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Abstract: Localization is crucial for the monitoring applications of cities, such as road monitoring,
environment surveillance, vehicle tracking, etc. In urban road sensor networks, sensors are
often sparely deployed due to the hardware cost. Under this sparse deployment, sensors cannot
communicate with each other via ranging hardware or one-hop connectivity, rendering the existing
localization solutions ineffective. To address this issue, this paper proposes a novel Traffic Lights
Schedule-based localization algorithm (TLS), which is built on the fact that vehicles move through
the intersection with a known traffic light schedule. We can first obtain the law by binary vehicle
detection time stamps and describe the law as a matrix, called a detection matrix. At the same time,
we can also use the known traffic light information to construct the matrices, which can be formed as
a collection called a known matrix collection. The detection matrix is then matched in the known
matrix collection for identifying where sensors are located on urban roads. We evaluate our algorithm
by extensive simulation. The results show that the localization accuracy of intersection sensors can
reach more than 90%. In addition, we compare it with a state-of-the-art algorithm and prove that it
has a wider operational region.
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1. Introduction

Wireless sensor networks are usually used for monitoring activities in the city. The localization of
sensors is crucial for monitoring activities because monitoring messages often make no sense without
the location information.

Localization schemes have been studied extensively in wireless sensor network over the past few
years. There are basically two types of methods: range-based localization schemes (e.g., Received Signal
Strength Indicator (RSSI) [1], Time of Arrival (TOA) [2], Time Differences of Arrival (TDOA) [3] and
Angle of Arrival (AOA) [4]) or range-free localization schemes (centroid [5], robust quads [6], Secure
Range-Independent Localization (SeRLoc) [7] and Approximate Point-In-Triangulation (APIT) [8]).
Range-based localization schemes are very accurate, but they are not suitable for the large-scale urban
road sensor networks, due to some shortcomings (such as extensive system calibration or environment
profiling [1], costly for requiring per-node ranging hardware [3]). Rang-free methods localize with
simple sensing, such as anchor proximity [5] and wireless connectivity [9], which have a low system
cost. However, it sacrifices localization accuracy for urban road sensor networks. Moreover, the sensor
deployment is generally very sparse in urban areas. In this scenario, sensors cannot reach each other
through either ranging devices (e.g., ultrasound signals can propagate only 20–30 feet) or single-hop
RF connectivity. Thus, the existing localization schemes become ineffective.
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To address this issue, we put forward a Traffic Lights Localization (TLS) algorithm based on
traffic light information to solve the location problem with sparse deployment of sensors on urban
roads. This algorithm is built on an observation: controlled by the traffic lights, the time segment of
vehicles and no vehicles is a regular cycle on each road. Additionally, some literature [10–12], which is
related to the urban traffic light scheduling problem, points out that the time segment of vehicles is a
regular cycle. Therefore, the challenging research question becomes how to use vehicle detection time
stamps to determine the time law, and then, according to the time law, how to find the node nearest to
the intersection.

Our main idea is that through statistical analysis of vehicle detection time stamps, we can obtain
a road law and express this law as a matrix called a detection matrix. On the other hand, we use
known traffic information to construct a matrix called a known matrix that also contains the road law.
Then, we find which detection matrix and which known matrix are similar. Through the matrix match,
we can know the nodes nearest to the intersection. Some digital maps provide traffic light schedule
information at the intersection. Such a kind of digital map has already been commercialized [13].
The latest one is developed by MapMechanics [14]. In addition, the program of setting traffic lights and
the traffic public facilities data can be queried in the corresponding traffic department. There are many
literature works [15–20] about the analysis of big and heterogeneous data generated by a diversity of
sources in urban spaces, such as sensors, devices, vehicles, buildings and humans, to tackle the major
issues that cities face, e.g., air pollution, increased energy consumption and traffic congestion. As the
data of public facilities in the literature are achieved from the relevant departments, so the scheduling
information data of the traffic lights can be queried by the relevant departments, and the position of
the traffic lights can be queried through Google Maps. Therefore, we know the geographical position
of the intersection and locate the intersection nodes. Finally, when some intersection nodes have been
located, it is easy to locate other nodes by relying on the map matching method of the Autonomous
Passive Localization (APL) algorithm [21].

Specifically, our localization scheme consists of four phases: (1) the construction of the matrix;
(2) determining a similar matrix and (3) according to the results of a similar matrix matching,
determining the location of the intersection nodes and (4) determining the locations of other nodes by
the map matching method of the APL algorithm [21].

Our key contributions in this paper are as follows:

• A novel localization scheme is presented based on the position of public facilities. To our
best of knowledge, the TLS algorithm is the first localization scheme that employs the public
facilities information.

• The localization is accomplished using only the binary detection of vehicles in an urban road
network. Unlike previous approaches, TLS is designed especially for sparse sensor networks
where long-distance ranging is difficult. In addition, some practical issues are considered, such as
a similar traffic light schedule and some damaged nodes.

• A novel method for calculating the similarity of two matrices is designed. This method can judge
the similarity of two matrices even when the row order of a matrix is uncertain.

• The performance of the proposed design is evaluated by extensive simulation studies. The results
show that our localization scheme can work well.

The rest of this paper is organized as follows. Section 2 describes related work for the localization
in wireless sensor networks. Section 3 describes the problem formulation for our traffic lights
Localization. In Section 4, our TLS system design is described. In Section 5, we give practical
discussions that can affect our localization scheme in practice. Section 6 evaluates our TLS algorithm
in realistic settings and compares it to the APL algorithm. In Section 7, we conclude this paper and
anticipate future work.
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2. Related Work

At present, there are many sensor localization schemes, which can be divided into three categories:
(1) range-based localization schemes; (2) range-free localization schemes and (3) event-driven
localization schemes.

Range-based localization schemes need costly hardware devices (e.g., ultrasound ranging devices)
to accurately calculate the distance between nodes [22,23]. The main idea of these schemes is to use
the distance of nodes for sensor localization. The advantage of these schemes is the accuracy rate of
localization. Considering that these schemes must work with sensors within a short distance, they are
unfit for localization in sparse urban road sensor networks.

