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Abstract: Since humidity sensors have been widely used in many sectors, a suitable humidity
sensing material with improved sensitivity, faster response and recovery times, better stability
and low hysteresis is necessary to be developed. Here, we fabricate a uniformly porous humidity
sensor using Ca, Ti substituted Mg ferrites with chemical formula of CaMgFe1.33Ti3O12 as humidity
sensing materials by solid-sate step-sintering technique. This synthesis technique is useful to
control the grain size with increased porosity to enhance the hydrophilic characteristics of the
CaMgFe1.33Ti3O12 nanoceramic based sintered electro-ceramic nanocomposites. The highest porosity,
lowest density and excellent surface-hydrophilicity properties were obtained at 1050 ◦C sintered
ceramic. The performance of this impedance type humidity sensor was evaluated by electrical
characterizations using alternating current (AC) in the 33%–95% relative humidity (RH) range at 25 ◦C.
Compared with existing conventional resistive humidity sensors, the present sintered electro-ceramic
nanocomposite based humidity sensor showed faster response time (20 s) and recovery time (40 s).
This newly developed sensor showed extremely high sensitivity (%S) and small hysteresis of <3.4%.
Long-term stability of the sensor had been determined by testing for 30 consecutive days. Therefore,
the high performance sensing behavior of the present electro-ceramic nanocomposites would be
suitable for a potential use in advanced humidity sensors.

Keywords: nanoceramic; moisture; porosity; mechanism; resistive; recovery; sensitivity;
long-term stability

1. Introduction

A variety of techniques have been subsisted for detection of relative humidity (RH) in various
systems or devices. RH is one of the most frequently influenced physical parameters in every field
of life, e.g., domestic, pharmaceuticals, electronics, textile, biomedical field, and laboratories [1–7].
In biomedical field, sweating is one of the great discomforts to the patients, who have to use stumps or
prosthetic devices for longer period. However, estimation of sweating rate is a great challenge to the
researchers at the narrow zone between the socket and skin [8]. In response to the high demands of RH
in wide field of applications, it is now essential to develop proper RH sensors with lower cost; faster,
simpler, and more unswerving detection; and higher sensitivity. Nanostructured materials significantly
promote the humidity sensing properties in contrast to the conventional porous ceramic materials
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owing to ultra-high surface-to-volume ratio, small grain size and very large boundary areas [1–4,9].
Some ceramic materials using precision capacitive technique also showed rapid dynamic responses
as well as high temperature compensation [10,11]. Thus, the nanomaterials display better sensing
behavior, such as smaller response time, shorter hysteresis, improved sensitivity and better stability [9].
Therefore, various different nanomaterials have been explored as potential sensing elements for
humidity-measuring systems [9,12–14]. In this context, ceramic oxides showed several beneficial
properties, such as thermal, physical and chemical stabilities, mechanical strength, and so on [15].
For humidity sensing, ceramics are used mainly as porous sintered form [16]. Ceramic sensors mainly
depend on their surface characteristics [17]. Therefore, maintaining the porous structure with high
surface activity is a great concern to researchers to develop ceramic sensors with suitable electrical
characteristics related to humidity sensors [18,19].

In this context, lead-free ferroelectric ceramics (e.g., BiFeO3) can show spontaneous high
polarization and high magnetic Curie temperature [20]. Further, crystalline tin oxide (SnO2) based
flexible composite had shown good resistive sensitivity for humidity and gas sensor [21]. Recently,
more interesting studies on humidity sensors of different spinel-type ceramics were investigated.
Magnesium (Mg) based spinel ferrite has been shown to be one of the best potential spinel ceramic
candidates for resistive type relative humidity sensors [22]. Major advantages of these materials
are long-term stability, high porosity, and that they can cover wide relative humidity range. Thus,
these advantages make the resistive sensors suitable to use for controlling and displaying the
products in industrial, commercial, and residential applications [8]. However, sometimes, few
problems associated with oxide materials, including long-term drift, slow down the response time
and adsorption/desorption hysteresis. In this context, Mg ferrite is oxygen deficient material
at lower sintering temperature as well as porous, which is desirable for humidity sensing [23].
Since defective sites on the surface are highly reactive due to unsaturated bonds, it helps water
vapors to dissociate [24,25]. Recent studies on this material investigate improving the sensitivity and
minimizing the response time by varying the size of the synthesized nanoparticles [26,27].

Substitution of cations in magnetic and non-magnetic ferrites has ability to change their magnetic
or electrical properties [28–30]. The change in physical and chemical properties may be found in the ion
substituted spinel ferrites due to the distribution of the cations in their available trihedral (named as
A-site) and octahedral (named as B-site) sites [31–33]. In order to improve the electrical and magnetic
properties of magnesium ferrites, various cations had been investigated [34]. In different studies,
researchers showed that the incorporation of Ti ion could reduce the electrical conductivity of the
Mg–Zn ferrite [35], Li-ferrite [36] and Co–Zn ferrite [37]. Moreover, inclusion of Ti4+ ions reduced the
dielectric constants in Ni–Zn ferrite [38] and influenced the magnetic properties of Mg–Zn [39] ferrites.
The substitution of Ti4+ ion at iron sites in manganese (Mn) ferrites was found to be effective in order
to minimize the magneto crystalline anisotropy and to enhance the electrical resistivity. The reduction
in conductivity and dielectric loss of ferrites is very important for humidity sensor applications [40].

