output polarization shift from 45◦, where the sensitivity is at a maximum.
The temperature variations induce changes in the BGO optical activity referenced to the optical
activity at the calibration temperature θ0(T0).
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∆θ0 (T) = θ0 (T)− θ0 (T0) . (7)

For AC current sensing applications, the temperature and magnetic field are separated in the
spectrum of the θ since the current spectrum contains the AC line frequency and its harmonics, whereas
the temperature resides in the DC part. The current I can be determined as

I (T) = const·θC (T) = const·V (T) BL. (8)

It is possible to measure the temperature of the crystal by measuring ∆θ0 by ∆/Σ at the moments
when the magnetic field induction is zero. There are two such points per period, and further averaging
is also possible since the temperature changes slowly. This makes this method inherently capable of
good signal-to-noise ratios since averaging the temperature at, say, 100 points (2 points per period,
50 period per second, and 1 reading of temperature per second) significantly improves the SNR.

After the determination of temperature, it is possible to calculate V(T), and this eliminates the
temperature influence on the sensor transfer function.

In other words the temperature can be calculated as

T = T (∆θ0) . (9)

Once the temperature of the crystal core is determined, it is possible to compensate the current
measurement and obtain the compensated measured current as

IC = V (B, T (∆θ0)) =
V (T0)

V (T)
I (T).

In order to calculate the temperature of the crystal core, it is necessary to know the optical
activity of the crystal versus temperature. A previous work [17] suggested a linear relation between
the polarization plane rotation due to the optical activity θ and temperature in K. The temperature
dependence of the Bi12GeO20 optical activity was measured, and the reported value is 0.0001 rad/mmK
= 0.00573 deg/mmK. It is possible to construct a setup that would simultaneously measure the optical
activity and the Verdet constant against temperature and thus calibrate the sensor transfer function.

Thus, with knowledge of the temperature dependence of both the optical activity of the crystal
and the Verdet constant, it is possible to calculate the Faraday crystal core temperature, calculate V(T),
and adjust (compensate) the calculated current to make it temperature-insensitive.
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Figure 1. Measurement setup.

The measurement setup can be seen in Figure 1. The light source is a He–Ne laser at 632.8 nm
polarized by the polarization prism that is used to set the plane of polarization at the correct position.



Sensors 2016, 16, 1627 4 of 7

Faraday crystal (Bi12GeO20) is next in the optical path causing rotation of the polarization plane due
to its own temperature-dependent optical activity and the temperature-dependent Faraday effect.
The magnetic field is created by Helmholtz coils (HH) powered from an AC current source with
a reference ampermeter connected in series. The relation between the magnetic induction in the
coil center and the coil current (I) is known; thus, it is possible to measure the Verdet constant.
CaCO3 is used as a beam splitter producing two coaxial beams with polarization planes set 90◦ apart.
The intensities of the two beams emerging from the BS are sensed using two quadrants from four
quadrant photodiodes (QPDs). This is preferred to two individual photodiodes since the quadrants
on a quadrant photodiode are more closely matched in responsivity. The photocurrents from the
diodes are amplified with transimpedance amplifiers (DUAL TIA) and sampled using a 16-bit dual
ADC. The results are relayed to a PC over a USB interface and using a FIFO to prevent data loss. An
electronic processing unit (ECB) is encased in a Faraday cage to minimize EMI effects. The temperature
of the crystal is controlled by placing the HH and the crystal in an enclosed chamber with temperature
control. The chamber is depicted as a gray area in the picture. The chamber contains a temperature
measurement unit (thermocouple) for monitoring the crystal temperature.

Measurement begins at a room temperature of 24 ◦C with the channel gain matching. The PP
is set to produce linear polarization at such an angle that the two beams emerging from the BS have
equal intensities. This is verified by aligning each beam with both QPD quadrants and measuring both
responses. When all four are equal, channel matching is accomplished. A magnetic field is introduced
in the coils by the current source, which produces a constant amplitude (about 4 A), 50-Hz sine wave
current. The current is monitored by a reference ampermeter and recorded by the PC. The heater is
then activated, and the PC records the outputs from both channels while the air in the chamber is
slowly heated. This time series is processed by the PC in order to extract peak-to-peak polarization
rotation due to the Faraday Effect θ and the crystal’s own optical activity θ0. This is realized by
calculating the phase of the test current sine wave and using the points in time when the magnetic
induction, due to the test current, reaches peaks and zeros. The resulting measurements are recorded
to a hard disk for later processing.

3. Results

The dependence of the optical activity of the crystal on temperature is shown in Figure 2.
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Figure 2. Measured optical activity vs. the temperature of the Bi12GeO20 crystal.

Using this plot, it is possible to calculate the crystal core temperature and to use the result to
compensate V(T).
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The variation of the Verdet constant of the crystal with temperature is shown in Figure 3. Verdet
constant continually decreases with temperature, falling by 3% within the 24–155 ◦C range. Earlier
research [14] suggested that

V (T) =
A
T
+ B (10)

could be used to model the variation. A fit of the experimental data to Equation (10) yields A = 2833.89
and B = 91.22.
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In order to introduce temperature compensation into the measurement, it is necessary to
recalculate and thus obtain the compensated sensed current using Equation (11).

IC =
101( 2833.89

T + 91.22
) I (T) . (11)

IC is now the measured Helmholtz coil current obtained from the temperature compensated FOCS.
Now it is possible to plot the current measurement results obtained from the reference ampermeter,

the uncompensated FOCS, and the temperature compensated FOCS (Figure 4).
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The uncompensated FOCS underestimates the real current in the coils due to the temperature
dependence of the Verdet constant. The temperature compensated FOCS is far more accurate, with the
data points grouping around the values registered by the reference ampermeter.

The real confirmation of the merit of the compensation method can be seen in Figure 5. This plot
clearly shows that the relative error of the uncompensated FOCS matches the variation of the Verdet
constant with temperature (around 3%).
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4. Discussion

The results obtained by temperature compensated FOCS are all located within a margin of ±0.2%,
a far better result compared with those obtained with an uncompensated sensor. It is worth noting that
the error line crosses zero points twice, due to the application of the theoretically derived equation for
the V(T) fit. It is possible to obtain a much more accurate fit using a polynomial equation, but this kind
of fit would require further research into the effects of temperature on the crystal and its modeling.

5. Conclusions

Temperature variation in the Bi12GeO20 crystal used to sense currents is a major factor in the
accuracy of the results obtained by FOCS. The methods used to measure the temperature in the
immediate vicinity of the sensing crystal may not be accurate enough to compensate the effect of
the temperature. By sensing the temperature of the crystal core along the same optical path where
the Faraday Effect induces changes in the polarization of the light beam due to the magnetic field,
it is possible to compensate the temperature effect. This can be accomplished by measuring the
polarization rotation using ∆/Σ at points in time where the magnetic field crosses zeroes and thus
requires no changes in the FOCS construction. This solution requires no additional optical elements
while offering temperature measurement on the same optical paths where the Faraday rotation is
measured. Only some additional computation steps are required, which are easily implemented in a
digital signal processing domain, to considerably improve the accuracy of the sensor.
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