Range-free localization schemes are able to locate unknown nodes without actual measurement
of the absolute distance between nodes [24,25]. They can obtain the relative position of nodes by
other information (e.g., geometric relationship and hop), to estimate the localization of unknown
nodes [26–30]. These schemes reduce the demand for hardware and are suitable for large-scale dense
deployment of sensor nodes in the network. Thus, these schemes do not work well in sparse urban
road sensor networks.

Lately, many event-driven localization schemes have been proposed to simplify the functionality
of sensors for localization and to provide high quality localization [31–35]. The key idea of these
schemes is to use artificial events for sensor localization that are generated from the event scheduler.
Although their effective range can reach hundreds of meters, additional external devices and manual
operations are needed to generate artificial events. On the other hand, our localization scheme is a new
branch of event-driven localization schemes. Because our localization scheme is based on the natural
events of moving vehicles, event delivery is not problematic.

The traffic lights, as one key component in this paper, play a decisive role in urban traffic. Because
urban traffic congestion is a common phenomenon at crossroads, reasonably setting up traffic light
time is key to solving the problem of traffic congestion. Consequently, there is extensive literature
about traffic light information [36,37] that points out that traffic light time changes at constant cycle
times. In our TLS, we make full use of the traffic light information to finish localization.

3. Problem Formulation

We consider a network model where sensors are placed at urban road networks. The objective is
to locate wireless sensors deployed in road networks only with traffic light information and binary
vehicle detection time stamps taken by sensors, as shown in Figure 1. Section 3.1 lists the definitions
for TLS, and Section 3.2 lists the assumptions.

3.1. Definitions

We define six terms as follows:

1. Intersection node group: We choose eight sensors near the intersection as a group. This sensor
group is called the intersection node group. In Figure 1, sensors S0, S1, S2, S3, S4, S5, S6 and S7

compose an intersection node group.
2. Key nodes: Sensors are placed at intersections. These sensors belong to an intersection node

group. In Figure 1, sensors S0, S1, S2, S3, S4, S5, S6 and S7 are key nodes.
3. Common nodes: Sensors are placed at non-intersections. These sensors do not belong to any

intersection node group. In Figure 1, sensors S20, S21, S22 and S23 are common nodes.
4. Detection matrix collection: Analysis of data collected by each intersection node group,

which constructs a detection matrix. All of the detection matrices compose the detection
matrix collection.

5. Known matrix collection: Using the intersection traffic light information that is obtained from
the transport sector, we can construct a known matrix for each intersection. All of the known
matrices compose the known matrix collection.
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6. TLS server: A computer that performs the localization algorithm with binary vehicle detection
time stamps collected from the sensor network.

S1

S0

S8

S2
S3

S7

S6

S4

S5

S9

S23 S24

S21

S20S19

S18

S17

S16

S15 S14

S13 S12

S11

S10

S25

Group 1

S22

Figure 1. Intersection with wireless sensors.

3.2. Assumptions

The localization design of TLS is based on the following assumptions:

• Sensors have simple sensing devices without any costly ranging or GPS devices. Each detection
is a tuple (si, gi, ti) consisting of a sensor ID si, intersection node group ID gi and time stamp ti.
For the common nodes not belonging to any intersection node group, the tuple (si, 0, ti) is sent to
the TLS server.

• The traffic light information of the target area is shown on the TLS server. The information consists
of traffic time seconds and of a traffic light’s location.

• Sensors deployed in the road on both sides so that each intersection is guaranteed to have one
intersection node group.

• Each intersection node group of eight nodes is close to the intersection so that the key nodes and
intersection location are basically identical.

• An existing ad hoc network consisting of sensors or a Delay-Tolerant Network (DTN) for wireless
sensors aims to deliver vehicle-detection time stamps to the TLS server. For such a DTN, utilizing
the Vehicular Ad Hoc Network (VANET) forwarding schemes, such as Vehicle-Assisted Data
Delivery(VADD) [13] and Trajectory-Based Data(TBD) [38], to deliver the time stamps to the TLS
server, VANETs are constructed by the vehicles, which are data mules [39].

• Sensors are time-synchronized at the millisecond level. We can use the time synchronization
protocol in [40] to ensure the time synchronization accuracy in sparse urban road sensor networks;
since the time synchronization protocol in [40] is the start-of-the-art time synchronization protocol
for spare wireless sensor networks and can ensure the time-synchronized at the millisecond level.

4. TLS System Design

4.1. System Architecture

We use an asymmetric architecture for localization, as shown in Figure 2. The sensors register
only vehicle-detection time stamps into their local repositories to simplify the functionality of sensors
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for localization. The TLS server processes the complex computation for localization. Specifically, the
localization process includes the following steps, as shown in Figure 2.

• Step 1. After road traffic measurement, sensors send a tuple to the TLS server, i.e., (si, gi, ti), where
si is the sensor ID, gi is the intersection node group ID and ti is a time stamp.

• Step 2. Determining the valid data: The data collected in the heavy traffic time is regarded as
valid data, because the time period with cars on the road and the time period without cars is a
regular cycle. In the following, a method is designed to screen out the valid data.

• Step 3. By using valid data collected from nodes, the information from each intersection node
group can be used to construct a detection matrix. These matrices constitute the detection
matrix collection.

• Step 4. We use our algorithm to determine the similar matrix in detection matrix collection and
known matrix collection.

• Step 5. Because we already know the geographical location of traffic lights, we can locate the
position of the key nodes according to the matrix matching results (obtained from Step 4), and
then, we can use the APL algorithm to locate the position of the common nodes.

• Step 6. The TLS server sends each sensor si its location with a message (si, gi, li).

 

1.Determine the valid data

2.Matrix construction algorithm

3.Matrix matching algorithm

4.Localization of key nodes

5.Localization of common nodes

TLS

Server

 

 
Sensor group 

Intersection 

(si, gi, ti)

(si, gi, li)

 

 

Figure 2. TLS system architecture.