The above survey indicates that the use of Ca, Ti doped magnesium ferrite nanocomposite
might be potential candidate as an effective humidity sensor material. To the best of our knowledge,
there is no existing report by any other group on the synthesis of Ca, Mg, and Ti oxide based complex
ferrite materials. Therefore, for the first time, we aim to synthesize Ca, Mg, and Ti oxide based
complex ferrite material (probable empirical formula CaMgFe1.33Ti3O12) using inexpensive solid-state
step-sintering from inexpensive iron oxide (Fe2O3), magnesium carbonate (MgCO3), calcium oxide
(CaO) and titania (TiO2) powders and by optimizing the sintering conditions for humidity sensing
application in the field of biomedical engineering. Since our previous report on capacitive sensor
have shown successful effort [41], it has motivated us to carry out humidity dependent electrical
impedance, complex impedance, modulus, sensitivity, linearity, hysteresis, and response and recovery
time analysis measurements on nanostructured CaMgFe1.33Ti3O12 complex ceramic samples in the
present study.
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2. Experimental Details

2.1. Preparation of Sensing Material

The CaMgFe1.33Ti3O12 nanocomposite was developed by solid-state step-sintering at suitable
temperatures in a box furnace (XY1600, Nanyang Xinyu Furnaces, He’nan, China) using commercial
ceramic powders of CaO, MgCO3, Fe2O3 and TiO2 (99.9% pure, Fisher scientific Ltd., Selangor,
Malaysia) with proper molar ratio, as reported before [41]. The empirical formula of the unsintered
nanocomposite was calculated to CaMgFe1.33Ti3O12 from the used molar ratio of the raw ingredients.
All the ingredients powders were first, dry mixed thoroughly in normal grinder for 1 h and then,
the mixed powders were ball-milled in aqueous medium of 70% alcohol in a ball mill (PM200,
Retsch, Düsseldorf, Germany) at 300 rpm for 72 h. The mixed slurry was kept at 250 ◦C for 5 h
for self-combustion followed by drying at 220 ◦C in a programmable oven for 48 h. The cylindrical
pellets (Φ10 mm × 1–2 mm) were prepared at a maximum uniaxial pressure of 450 MPa under a
hydraulic press (GS15011, Graseby Specac, Kent, UK). The testing pellets were step-sintered in ambient
gas atmosphere. Since, according to our previous studies, morphological, physical, and dielectric
properties suggested that the material of sintering condition 1050 ◦C was best, only pellets sintered at
1050 ◦C were used as resistive or impedance type humidity sensors in the present investigation. In this
particular sintering condition, mainly three steps were involved. First, the compact pellets were heated
at 350 ◦C for 1 h at a ramp rate of 5 ◦C/min, then they were calcined at 550 ◦C for 3.5 h at a ramp of
10 ◦C/min, and finally, the pellets were sintered at 1050 ◦C for 1.3 h at a rate of 15 ◦C/min. After the
final step, it was cooled down to 750 ◦C at 20 ◦C/min with a holding time of 3 h and then allowed to
normal furnace cooling up to the room temperature (i.e., 25 ◦C). The solid-state step-sintering ensured
the desired ranges of particle size, pore size, and porosity.

2.2. Humidity Sensor Fabrication and Measuring Setup

A measured amount of the dried milled powders of CaMgFe1.33Ti3O12 was uniaxially pressed
at high pressure of 450 MPa for 4 min to form the pellets of 10 mm in diameter and about 1.2 mm in
thickness (Figure 1a). Then, the pellets were sintered at the condition of 1050 ◦C, as mentioned above.
The silver electrodes were screen printed on both sides of each sintered pellet and two copper (Cu)
wires were connected to both side-silver electrodes (see Figure 1a). Finally, the fabricated sensor was
placed for aging at 150 ◦C in air for 1 h followed by stabilization at 1 V voltage in 95% RH for 24 h.
The sensor element (silver coated sintered electro-ceramic nanocomposite disc) was then placed in
a thermostatic vessel and exposed to different RHs (see Figure 1b). The RHs between 33% RH and 95%
RH (see Figure 1c) were obtained as the humidity generation source using saturated salt solutions such
as MgCl2, Mg(NO3)2, NaCl, KCl and KNO3, which would produce the environments with different
RHs of 33%, 55%, 75%, 85% and 95% RH, respectively at 25 ◦C.

X-ray diffraction (XRD) results were obtained by using X-ray diffractometer (Empyrean,
PANalytical, Almelo, The Netherlands). The microstructure of the samples was analyzed by field
emission-scanning electron microscopy (FESEM, AURIGA, Carl Zeiss, Jena, Germany). Pore size
distribution (PSD) was computed by the ImageJ from the corresponding FESEM images. Density
($ in g/cc), open porosity (%), and absorbed water or water absorption (%) of the porous materials
were evaluated by modified Archimedes’ principle, as explored in our previous studies [42–44] using
distilled water at 25 ◦C.

The impedance response to RH of CaMgFe1.33Ti3O12 nanoceramic derived sintered electro-ceramic
nanocomposite humidity sensor was studied by impedance spectroscopy (IS) (3532-50 LCR Hi tester,
Hioki) using alternating current (AC) frequency, ranging from 100 Hz to 1 MHz at 25 ◦C. The sintered
electro-ceramic nanocomposite used as sensing element and the schematic of humidity sensing
measuring equipment are depicted in Figure 1a,b, respectively. After each change of the humidity,
the sensor element was exposed to the new humidity for 2 min, before measuring of the new resistance.
The humidity response and recovery times were carried out over the resistance changes when the RH
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was changed during humidification (33% to 95% RH) as well as during desiccation (95% to 33% RH) at
25 ◦C. To determine stability of the sensors, the resistivity (due to RH ranging 33% to 95% RH) vs. time
characteristics were measured at 25 ◦C, for 30 days in in 2-day intervals.
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Figure 1. Schematics of: (a) ceramic pellet with silver electrodes; (b) experimental setup for relative
humidity (RH) sensing measurement; and (c) humidity sensitive capacitive device at different RHs.

3. Results and Discussion

3.1. Structural and Morphological Analysis

X-ray diffraction (XRD) patterns of unsintered and sintered (at 1050 ◦C) ceramic materials are
depicted in Figure 2a,b. Presence of almost all the used raw materials was observed in XRD-pattern of
unsintered ceramic mixture. The major crystalline peaks shown by anatase TiO2 (Powder diffraction
file (PDF) No. 98-015-4609) and ferrite Fe2O3 (PDF No. 01-084-0308) are indicated in Figure 2a.
Other small peaks of CaO and MgCO3 have also been detected. A new peak of calcium carbonate
(CaCO3, PDF No. 01-072-1650) at 2θ = 29.59◦ indicates that the CaO and MgCO3 had reacted during
mechano-chemical mixing. After sintering, the unsintered CaMgFe1.33Ti3O12 nanoceramic converted
into mainly two new phases, which were resembled with the standard XRD patterns of orthorhombic
armalcolite (Fe2MgTi3O10, PDF No. 00-013-0353) and perovskite CaTiO3 (PDF No. 00-008-0092) at
1050 ◦C, are depicted in Figure 2b. The crystallite size (t) of the sintered material was estimated by
modified Debye Scherer formula in Equation (1) [42]:

t =
κλ

∆θFWHM·cosθ− 4ε·sinθ
(1)

where ∆θFWHM is the full width at half maxima of the XRD peak (in radian), κ is a constant (~0.9) that
depends on the particle morphology, λ is the x-ray wavelength (λCuKα = 1.540546Å), ε is the crystal
strain or elastic residual strain, and θ is the Braggs’ diffraction angle (in degree).

The two different crystallite sizes of the sintered materials at 2θ =25.70◦ for (101) plane of
Fe2MgTi3O10 and 2θ = 33.32◦ for (440) plane of CaTiO3 are 20.7 nm and 5.9 nm, respectively. This result
clearly indicates that the material sintered at 1050 ◦C contained mainly two phases, which were also
observed in the scanning electron micrograph (see Figure 3). Interestingly, at 2θ = 35.72◦, another new
peak of Fe3O4 (PDF No. 01-088-0315) for (311) plane clearly indicates the transformation of Fe3+ into
Fe2+ from Fe2O3 after sintering at 1050 ◦C. According to the peak areas of the corresponding peaks,
the amounts of Fe2MgTi3O10, CaTiO3 and Fe3O4 present in the sintered material are 85.80%, 12.16%
and 2.04%, respectively (see Table 1, with respect the total area of peak).
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Figure 2. X-ray diffraction (XRD) patterns of: (a) unsintered; and (b) sintered (at 1050 ◦C)
CaMgFe1.33Ti3O12 nanoceramic composites. X-ray source was Cu-Kα radiation, and 2θwas 20◦–50◦.
Note: the different colored planes represent the crystalline planes of respective materials: pink, Fe2O3;
black, TiO2; dark red, MgCO3; green, CaCO3; purple, CaO; red, Fe2MgTi3O10; blue, CaTiO3; and
brown, Fe3O4.

Table 1. Concentration of crystalline phases present the sintered nanocomposite determined from XRD.

Crystalline Phase Area under XRD Peak (s) Phase Concentration (%)

Fe2MgTi3O10 140,066 85.80
CaTiO3 19,857 12.16
Fe3O4 3319 2.04

Lattice parameters of the orthorhombic armalcolite (Fe2MgTi3O10) and cubic perovskite (CaTiO3)
can be calculated using Equations (2) and (3), respectively, and the values are illustrated to Table 2.
Since only one unique peak was shown by Fe3O4 at 2θ = 35.72◦, the lattice parameters were not
calculated in the present study: [

1
d2

hkl

]
orthorhombic

=
h2

a2 +
k2

b2 +
l2

c2 (2)

[
1

d2
hkl

]
cubic

=
h2 + k2 + l2

a2 (3)

where dhkl is the inter-planer distance between the planes (hkl); and a, b and c are unit cell parameters.
It was found that unit cell volume of both the crystal lower than that of standard unit cells of the
corresponding crystals. It was affected by lattice strain. The interesting result obtained by the XRD
was that the unit cell volume of the CaTiO3 was higher than that of Fe2MgTi3O10, which was reverse of
the particle size obtained from the SEM micrograph of the sintered material (see Figure 3). This result
indicates that the particles of CaTiO3 obtained at the 1050 ◦C sintering condition were not grown
completely. This is an extremely advantageous technique to control the second phase materials
according to desired properties.
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Table 2. Comparison of lattice parameters of the two phases of sintered nanocomposites with the
standard crystals.