4.2. Step 2: Determine the Valid Data

4.2.1. Determining the Valid Data Operation

When vehicle traffic is sparse, the time with cars on the road and the time without cars is irregular.
However, in heavy traffic times, due to the traffic light control, the time with cars on the road and the
time without cars form a regular cycle, and we can use the recurrence to construct a detection matrix.
Thus, we need to determine heavy traffic time data, which will be valid times for data to construct
a detection matrix. The following introduces a data operation for determining valid data.

First, we divide the data into many time segments and calculate the number of vehicle in each
time segment [21]. If the number of vehicles is significant and basically remains unchanged in the
next time segment, the data of this time segment are seen as valid data. For example, in Figure 3,
from the thirteenth time segment to the twenty-first, the value (the number of vehicles) is high and
basically remains unchanged; therefore, these data can be seen as valid data. We tested this method
in an intersection by using the method of manual counting and found that our method works well.
In crowed times, the number of vehicles is at a great value and basically remains unchanged in each
time quantum.
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Figure 3. Determine valid data operation.

4.2.2. Analysis of Determining Valid Data Errors

The counting process of vehicle arrivals can be modeled as a Poisson process in which the
number of vehicle arrivals within an hour is λ. Note that this modeling is valid for the following
two reasons; (1) the Kolmogorov–Smirnov test can accurately approximate the statistics of vehicle
interarrival time based on the empirical data for a real roadway into an exponential distribution [41];
and (2) an exponential distribution for the interarrival time is equivalent to a Poisson distribution for
the arrival number within a unit time [42]. Let Perror be the screening out valid data error probability.
Let N be the random variable of the number of vehicle arrivals within a time segment. Let n be the
number of vehicles arriving at sensor si. Let t be the size of a time segment. Thus, the determining
valid data error probability Perror can be computed as follows:

Perror = P[N > n]

= 1− P[N ≤ n]

= 1−
n

∑
k=o

(λt)k

k!
× e−λt

(1)

We compute Perror through the simulation with the parameter settings in Table 1. We use the three
parameters λ, t and n to compute Perror. The determining valid data error probability is Perror ≈ 0,
where λ = 600, n = 200 and t = 1/6 (h). Therefore, because Perror is very small, we claim that the
locating valid data operation is very accurate.

Table 1. Simulation configuration.

Parameter Description

number of vehicle arrivals within an hour λ λ = 600 represents 600 vehicles arrival within an hour.
Time segment t t = 1/6 represents a time segment of 10 min.

number of vehicle arrivals within time segment n n = 200 represents 200 vehicles arriving within 10 min.
determining valid data error probability Perror It represents the probability of n > 200 in the sparse time segment.

4.3. Step 3: Matrix Construction Algorithm

4.3.1. Detection Matrix Construction Algorithm

First, we divide the valid data into two time segments (vehicle passing time period and no vehicle
passing time period) and preprocess the vehicle detection data. The adopted method is to screen
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out the time stamp of the first vehicle arrivals and the time stamp of the last vehicle arrivals in one
vehicle passing time period and then form an array T. Then, we explain an operation on binary vehicle
detection time stamps. The operation is defined as follows:

A[i] = Ti+1 − Ti (2)

where Ti is the time of the first vehicle arrivals and the time of the last vehicle arrivals in the i-th vehicle
passing time period and where A[i] ∈ A for i = 1, 2..., A is an array. According to array A, we can
obtain the road law and construct the detection matrix. For example, we can obtain an array by the
previous operation in Figure 4, which is as follows:

15, 30, 5, 20, 10, 10, 15, 30, 5, 20, 10, 10, 15, 30, 5, 20, 10, 10

It is easy to see that the array is a regularly-recurring array. That is, taking the largest number 30
as the first number and taking the next five numbers forms a 1 × 6 matrix [30, 5, 20, 10, 10, 15]
that is the matrix analyzed by one sensor. In the same manner, we can obtain the corresponding
1 × 6 matrix of other sensors. Because each intersection node group has eight sensors, we can constitute
an 8 × 6 detection matrix for each intersection node group.

 

t/s 15 45 50 70 80 90 105 135 0 

T0 T1 T2  T3 T4 T5 T6  T8 

t/s 0 15 45 50 70 80 90 105 135 

T7 

Figure 4. Operation on binary vehicle-detection time stamps.

4.3.2. Known Matrix Construction Algorithm

We design a vehicle traffic lights simulator using the C# language. This simulator’s main function
is to simulate the cases of vehicles passing during heavy traffic time. By importing different information
on traffic lights, the system will automatically simulate the intersection passing events of vehicles
and record the time stamp. With the simulated data, we also employ the construction algorithm
(also used in Section 4.3.1) to construct a known matrix. Thus, each intersection draws a corresponding
8 × 6 known matrix. Additionally, each known matrix corresponds to a tuple (id, Li), where id is the
known matrix ID and Li is the location of the corresponding traffic light.

4.4. Step 4: Matrix Matching Algorithms

4.4.1. Calculate the Similarity of the Matrix

In this section, we introduce a method to calculate the similarity of two matrices. For example,
there are two matrices, Ma and Mb. Let a(i,j) be the elements of Ma, and let b(i,j) be the elements of
Mb, where i is the row index and j is the column index. Let |Mr

a| be the number of rows of Ma, and let
|Mc

a| be the number of columns of Ma. We have the formula to calculate the similarity of the matrices
as follows.

S(Ma, Mb) =
∑
|Mr

a |
i=1 ∑

|Mc
a |

j=1 C(a(i,j), b(i,j))

|Mr
a| × |Mc

a|
(3)
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where C(a(i,j), b(i,j)) aims to calculate the element similarity between a(i,j) and b(i,j). Specifically,

C(a(i,j), b(i,j)) =

{
1, if |a(i,j) − b(i,j)| < m

0, otherwise
(4)

where m is the matrix element gap threshold. Essentially, we subtract the two corresponding elements
in two matrices and fetch the absolute value.