Lattice Parameters Fe2MgTi3O10
(Calculated)

PDF No. 00-013-0353
(Standard)

CaTiO3
(Calculated)

PDF No. 00-008-0092
(Standard)

a (nm) 0.9658 0.9770 1.5164 1.5250
b (nm) 1.0046 0.9950 - -
c (nm) 0.3725 0.3730 - -

Volume (nm3) 0.3614 0.3626 3.4869 3.5466
Lattice volume strain (%) −0.3309 - −1.6833 -

Crystal system Orthorhombic Orthorhombic Cubic Cubic
Crystallite size (nm) 20.7 - 5.9 -

A submicro-porous structure of the ceramic nanomaterials is depicted in the scanning electron
micrographs of Figure 3. Average particle size of the unsitered ceramic (210 nm, see Figure 3a)
increased after sintering at 1050 ◦C (630 nm, see Figure 3b). The average pore size in the specimen
after sintering at 1050 ◦C was found as 850 nm. Two different sizes (685 nm and <100 nm) in the
sintered materials distinctly indicate the development of two distinct phases such as Fe2MgTi3O10 and
CaTiO3 (see Figure 3b). The smaller size (typically < 100 nm) particles were the perovskite CaTiO3

phase and the large particles were Fe2MgTi3O10 phase particles (average size of 685 nm). They were
also confirmed by XRD study. The grain boundaries and grains were clearly revealed in the sintered
materials at higher magnifications, as found at the large size armalcolite phase in Figure 3b.
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Figure 3. Scanning electron micrographs of the specimens for: (a) unsintered; and (b) sintered at
1050 ◦C. Note: the green and yellow arrows indicate pores and particles; and vertical red and horizontal
blue arrows indicate the armalcolite (average size: 685 nm) and perovskite (<100 nm) structure phases,
respectively. The grain and grain boundary are also clearly revealed at the large size armalcolite phase.

Figure 4 shows the PSD of unsintered and sintered (at 1050 ◦C) materials estimated from the
Inverted SEM figures employing ImageJ. The unsintered material (see Figure 4a) showed almost
bimodal or single modal pore distribution with a PSD less than 1.5 µm. However, at sintering condition
(at 1050 ◦C, see Figure 4b), the maximum pore size was also found to be more than 3.5 µm. This result
suggests that larger size open pores had been developed in sintered materials. The multimodal PSD at
1050 ◦C implies that the three different types of cluster developed by three distinct structural phases,
including armalcolite, perovskite, and ferrite, which were confirmed by XRD study (see Figure 2),
were inter connected. Hence, the multimodal PSD present in the sintered material with higher pore
size would be responsible to possess a higher resistive sensitivity due to RH change. Large sized
pores (above 850 nm) distributed along the agglomerated grains were observed in the sintered sample.
These pores played vital role for faster response of sensor since the rate of water adsorption was
controlled by the rate of diffusion of water vapors. These typical porous structures present in our
sintered electro-ceramics could readily display the adsorption and condensation of water vapors from
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the sensor devices. Moreover, this structure is an excellent beneficial for the moisture absorption.
The unsintered sample showed insufficient porosity with higher density, and thus, could not use for
further study. In the oxide based porous compounds, including the Mg-ferrite in our case, the water
vapor molecules would react with the grains of material’s surface as well as with the grains present
inside the material of sensing element. In addition, a larger specific surface area (sintered at 1050 ◦C)
indicated a larger active surface exposed to the gas and a higher sensitivity to water vapor or gaseous
molecules. The specific surface area (15–25 m2/g) of the unsintered sample could partially be the effect
of large amount of closed pores in order to get detriment in open pores. The obtained changes in the
both particle size and specific surface area suggest that the used step sintering technique, as a result of
the formation of the different secondary or tertiary phases, inhibited the crystal growth and favored
the increase in specific surface area. On the other hand, the sintered electro-ceramic showed the higher
porosity (>40%), lowest density, the largest specific area (10–70 m2/g) and a wide PSD in comparison of
unsintered CaMgFe1.33Ti3O12 nanoceramic. The large specific area enhanced active surface to adsorb
or desorb water vapors and, thus, improved the resistive sensitivity with the variation of RH. Further,
since large pores are necessary for a rapid response, this sintered electro-ceramic can easily improve
the adsorption and condensation of water vapor [45]. Hence, the sintered electro-ceramic (at 1050 ◦C)
was considered as the ideal condition for our further humidity sensing analysis.
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Figure 4. Pore size distribution (PSD) plots of: (a) unsintered; and (b) sintered (at 1050 ◦C) materials
quantifying from the respective Inverted SEM figures using ImageJ. The corresponding Inverted SEM
image is also presented as Inset image for both the materials. The black analyzed areas in the Insets
indicate pores and white areas represent the particles.

The bulk density was conducted in order to measure the open porosity of the materials.
The unsintered and sintered (1050 ◦C) materials showed bulk density of 1.989 ± 0.091 g/cc and
0.941 ± 0.035 g/cc, respectively; and the open porosity of unsintered and sintered (1050 ◦C) materials
was 73.84% ± 1.24% and 40.26% ± 1.33%, respectively. The decreased value of density showed that the
densification was significantly controlled by sintering condition. Densification was controlled using
step-sintering conditions to enhance the porosity. The bulk density of the nanocomposite sintered at
1050 ◦C was significantly (50%) decreased due to lattice diffusion phenomenon during sintering with
keeping substantial porosity [46]. The porous morphology (see Figure 2b) and PSD (see Figure 3b)
of the sintered (at 1050 ◦C) nanocomposite also strongly supported this result. The water absorption
indicated the total porosity present in the newly developed materials. The uniform high porosity of the
sintered sample was obtained owing to the novel preparation technique (by solid-state reactions during
step-sintering, rather conventional chemical routes). The high water absorption (~67%) in the sintered
sample suggested the uniform porosity that was also revealed in the SEM-image (see Figure 2b).
Therefore, from the above structural and physical studies, the sintered nanocomposite (at 1050 ◦C) had
been considered as a potential humidity sensing material in our further study [8,47–49].
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3.2. Humidity Sensing Measurements