If the result is less than a certain range, we can consider that the two matrix elements are similar.
If S(Ma, Mb) > s (the matrix similarity threshold), we consider these two matrices similar. In Section 6,
the matrix element gap threshold m is determined via simulations to be three, and the matrix similarity
threshold s is determined to be 0.8. We test these two thresholds by many simulation experiments in
Section 6.

4.4.2. Row Uncertain Matrix Matching Algorithm

Each group of eight sensors deployed in sequence is uncertain, leading to the matrix’s row order
being uncertain. In the same crossroads, the detection matrix obtained by detecting data and the
known matrix constructed by simulating the intersection must be similar matrices. However, the basic
algorithm from Section 4.4.1 cannot judge whether the two matrices are similar because the row order
of the matrix is uncertain. Next, we will introduce two types of algorithms to judge the similarity of
two matrices if the row order of a matrix is uncertain.

(a) Row Sum Sorting Method (RSS)

To determine whether two matrices are similar, they should be first sorted, then summed by
rows, and after that, the bubble sort method can be used to sort the rows of the matrix. Two matrices
that are already sorted can be determined to be similar or not by using the method mentioned in
Section 4.4.1. For example, we are going to determine whether two 8× 6 matrices are similar. As shown
in Figure 5, there are two 8 × 6 matrices called Ma and Mb. If we directly use the basic arithmetic of
the similarity of two matrices, the similarity of the two matrices would only be 25%. However, if we
use the modification of sorting and summing first, we will obtain two intermediate matrices, which
can be called M′a and M′b. Using the basic arithmetic to calculate the similarity of the two intermediate
matrices obviously yields 100%, which is the true similarity of matrix Ma and matrix Mb. Thus, we can
draw a conclusion that matrix Ma and matrix Mb are similar matrices. In Section 6, we will evaluate
the algorithm from both efficiency and accuracy viewpoints.

(1)Row sum sorting

Ma= Mb=

Ma = Mb = Similarity=100%

 (2)

Figure 5. Example for the Row Sum Sorting (RSS) method.
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(b) Calculate the Similarity by the Unit of Lines (SUL) Method

Next, we introduce another algorithm to determine whether two matrices are similar when their
line sequences are not certain. We first introduce a formula to calculate the similarity of two rows in
two matrices.

W(ram, rbn) =
∑
|Mc

a |
j=1 H(ra(m,j), rb(n,j))

|Mc
a|

(5)

where ram is a row of matrix Ma and rbn is a row of matrix Mb. |Mc
a| is the number of columns of matrix

Ma. H(ra(m,j), rb(n,j)) is a formula for calculating the similarity of the similarity of matrix element
between a(m,j) and b(n,j) as follows.

H(ra(m,j), rb(n,j)) =

{
1, if |a(m,j) − b(n,j)| < m

0, otherwise
(6)

If the W(ram, rbn) > s (similarity threshold), we put the numbers of these two lines (Rowa, Rowb)

as a line number group in a set (Temp_list), where Rowa is the number of ram and Rowb is the number
of rbn.

We then determine whether the two matrices are similar by analyzing the set of the line number
group. We make a two-step moving operation on the set in which the line number group is stored.

• Step 1. Find the line number groups in which Rowb is not repeated in the set and move these line
number groups to another set (Result_list) for storage.

• Step 2. After performing the moving operation in the first step, if the set Temp_list is not empty,
we perform the second moving operation and successively determine the line number groups
remaining in the set Temp_list. If the Rowa and Rowb in this line number group are different from
those in the set Result_list, we move this type of line number group out to Result_list, as well.

• Step 3. We determine the number of line number groups in the set Result_list. If the number
equals the number of lines in the matrix, it is believed that the two matrices are similar.

Here is an example as shown in Figure 6. Matrices Ma and Mb are matched successively on the
basis of the lines. We put the similar line number groups (1, 5), (2, 6), (3, 3), (4, 2), (5, 4), (6, 1), (7, 8)
and (8, 7) into the set Temp_list. Then, we perform the first operation on the line number groups
in Temp_list. Because the Rowb values of these groups are 5, 6, 3, 2, 4, 1, 8, 7 and are not repeated,
we can directly move these groups out to Result_list. At this time Temp_list is empty, and we do not
have to perform the second step. The number of the line number groups in Result_list is eight and is
determined to be the same as the number of lines in matrices Ma and Mb; therefore, matrix Ma and
matrix Mb are similar matrices.

In the above example, the similarity of lines in matrix Ma and matrix Mb is in correspondence, but
sometimes, the similarity of the lines of two matrices is not in correspondence. As shown in Figure 7,
the first line of matrix Ma is similar to both the first line and the third line of matrix Mb. Therefore,
calculate the similarity of Ma and matrix Mb by the unit of lines. Line number groups (1, 5), (1, 6),
(2, 5), (2, 6), (3, 3), (4, 2), (5, 4), (6, 1), (7, 8) and (8, 7) are included in Temp_list. Then, we perform the
first-step operation on the line number groups in Temp_list. Because the Rowb values of these ten line
number groups are 5,6,5,6,3,2,4,1,8 and 7 and Rowb = 3,2,4,1,8 and 7 are not repeated, we can move
(3, 3), (4, 2), (5, 4), (6, 1), (7, 8), (8, 7) out to Result_list. Because at this time Temp_list is not empty,
we need to perform the second step to move (1, 5) and (2, 6) to Result_list. After the implementation
of the above two steps, we determine that the number of the line number groups in Result_list is eight
and is the same as the numbers of lines in matrix Ma and matrix Mb; therefore, matrices Ma and Mb
are similar.
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(Row_a,Row_b)

Ma= Mb=

Temp_list

null

Result_list

(1)

Figure 6. Example 1 for the Similarity by the Unit of Lines (SUL) method.

Ma= Mb=

(Row_a,Row_b)

(1) (2)

Result_list

Temp_list

(2)

Figure 7. Example 2 for the SUL method.

4.5. Step 5: Node Location Identification

4.5.1. Localization of Key Nodes

We can identify each intersection node group near a traffic light by considering similar matrices.
For example, if the Dn (a detection matrix) successfully matches with Km (a known matrix), we can
consider the intersection node group (Dn is constructed by this intersection node group) to be near this
traffic light (Km is constructed by this traffic light information). From what has been discussed above,
we can then locate the intersection node group. Because the intersection node group is composed of
key nodes, we can locate key nodes.
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4.5.2. Localization of Common Nodes

There is an algorithm to use vehicle detection time stamps to locate sensors called the Autonomous
Passive Localization (APL) algorithm [21]. This algorithm can obtain distance estimates between any
pair of sensors on roadways to construct a virtual graph composed of sensor identifications and
distance estimates, so we can identify where common sensors are located on roadways and obtain
distance estimates and key nodes. Thus, common nodes can be located because the location of key
nodes is known by Section 4.5.1.

5. Practical Discussion

5.1. Dealing with the Same Traffic Light Schedule

In practice, the possibility that the setting modes of different intersection traffic lights are the same
may lead to the same or similar matrices in the matrix collection to make the matrix matching result
not unique. Consequently, we cannot locate some intersection node groups. We adopt the following
two methods to solve these special location problems of intersection node groups.

• Method 1. There are not two identical matrices in the detection matrix collection, but a matrix in
the detection matrix collection has more than one matching result with the matrix of the known
matrix collection. Because our detection range is within a region, we can locate these special
points according to the surrounding intersection node group. When constructing the known
matrix collection, we assign to each matrix of a set its surrounding information. Then, we put the
matrix around the matrix of the special group in the detection matrix collection to match each
other. If the surrounding information in the detection matrix collection has a successful match,
we can obtain the corresponding matching result of the special matrix according to the matrix
information around the node.

• Method 2. When the nearby traffic lights have a similar setting or the detection matrix collection
has identical matrices, the above method does not work well. Therefore, we also can use the map
matching method of the APL algorithm to deal with the same traffic light schedule problem.

In all, the first method can efficiently and quickly handle the case of multiple traffic lights with
the same setting. However, it does not work when the nearby traffic lights also have similar settings.
Therefore, we provide the second method, which needs some time to match the graph. It can work
well when the nearby traffic lights will have similar settings.

5.2. The Known Matrix Collection Is Very Large

In some cases, the number of traffic lights is very large, causing the known matrix collection to
be very large. Therefore, the efficiency of the algorithm described in Section 4 will be very low and
may even fail to work. To alleviate this problem, we propose a new algorithm called the Recursion
Matching method (RM). Because we know the intersection information around the intersection, when
we construct the known matrix collection, we can also record the surrounding intersection ID in
an array. Thus, the matrix of the known matrix collection can constitute a graph in which each vertex
is an 8 × 6 matrix. We can reduce the program’s running time by the following steps.

• Step 1. We determine the similarity matrix of the first detection matrix (D0) in the known matrix
collection. The similarity matrix is considered as the initial matrix.

• Step 2. Once the surrounding matrix of the initial matrix is known, we determine the similarity
matrix of the surrounding matrix in detection collection. If we determine the similar matrix of
a given surrounding matrix, we consider this surrounding matrix as the initial matrix. Then,
we perform Step 2 again. It is important to note, if all of the surrounding matrices of the initial
matrix do not match, we will need to choose a new initial matrix. We repeat until all of the
matrices of the detection matrix collection are matched successfully.
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Through the above steps, we can see that the number of matrices in the known matrix collection
has only a small effect on the program running time. For example, as shown in Figure 8, in the first
step, we find that D0 of the detection matrix collection and K2 of the known matrix collection are
similar matrices. The second step will be K2 as a starting point, and then, its surrounding nodes
K0, K3, K4, K9, in turn, match in the detection matrix collection. K4, K9 can be matched with D2, D3.
Then, recursively match K4 and K9 with the surrounding vertex until all of the matrices of the detection
matrix collection are matched successfully.

K7

K6

K12

D1

D2

D3 D4

K3

K0

K1

K5

K2
K4

K8K9

K11

K10

K3

K0

K1

K5

K2
K4

K7

K6

K8K9

K11 K12

K10

D1

D4

K0

K1

K5

K2
K4

K7

K6

K8K9

K11 K12

K10

NULL

K3

Step 1

Step 2

Step 3

 

Figure 8. Example of the Recursion Matching (RM) method.

5.3. Some Key Nodes Damaged

In practice, some key sensors may appear damaged; in other words, the sensor number of some
intersection node groups is less than eight. Therefore, some detection matrices have less than eight
rows (i.e., 7× 6 or 6× 6 matrix). In this case, use the SUL method described in Section 4 to judge
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whether the matrix is similar. Thus, in the case of a small amount of damage to sensors, the TLS
algorithm can still work well.

5.4. Exciting Some Adaptive Traffic Light Controls

Most intersections have a fixed time scheduling based on a predefined time-plan. It is suitable for
managing stable and regular traffic flows, but it may not be able to efficiently cope with dynamically
varying traffic conditions. Thus, some traffic lights schedules are not static and are dynamically
determined [12]. According to this problem, we can dynamic update the known matrix collection
based on the real-time time schedules. Additionally, the newest traffic law can also be collected and
matched with the updated known matrix collection.

6. Performance Evaluation

In this section, we investigate system parameters and present two types of performance
evaluations as follows. First, we study two thresholds (matrix element gap threshold m and matrix
similarity threshold s) in Section 6.1. Second, we compare the RSS method with the SUL method and
compare the RM method with the SUL method for accuracy and elapsed time in Section 6.2. Finally,
we compare our method with the APL algorithm in Section 6.3 and evaluate the impact of practical
factors in Section 6.4.