The complex impedance spectra of the newly developed CaMgFe1.33Ti3O12 nanoceramic derived
sintered electro-ceramic nanocomposite material based humidity sensor with different humidity
conditions, i.e., 33%–95% RH, are depicted in Figure 5a–e.
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Figure 5. Nyquist plots of sintered electro-ceramic nanocomposite device at: (a) 33% RH; (b) 55% RH;
(c) 75% RH; (d) 85% RH; and (e) 97% RH. Note: At lower RH (33%, 55% and 75% RH) (a–c) the
semicircles are formed and the curvature of the semicircle decreases with increasing RH, as a result the
value of intrinsic impedance decreases, which is mainly due to the interaction between the sensing
material and water particles. With elevating of RH from 85% to 95%, a linear curve appeared in the
low-frequency range and the semicircle became smaller (d,e). The ionic and/or electrolytic conductivity
played crucial role in the formation of straight line in case of complex impedance plot.

It was found that the impedance value decreased with increasing of RH. This study describes
the mechanism of impedance response with the function of humidity. From the SEM analysis it was
confirmed that at 1050 ◦C sintering temperature, the porosity of the sintered nanocomposite was
achieved to the desired level, which enhances the hydrophilic surface characteristics of the developed
sensors material. When the porous sintered nanocomposite was placed in a humidity environment,
the oxygen and water from surrounding atmosphere could be chemisorbed onto its hydrophilic
surface, which played a vital role to alter the sensing characteristics of the sensor. In addition, due to
increase of RH from 33% to 95%, more amount of water particles were absorbed on the composite’s
surfaces. It mainly resulted to a decrease in impedance such a manner that the dielectric properties
could be tailored. In Figure 5, it was observed that at lower humidity levels, one semicircle was
formed and as humidity increases, a line started to appear. This line associated to electrode/interface
effect. As humidity increased, the semicircle started to shrink and the line became longer. Therefore,
it indicates that at higher RH value, the dielectric properties seem to be increased.

To analyze the effect of humidity on our present electro-ceramic nanocomposite device, we
measured the impedance, capacitance and modulus at different humidity conditions in a frequency
range of 102 Hz–1 MHz at 25 ◦C. The RH dependent capacitance effect is depicted in Figure 6. It was
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observed that for all the relative humidity levels, the value of capacitance decreased with increase
in frequency. This decreasing rate was faster at low frequencies but slower at higher frequencies.
The capacitance value was also found to be increased with increasing of humidity. As RH increased,
more H+ ions would be available in adsorbed water layers on the surface of sensor material, and,
as a result, the capacitance value becomes higher [50]. Impedance also highly depended on the
value of frequency since it was directly related to energy of carriers. At lower humidity condition,
due to discontinuity of water particles, much energy was required to transfer the protons from one
hydroxyl group to its adjacent group via hopping mechanism. Thus, the sensors material of sintered
electro-ceramic nanocomposite exhibited very high electrical impedance. However, at higher humidity
condition, due to continuous water layer, the proton required very less energy to transfer the protons
from one hydroxyl group to its adjacent group via hopping. This resulted to increase ionic conductivity
and further decrease the electrical impedance.
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Figure 6. Variation of capacitance of electro-ceramic nanocomposite at different relative humidity
as a function of frequency in logarithmic scale at 25 ◦C. Note the increase in capacitance value with
increasing of RH and at higher humidity range (>85% RH), a sharp decreased response of capacitance
with frequency.

Figure 7 depicts the frequency dependent impedance (Z′) responses of the electro-ceramic
nanocomposite at different RHs. It showed the decrease in impedance value with increasing frequency.
The rate of decreasing in impedance was faster at lower frequency range but slow and almost constant
at higher frequencies. The impedance value decreased when RH was increased. It indicates that the
number of H+ ions is increased due to the increasing of concentration of adsorbed water, which play
a vital role in conduction mechanism and gradually the mobility of ions increase.
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Figure 7. Variation of real impedance (Z′) of electro-ceramic nanocomposite at different relative
humidity as a function of frequency in logarithmic scale at 25 ◦C. Note: As humidity increases,
the value of impedance decreases and the decreased rate is fast in the lower frequency range and it
becomes slower at higher frequencies (>104 Hz) (inset: Magnified Z′ vs. log(f ) response at 75%, 85%
and 97% RH).
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The frequency dependent capacitive reactance of the sintered electro-ceramic nanocomposite, i.e.,
imaginary part of the impedance (Z”), for different RHs is depicted in Figure 8. There was a peak
obtained in each curve. This peak frequency was also found to shift toward right, as increasing
humidity. This particular phenomenon is typically associated with the capacitance values of the
materials [51].
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Figure 8. Variation of imaginary (Z”) impedance of electro-ceramic nanocomposite at different relative
humidity as a function of frequency in logarithmic scale at 25 ◦C. Inset image represents a magnified
scale of Z” vs. log(f ) plot of developed ceramic at higher RH (at 75%, 85% and 95% RH) with prominent
relaxation peak. Note: Lower frequency relaxation peaks are observed and these peaks are more
prominent at higher RH (>75% RH).