Define two performance metrics as follows: First, for the matching accuracy comparison, the ratio
of the number of incorrectly localized sensors to the number of all sensors is defined as the key nodes’
accuracy ratio. Second, for the matching efficiency comparison, the program running time is defined
as elapsed time.

6.1. Investigation on System Parameters

In our system, we use two parameters (m and s) to calculate the similarity of the matrix. To find
the best value, we use a C++ language simulator and consider the scenario that 400 sensor nodes are
placed at 50 intersections.

For the matrix element gap threshold m, in Figure 9a, we can see that the key nodes’ accuracy rate
of the RSS method and the SUL method is the best when the m = 3. For the matrix similarity threshold
s, in Figure 9b, we can see that the key nodes accuracy rate of RSS method and SUL method is the best
when s = 0.8. Thus, the best choice is m = 3 and s = 0.8 for our system.
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Figure 9. Investigation on system parameters. (a) For element gap threshold m; (b) for similarity
threshold s.
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6.2. Performance Comparison between Matrix Matching Methods

We compare the performance of matrix matching methods according to the following three methods:

• Row Sum Sorting method (RSS)
• Calculate the Similarity by the Unit of Lines method (SUL)
• Recursion Matching method (RM)

For the accuracy comparison of the RSS and SUL methods, as shown in Figure 10a, the key nodes’
accuracy ratios of the RSS and SUL methods are relatively high, and the SUL method is higher than
the RSS method. As shown in Figure 10b, we find that the RSS method uses less elapsed time than the
SUL method; therefore, the RSS method has a better efficiency. Figure 11a,b compares the RM method
with the SUL method when the known matrix collection is very large. We also find that their accuracy
is essentially the same. With the increase of the number of known matrices, the elapsed time of the
SUL method rises quickly, but the elapsed time of the RM method remains basically unchanged. Thus,
the RM method is more suitable for the case in which the known matrix collection is very large.
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Figure 10. Comparison between the RSS method and the SUL method. (a) For key nodes accuracy rate;
(b) For elapsed time.
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Figure 11. Comparison between the RM method and the SUL method. (a) For key nodes’ accuracy rate;
(b) For elapsed time.
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6.3. Performance Comparison between the TLS Algorithm and the APL Algorithm

The TLS algorithm and the APL algorithm both use only vehicle detection time stamps to locate
sensors; therefore, we compare the two algorithms. The common nodes that are located by map
matching have the same accuracy rate of the APL algorithm, so we focus on the accuracy rate of
key nodes. We find that the TLS algorithm has a wider range of application than the APL algorithm
because the APL algorithm is affected by time synchronization error and vehicle speed deviation.
As shown in Figure 12a, we can see that the APL algorithm works well in the case in which the
vehicle standard deviation is less than 10 km/h, but the TLS algorithm is not affected by vehicle speed
deviation. As shown in Figure 12b, it can be seen that the APL algorithm works well in the case in
which the maximum time synchronization error is less than 0.25 s. However, our TLS algorithm is not
affected by maximum time synchronization error. In summary, the TLS algorithm has a wider range of
application compared with the APL algorithm.

5.5 7.5 9.5 11.5 13.5 15.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Vehicle Speed Deviation[km/h]

A
cc

u
ra

cy
 R

a
te

 

 

 RSS method

 SUL method

 APL method

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Maximum Time Sync Error[sec]

A
cc

u
ra

cy
 R

a
te

 

 

 RSS method

 SUL method

 APL method

(b)(a)

Figure 12. Comparison between the Traffic Lights Schedule (TLS) algorithm and the Autonomous
Passive Localization (APL) algorithm. (a) The impact of vehicle speed deviation; (b) the impact of
maximum time sync error.

6.4. Impact of Practical Factors

We evaluate the impact of heavy traffic and the number of missing key nodes in an intersection.
Our localization scheme works well in the case that the traffic is heavy and there are no missing key
nodes. As shown in Figure 13, with the increasing of the missing key nodes, the performance of TLS
is a downward trend. The average vehicle inter-arrival time can also reflect the condition of traffic.
Hence, we give the accuracy change trend with the increasing of vehicle inter-arrival time. As shown
in Figure 14, we see that the traffic can affect the performance of the localization scheme. That is
because sparse traffic offers low information to localize the nodes.
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Figure 13. The impact of missing key nodes.
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Figure 14. The impact of heavy traffic.

7. Conclusions

In sparse urban road networks, because sensors cannot effectively obtain pairwise ranging
distance or connectivity information, the previous localization schemes do not work well. Unlike
previous localization schemes, this work introduces a novel localization scheme, called TLS, using
binary sensors and traffic light schedule information. Our TLS system performs a localization using
vehicle detection time stamps along with the traffic lights information of the target area. The key idea is
to use the statistics of vehicle detection time stamps to obtain the traffic lights law of each intersection
to construct a detection matrix collection, which is then matched with the known matrix collection,
to identify where sensors are located in the target road network. For calculating the similarity of
two matrices, we can judge the similarity of two matrices even if the row order of a matrix is uncertain.
Finally, our algorithm is evaluated by extensive simulation. The results show that the localization
accuracy of intersection sensors can reach more than 90%. In addition, we compare with existing
typical algorithms and find that the TLS algorithm has a wider operational region.

Although the TLS algorithm can provide a good performance, there is room for further
enhancements. TLS algorithm has some limitations. For example, the data of vehicle detection
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time must include heavy traffic time. In future work, we will try to apply other public facilities
information (e.g., public buses) to improve our localization algorithm, in order to make our algorithm
work well when the vehicle traffic is sparse.

Acknowledgments: This work was supported in part by National Key Research and Development Program
(Grant No. 2016YFC060908), the National Natural Science Foundation of China (Grant No. 51674255), the Natural
Science Foundation of Jiangsu Province (Grant No. BK20160274), the Department of Science and Technology
Project of Jiangsu Province (Grants No. BY2014028-09 and BY2016026-03), the China Postdoctoral Science Special
Foundation (Grant No. 2016T90523) and the Innovation Project of China University of Mining and Technology
(Grant No. DC201642).

Author Contributions: Qiang Niu: algorithm design, paper writing. Xu Yang, Shouwan Gao and Pengpeng Chen:
algorithm design, experiments, data analysis, paper writing. Shibing Chan: paper writing.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bahl, P.; Padmanabhan, V.N. RADAR: An In-Building RF-Based User Location and Tracking System. In
Proceedings of Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM 2000), Tel Aviv, Israel, 26–30 March 2000; pp. 775–784.

2. Wellenhoff, B.H.; Lichtenegger, H.; Collins, J. Global Positions System: Theory and Practice; Springer:
Wien, Austria, 1997.

3. Priyantha, N.B.; Chakraborty, A.; Balakrishnan, H. The Cricket Location-Support System. In Proceedings
of the 6th Annual International Conference on Mobile Computing and Networking, Boston, MA, USA,
6–11 August 2000.

4. Niculescu, D.; Nath, B. Ad Hoc Positioning System (APS) Using AOA. In Proceedings of the Twenty-Second
Annual Joint Conference of the IEEE Computer and Communications (INFOCOM 2003), San Francisco, CA,
USA, 30 March–3 Apirl 2003.

5. Bulusu, N.; Heidemann, J.; Estrin, D. GPS-Less Low Cost Outdoor Localization for Very Small Devices.
IEEE Pers. Commun. 2000, 7, 28–34.

6. Moore, D.; Leonard, J.; Rus, D.; Teller, S. Robust Distributed Network Localization with Noise Range
Measurements. In Proceedings of the 2nd International Conference on Embedded Networked Sensor
Systems, Baltimore, MA, USA, 3–5 November 2004.

7. Lazos, L.; Poovendran, R. SeRLoc: Secure Range-Independent Localization for Wireless Sensor Networks. In
Proceedings of the 3rd ACM Workshop on Wireless Security, Philadelphia, PA, USA, 1 October 2004.

8. He, T.; Huang, C.; Blum, B.M.; Stankovic, J.A.; Abdelzaher, T. Range-Free Localization Schemes for
Large-Scale Sensor Networks. In Proceedings of the 9th Annual International Conference on Mobile
Computing and Networking, San Diego, CA, USA, 14–19 September 2003.

9. Shang, Y.; Ruml, W.; Zhang, Y.; Fromherz, M.P.J. Localization from Mere Connectivity. In Proceedings of the
4th ACM International Symposium on Mobile Ad Hoc Networking and Computing, Annapolis, MD, USA,
1–3 June 2003.

10. Gao, K.; Zhang, Y.; Su, R.; Lentzakis, A. Discrete harmony search algorithm for solving urban traffic light
scheduling problem. In Proceedings of the American Control Conference, Boston, MA, USA, 6–8 July 2016.

11. Gao, K.; Zhang, Y.; Sadollah, A.; Su, R. Optimizing urban traffic light scheduling problem using harmony
Search with ensemble of local search. Appl. Soft Comput. 2016, 48, 359–372.

12. Collotta, M.; Bello, L.L.; Pau, G. A novel approach for dynamic traffic lights management based on Wireless
Sensor Networks and multiple fuzzy logic controllers. Expert Syst. Appl. 2015, 42, 5403–5415.

13. Zhao, J.; Cao, G. VADD: Vehicle-assisted data delivery in vehicular ad hoc networks. IEEE Trans. Veh. Technol.
2008, 57, 1910–1912.

14. GB Traffic Volumes. Available online: www.mapmechanics.com (accessed on 30 June 2016).
15. Wang, Y.; Zheng, Y.; Xue, Y. Travel Time Estimation of a Path using Sparse Trajectories. In Proceedings of the

20th SIGKDD Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August
2014; pp. 25–34.

www.mapmechanics.com


Sensors 2016, 16, 1662 18 of 19

16. Yuan, J.; Zheng, Y.; Xie, X.; Sun, G. Driving with Knowledge from the Physical World. In Proceedings of the
17th SIGKDD Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 21–24 August
2011; pp. 316–324.

17. Li, Y.; Zheng, Y.; Zhang, H.; Chen, L. Traffic Prediction in a Bike Sharing System. In Proceedings of the
23rd ACM International Conference on Advances in Geographical Information Systems, Seattle, WA, USA,
3–6 November 2015.

18. Liu, W.; Zheng, Y.; Chawla, S.; Yuan, J.; Xing, X. Discovering Spatio-Temporal Causal Interactions in Traffic
Data Streams. In Proceedings of the 17th SIGKDD conference on Knowledge Discovery and Data Mining,
San Diego, CA, USA, 21–24 August 2011; pp. 1010–1018.

19. Shang, J.; Zheng, Y.; Tong, W.; Chang, E.; Yu, Y. Inferring Gas Consumption and Pollution Emission of
Vehicles throughout a City. In Proceedings of the 20th SIGKDD Conference on Knowledge Discovery and
Data Mining, New York, NY, USA, 24–27 August 2014; pp. 1011–1025.

20. Zheng, Y.; Yi, X.; Li, M.; Li, R.; Shan, Z.; Chang, E.; Li, T. Forecasting Fine-Grained Air Quality Based on Big
Data. In Proceedings of the 21th SIGKDD Conference on Knowledge Discovery and Data Mining, Sydney,
Australia, 10–13 August 2015; pp. 2267–2276.

21. Jeong, J.; Guo, S.; He, T.; Du, D.H. Autonomous passive localization algorithm for road sensor networks.
IEEE Trans. Comput. 2011, 11, 1622–1637.

22. Youssef, M.; Mah, M.; Agrawala, A. Challenges: Device-Free Passive Localization for Wireless Environments.
In Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking,
Montreal, QC, Canada, 9–14 September 2007.