Humidity dependent impedance responses at 102, 103, 104, 105, and 106 Hz for sintered
electro-ceramic nanocomposite sensors are depicted in Figure 9. The impedance of the electro-ceramic
nanocomposite humidity device decreased with the increase in RH. At 102 Hz, impedance of the
nanocomposite humidity sensor device was 1.47 × 107 Ω at 33% RH and it decreased to 6 × 105 Ω at
95% RH. The impedance of this sensor decreased from 2.51 × 106 Ω at 33% RH to 4.8 × 105 Ω at 95%
RH at 103 Hz. At a frequency of 104 Hz, the impedance changed from 2.02 × 105 Ω to 1.6 × 105 Ω.
At a frequency of 105 Hz, impedance changed from 1.7 × 104 Ω to 1.6 × 104 Ω. At a frequency of
106 Hz, impedance changed from 2.2 × 103 Ω to 5.43 × 102 Ω. Therefore, it indicates that the humidity
change affects the impedance considerably at intermediate and low frequencies, but the change is very
small at higher frequencies. In order to evaluate the impedance characteristics of a nanocomposite
sensor as a function of humidity, device sensitivity (SZ) can be estimated using Equation (4) [52,53]:

SZ =
∆Z

∆%RH
(4)

where ∆Z is change in impedance (i.e., Z′) at the corresponding change RH, i.e., ∆% RH.
From Equation (4), the sensitivity of device is 0.23 MΩ/∆% RH (33%–95% RH), 0.032 MΩ/∆% RH,
0.68 kΩ/∆% RH and 0.027 kΩ/∆% RH at 102, 103, 104 and 106 Hz, respectively. This result
confirms that the highest sensitivity is observed at 102 Hz. The present device sensitivity was
significantly higher compared to the other existing resistive type humidity sensors (Sz of BaTiO3

thin film ~0.16 MΩ/∆% RH, TiO2/Li2O/V2O5 based composite ~0.011 MΩ/∆% RH, Porous ZnAl2O4

spinel nanorods ~0.08 MΩ/∆% RH, LiZnVO4-doped SnO2 ~0.0012 MΩ/∆% RH, ZnO nanorods
~0.082 MΩ/∆% RH and so on, at 100 Hz) [51,54–57]. Therefore, 102 Hz frequency was adopted as the
testing frequency in all the succeeding analyses of the present investigation.
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Figure 9. Impedance versus RH measured of electro-ceramic nanocomposite at various frequencies
at 25 ◦C. Note: the impedance varies from 1.47 × 107 Ω to 6 × 105 Ω; since highest sensitivity of
0.23 MΩ/∆% RH was found at 102 Hz frequency, 102 Hz was considered as most suitable test frequency
in our further analyses.

In order to evaluate the performance of a humidity sensor, response and recovery behaviors are
widely checked. The response time was measured by the time elapsed to reach 90% of the final signal
at a given RH. On the other hand, the recovery time was measured by the time elapsed to come back
within 10% of initial signal value. Here, response and recovery times of a sensor were measured by
alternately exposing to 33% RH–95% RH. Both these times are normally very sensitive to structure and
must be shortest for a practical application. In order to determine the response and recovery times,
a graph of impedance versus time was plotted at AC voltage of 1 V at test frequency of 102 Hz. In case
of the present electro-ceramic nanocomposite sensing device, response time was 20 s when humidity
was changed from 33% RH to 95% RH and recovery time was 40 s when humidity was changed
from 95% RH to 33% RH, as depicted in Figure 10. Our newly developed resistive humidity sensor
showed faster response and recovery times than the reported conventional sensors (e.g., response and
recovery time of LiZnVO4-doped SnO2 ~60 s and ~100 s, Ba0.5Ni0.5SnO3 ~3 min and ~4 min, Li-doped
mesoporous silica A-SBA-15 ~60 s and ~180 s, LiCl-doped mesoporous silica MCM-41 ~100 s and
~150 s, mesoporous ZnO–SiO2 composite ~50 s and ~100 s respectively, and so on) [51,58–61].
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humidity levels between 33% RH and 95% RH at 102 Hz. Note: Response time is ~20 s and Recovery
time is ~40 s.

The humidity hysteresis response, which is maximum difference between the humidification
and desiccation curve, is another crucial characteristic of humidity sensor. The humidity hysteresis of
the present electro-ceramic nanocomposite sensor is shown in Figure 11. The maximum hysteresis



Sensors 2016, 16, 2029 12 of 18

response of ~3.4% at 100 Hz observed in the present electro-ceramic devices ensures the good reliability
of our sensor. This hysteresis value of the present newly developed humidity sensor is significantly
lower than many conventional resistive humidity sensors (LiZnVO4-doped SnO2 ~6%, CdTiO3 ~7%,
BaTiO3 nanofibers ~5%, BaTiO3/polystyrene sulfonic sodium ~8%, and so on) [51,53,62,63].
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surface. This hysteresis was significantly lower than other conventional sensors.