23. Zhou, G.; He, T.; Krishnamurthy, S.; Stankovic, J.A. Impact of Radio Irregularity on Wireless Sensor Networks.
In Proceedings of the 2nd International Conference on Mobile Systems, Applications, and Services, Boston,
MA, USA, 6–9 June 2004.

24. Niculescu, D.; Nath, B. DV Based Positioning in Ad Hoc Networks. Telecommun. Syst. 2003, 22, 267–280.
25. Chen, P.; Ma, H.; Gao, S.; Huang, Y. Modified Extended Kalman Filtering for Tracking with Insufficient and

Intermittent Observations. Math. Prob. Eng. 2015, 2015, 981727.
26. Lederer, S.; Wang, Y.; Gao, J. Connectivity-Based Localization of Large Scale Sensor Networks with Complex

Shape. ACM Trans. Sens. Netw. 2009, 5, 31.
27. Bulusu, N.; Heidemann, J.; Estrin, D.; Tran, T. Self-Configuring Localization Systems: Design and

Experimental Evaluation. ACM Trans. Embedded Comput. Syst. 2004, 3, 24–60.
28. Nagpal, R.; Shrobe, H.; Bachrach, J. Organizing a Global Coordinate System from Local Information on an

Ad Hoc Sensor Network. In Information Processing in Sensor Networks; Springer: Berlin/Heidelberg, Germeny,
2016; pp. 333–348.

29. Rabaey, C.S.J.; Langendoen, K. Robust Positioning Algorithms for Distributed Ad-Hoc Wireless Sensor
Networks. In Proceedings of the 2002 USENIX Annual Technical Conference, Monterey, CA, USA,
10–15 June 2002.

30. Chen, P.; Ma, H.; Gao, S.; Huang, Y. SSL: Signal Similarity-Based Localization for Ocean Sensor Networks.
Sensors 2015, 15, 29702–29720.

31. Zhong, Z.; He, T. MSP: Multi-Sequence Positioning of Wireless Sensor Nodes. In Proceedings of the 5th
International Conference on Embedded Networked Sensor Systems, Sydney, Australia, 6–9 November 2007.

32. Zhong, Z.; Wang, D.; He, T. Sensor Node Localization Using Uncontrolled Events. In Proceedings of the 28th
International Conference on Distributed Computing Systems, Beijing, China, 17–20 June 2008.

33. Stoleru, R.; He, T.; Stankovic, J.A.; Luebke, D. A High-Accuracy, Low-Cost Localization System for Wireless
Sensor Networks. In Proceedings of the 3rd International Conference on Embedded Networked Sensor
Systems, San Diego, CA, USA, 2–4 November 2005.

34. Stoleru, R.; Vicaire, P.; He, T.; Stankovic, J.A. StarDust: AFlexible Architecture for Passive Localization in
Wireless Sensor Networks. In Proceedings of the 4th International Conference on Embedded Networked
Sensor Systems, Boulder, CO, USA, 31 October–3 November 2006.

35. Römer, K. The Lighthouse Location System for Smart Dust. In Proceedings of the 1st International Conference
on Mobile Systems, Applications and Services, San Francisco, CA, USA, 5–8 May 2003.

36. Seifnaraghi, N.; Ebrahimi, S.G.; Ince, E.A. Novel traffic lights signaling technique based on lane occupancy
rates. In Proceedings of 24th International Symposium on Computer and Information Sciences, Guzelyurt,
Cyprus, 14–16 September 2009.



Sensors 2016, 16, 1662 19 of 19

37. Bai, L.F.; Xu, J.X. Research on Urban Traffic Signal Control Method at Single intersection. Adv. Mater. Res.
2012, 361, 1799–1802.

38. Jeong, J.; Guo, S.; Gu, Y.; He, T.; Du, D. TBD: Trajectory-Based Data Forwarding for Light-Traffic Vehicular
Networks. In Proceedings of the 29th IEEE International Conference on Distributed Computing Systems,
Montreal, QC, Canada, 22–26 June 2009; pp. 231–238.

39. Jiang, C.J.; Chen, C.; Chang, J.W.; Jan, R.H.; Chiang, T.C. Construct Small Worlds in Wireless Networks
Using Data Mules. In Proceedings of the IEEE International Conference on Sensor Networks, Ubiquitous
and Trustworthy Computing, Taichung, Taiwan, 11–13 June 2008; pp. 28–35.

40. Römer, K. Time Synchronization in Ad Hoc Networks. In Proceedings of the 2nd ACM International
Symposium on Mobile Ad Hoc Networking and Computing, Long Beach, CA, USA, 4–5 October 2001.

41. Wisitpongphan, N.; Bai, F.; Mudalige, P.; Tonguz, O.K. On the Routing Problem in Disconnected Vehicular
Ad Hoc Networks. In Proceedings of the 26th IEEE International Conference on Computer Communications,
Anchorage, AK, USA, 6–12 May 2007.

42. DeGroot, M.; Schervish, M. Probability and Statistics, 4th ed.; Addison-Wesley: Boston, MA, USA, 2011;
pp. 275–345.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Work
	Problem Formulation
	Definitions
	Assumptions

	TLS System Design
	System Architecture
	Step 2: Determine the Valid Data
	Determining the Valid Data Operation 
	Analysis of Determining Valid Data Errors

	Step 3: Matrix Construction Algorithm
	Detection Matrix Construction Algorithm
	Known Matrix Construction Algorithm

	Step 4: Matrix Matching Algorithms
	Calculate the Similarity of the Matrix
	Row Uncertain Matrix Matching Algorithm

	Step 5: Node Location Identification
	Localization of Key Nodes
	Localization of Common Nodes


	Practical Discussion
	Dealing with the Same Traffic Light Schedule
	The Known Matrix Collection Is Very Large
	Some Key Nodes Damaged
	Exciting Some Adaptive Traffic Light Controls

	Performance Evaluation
	Investigation on System Parameters
	Performance Comparison between Matrix Matching Methods
	Performance Comparison between the TLS Algorithm and the APL Algorithm
	Impact of Practical Factors

	Conclusions