In addition to the aforementioned electrical parameters, stability is another one of the most
important measuring properties for determining the advantages of a humidity sensor. In order to
obtain the long-term stability, the present electro-ceramic nanocomposite based humidity sensor was
studied in air at 25 ◦C for 30 days, while impedances were measured repeatedly at two-day intervals at
different RH conditions, as depicted in Figure 12. The measurements were done at 102 Hz with 1 V AC
power supply at 25 ◦C. Very little fluctuation or almost no variation in impedance of the present device
was found over the 30 days of measurements. As a matter of fact, the impedance or resistance of the
sensor slightly increased in ambient atmosphere due to aging operation. It evidently confirms that the
present resistive sensor has significantly good stability. The increased response of conductivity with
RH of the present electro-ceramic nanocomposite could be explicated by the Grotthuss mechanism [64],
which can be corroborate this property by transferring of proton (H+) in between the water molecules
through tunneling [1].
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Figure 12. Long term stability property of the sensor based on sintered electro-ceramic nanocomposite
over 30 days of measurements at 102 Hz and 1 V. Note: Stability of the sensors was tested via by
examining the humidity-resistivity properties at 25 ◦C, in the humidity range of 33%–95% RH over
30 days in a regular interval of each two days; here, no significant change was found.
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At lower RH condition, the water molecules were chemically adsorbed (chemisorption) onto the
available active sites of the surface of oxide based CaMgFe1.33Ti3O12 nanoceramic derived sintered
electro-ceramic nanocomposite via double hydrogen bonding and it is depicted in Figure 13. Due to
double hydrogen bonding, the water molecules were unable to move freely. As a result, the impedance
or resistance of the nanocomposite increased. With further increasing of RH, occurrence of the physical
adsorption (physisorption) of water molecules onto the available active sites of the surface of oxide
based CaMgFe1.33Ti3O12 nanoceramic derived sintered electro-ceramic nanocomposite was found
via single hydrogen bonding (Figure 13). Due to single hydrogen bonding, the water molecules
became mobile and thus conductivity increased progressively; further raising of RH increased the
multilayer physical adsorption; and the physisorbed water molecules were ionized by the application
of external electric field, and as a result, a large number of hydronium ions (H3O+) might be available
for conduction [65].
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Figure 13. A schematic humidity sensing mechanism of the sensor based on CaMgFe1.33Ti3O12

nanoceramic derived sintered electro-ceramic armalcolite nanocomposite at low and high humidity.
Note: The water molecular adsorption on sintered electro-ceramic nanocomposite: in 1st layer, the water
molecules were attached to the electro-ceramic via two hydrogen bonds, whereas, in the 2nd layer, they
were adsorbed only via one hydrogen bond.

The complex electric modulus (M*) can be expressed using Equation (5) [66]:

M∗ (ω) =
1

ε∗ (ω)
= M′ + jM′′ = jωC0Z∗ (5)

where M′ is a real part of modulus (M′ = jωC0Z′), M′ ′ is an imaginary part of modulus (M′ ′ = jωC0Z′ ′),
ε* is permittivity, Z* is complex impedance, ω is the angular frequency, i.e., ω = 2πf, f is linear
frequency, and Z′ and Z′ ′ are the real part and imaginary parts of impedance, respectively. C0 is the
geometrical capacitance, i.e., C0 = εoA/t, where A is area of the electrode, t is thickness and εo is
permittivity of air. To suppress the electrode polarization and space charge injection phenomena, the
complex modulus analysis is an effective method. The frequency dependent M′ and M′ ′ responses at
different RH are shown in Figures 14 and 15, respectively. In Figure 14, when the value of M′ changed
from low to high, a sigmoidal shape curve was observed. This observation confirms the existence of
relaxation phenomena inside the newly developed nanocomposite at the time of interaction to the
water particles. This observed phenomena can be accompanied by a loss peak in log(f ) vs. M′ ′ plot,
as shown in Figure 15. The existence of relaxation peaks was confirmed by plots depicted in the
Figure 15. It had been observed that the relaxation peak frequencies were shifted toward higher
frequencies as the relative humidity increased. The shifting of peaks towards higher frequencies
suggests the increase in DC conductivity with relative humidity [50]. The frequency where the peak is
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formed, is known as relaxation frequency and the corresponding time is known as relaxation time, i.e.,
τ = 1

2πfmax, where fmax is peak frequency. Since the relaxation frequency is increased with increased
RH, the relaxation time decreases with the increase in humidity.Sensors 2016, 16, 2029 14 of 18 

 
Figure 14. The variation of real (M) modulus components of the electro-ceramic nanocomposite at 
different RH as a function of frequency in logarithmic scale at 25 °C. Note: A sigmoidal shape curve 
is observed, when the value of M changes from low to high RH value. This is mainly due to the 
existence of relaxation phenomena inside the newly developed electro-ceramic nanocomposite 
sensor at the time of interaction to the water particles.  

 
Figure 15. Variations in imaginary (M") modulus components of the sensor based on electro-ceramic 
nanocomposite at different RH as a function of frequency in logarithmic scale at 25 °C. Note: The 
relaxation peak frequencies are shifted in the direction of higher frequencies as the relative humidity 
increased. The shifting of peaks towards higher frequencies is a clear indication of an increase in 
direct current (DC) conductivity with relative humidity. 

The complex modulus spectra (M vs. M) of the present electro-ceramic nanocomposite sensor 
device at different relative humidity are depicted in Figure 16. The modulus data highlighted in the 
complex modulus plots help to understand the conductivity relaxation phenomena in terms of the 
change in M with frequency. The asymmetric semicircular arc observed in this complex modulus 
plot ensures the contribution of relaxation phenomena in the present electro-ceramic 
nanocomposite sensor system. As the relative humidity increases, radius of the semicircle 
decreases. It indicates that the bulk resistance of the present CaMgFe1.33Ti3O12 nanoceramic derived 
sintered electro-ceramic nanocomposites based humidity sensing device decreases with the increase 
in relative humidity. 

Figure 14. The variation of real (M′) modulus components of the electro-ceramic nanocomposite at
different RH as a function of frequency in logarithmic scale at 25 ◦C. Note: A sigmoidal shape curve is
observed, when the value of M′ changes from low to high RH value. This is mainly due to the existence
of relaxation phenomena inside the newly developed electro-ceramic nanocomposite sensor at the time
of interaction to the water particles.
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Figure 15. Variations in imaginary (M′ ′) modulus components of the sensor based on electro-ceramic
nanocomposite at different RH as a function of frequency in logarithmic scale at 25 ◦C. Note:
The relaxation peak frequencies are shifted in the direction of higher frequencies as the relative
humidity increased. The shifting of peaks towards higher frequencies is a clear indication of an increase
in direct current (DC) conductivity with relative humidity.

The complex modulus spectra (M′ vs. M′ ′) of the present electro-ceramic nanocomposite sensor
device at different relative humidity are depicted in Figure 16. The modulus data highlighted in the
complex modulus plots help to understand the conductivity relaxation phenomena in terms of the
change in M′ ′ with frequency. The asymmetric semicircular arc observed in this complex modulus
plot ensures the contribution of relaxation phenomena in the present electro-ceramic nanocomposite
sensor system. As the relative humidity increases, radius of the semicircle decreases. It indicates that
the bulk resistance of the present CaMgFe1.33Ti3O12 nanoceramic derived sintered electro-ceramic
nanocomposites based humidity sensing device decreases with the increase in relative humidity.
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4. Conclusions 

This investigation successfully fabricated impedance or resistive type humidity sensor based 
on CaMgFe1.33Ti3O12 nanoceramic derived porous sintered electro-ceramic nanocomposites by using 
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due to desired grain size, highly hydrophilic and desired porous nature at the sintering condition of 
1050 C. The sensing properties of our present electro-ceramic based impedance type humidity 
sensor can be further improved by varying composition and sintering conditions according to 
desired properties for specific application. Therefore, the present novel fabrication technique and 
the newly developed sintered electro-ceramic nanocomposite would be very promising for 
advanced humidity sensor applications. Moreover, since this sensor showed excellent sensitivity 
and could be able to make thinner less than 1 mm [8], this material has potential for use in 
advanced humidity sensors for biomedical applications [41], particularly at skin–socket interfaces of 
an artificial stump. 

Acknowledgment: This study was supported by UM/MOHE/HIR grant (Project number: D000014-16001) and 
Postdoctoral research fellowship, IPPP, University of Malaya. 

Author Contributions: A.T. and S.P. conceived and designed the experiments, wrote the paper and analyzed 
the data; A.T. and A.M. performed the experiments; H.N.S. assisted experiments and manuscript formatting; 
Z.R. contributed some of the analysis tools; N.A.A.O. contributed by providing reagents/materials/analysis 
tools; and all authors reviewed the entire manuscript. 
Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Chen, Z.; Lu, C. Humidity sensors: A review of materials and mechanisms. Sens. Lett. 2005, 3, 274–295. 

Figure 16. Complex modulus responses between real (M′) and imaginary (M′ ′) at different RH
of the sensor based on sintered electro-ceramic nanocomposite at 25 ◦C. Note: The radius of the
semicircle decreases, with increased relative humidity, which suggests that the bulk resistance of the
electro-ceramic nanocomposite humidity sensing device decreases with the increase in RH.

4. Conclusions

This investigation successfully fabricated impedance or resistive type humidity sensor based on
CaMgFe1.33Ti3O12 nanoceramic derived porous sintered electro-ceramic nanocomposites by using
solid-state step-sintering. The typical structures and morphology were found by XRD and SEM.
The desired grain size, high porosity and good surface-hydrophilicity properties were obtained for
the nanocomposites sintered at 1050 ◦C. The sintered electro-ceramic exhibited excellent humidity
sensing properties, including high sensitivity, faster response (20 s) and recovery (40 s) times, narrow
hysteresis (<3.4%), and good stability over a long period. These advanced improved characteristics
were attributed to suitable stable grain size and porous nature of the nanocomposite. The obtained
electrical results confirm that our newly developed CaMgFe1.33Ti3O12 nanoceramic derived sintered
electro-ceramic nanocomposite material based humidity sensor is better than many currently existing
conventional metal oxide based humidity sensors [51,54–61]. The obtained best performance of the
present sintered electro-ceramic nanocomposite based humidity sensor is due to desired grain size,
highly hydrophilic and desired porous nature at the sintering condition of 1050 ◦C. The sensing
properties of our present electro-ceramic based impedance type humidity sensor can be further
improved by varying composition and sintering conditions according to desired properties for specific
application. Therefore, the present novel fabrication technique and the newly developed sintered
electro-ceramic nanocomposite would be very promising for advanced humidity sensor applications.
Moreover, since this sensor showed excellent sensitivity and could be able to make thinner less
than 1 mm [8], this material has potential for use in advanced humidity sensors for biomedical
applications [41], particularly at skin–socket interfaces of an artificial stump.
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