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Abstract:



Based on stochastic modeling of Coriolis vibration gyros by the Allan variance technique, this paper discusses Angle Random Walk (ARW), Rate Random Walk (RRW) and Markov process gyroscope noises which have significant impacts on the North-finding accuracy. A new continuous rotation alignment algorithm for a Coriolis vibration gyroscope Inertial Measurement Unit (IMU) is proposed in this paper, in which the extended observation equations are used for the Kalman filter to enhance the estimation of gyro drift errors, thus improving the north-finding accuracy. Theoretical and numerical comparisons between the proposed algorithm and the traditional ones are presented. The experimental results show that the new continuous rotation alignment algorithm using the extended observation equations in the Kalman filter is more efficient than the traditional two-position alignment method. Using Coriolis vibration gyros with bias instability of 0.1°/h, a north-finding accuracy of 0.1° (1σ) is achieved by the new continuous rotation alignment algorithm, compared with 0.6° (1σ) north-finding accuracy for the two-position alignment and 1° (1σ) for the fixed-position alignment.
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1. Introduction


Cost effective north-finding technology is widely required for many applications. North-finding is sometimes based on Digital Magnetic Compasses (DMCs) [1]. However, DMCs is easily degraded by magnetic interference. Although Dynamically Tuned Gyros and Ring Laser Gyroscopes are suitable for precise north-finding, they are generally bulky and expensive [2,3]. In contrast, Coriolis vibration gyroscopes (e.g., a kind of cost effective medium precision Hemispherical Resonator Gyroscopes (HRGs) [4,5]) are generally compact and low-cost and suitable for a cost effective north-finding system. However, the drift errors of these gyroscopes are big problems, which limit the north-finding accuracy.



To improve the accuracy of the north-finding system using cost effective gyroscopes, several methods have been designed. Lee [6] proposed a multi-position alignment algorithm to increase the azimuth accuracy. For the same purpose, Yu [7] used analytic optimization of Strapdown Inertial Navigation System (SINS) multi-position alignment. Renkoski [8] and Sun [9] improved the accuracy of North-finding system through continuous rotation.



This paper focuses on Inertial Measurement Unit (IMU)-based north-finding systems using a Kalman filter for applications such as dynamic orientation and dead reckoning. Stochastic modeling for a Coriolis vibration gyroscope is obtained using the Allan variance technique. It is shown that the Rate Random Walk (RRW) and Markov noises are the main errors which limit the north-finding accuracy. A new continuous rotation IMU alignment algorithm is therefore proposed using extended observation equations in the Kalman filter to solve this problem. Experimental results as well as theoretical analysis are also presented.



This paper is organized as follows: Section 2 analyses the random error model of a Coriolis vibration gyroscope using the Allan variance technique. The north-finding errors due to the main parts of the gyro drift error are presented. Section 3 presents three different IMU based north-finding algorithms or three different error compensation approaches: two-position alignment, continuous rotation alignment, and a new continuous rotation alignment algorithm with extended observation equations for a Kalman filter. Section 4 presents theoretical and simulation analyses of the performances of the methods mentioned above. Section 5 reports north-finding experimental results and comparisons. The Allan variance analysis results for the equivalent east gyro are presented for the interpretation of effectiveness of the gyro drift error compensation approaches. Section 6 concludes the paper. The appendices show detailed theoretical proofs.




2. Error Model for a Coriolis Vibration Gyroscope


IMU errors can be classified into two types: deterministic errors and random errors. Major deterministic error sources including constant bias, scale factor errors and misalignment can be removed by calibration and compensation [10]. The random constant bias (turn to turn bias) and random noises are the main error sources in the North-finding system. Therefore, we focus on the stochastic modeling for a Coriolis vibration gyroscope.



2.1. Error Model Based on Allan Variance Analysis


Traditionally, random constant bias, ARW (Angle Random Walk), RRW and Markov process are used to develop stochastic error model for gyros. The error model of a gyroscope can be expressed as follows [11,12]:


[image: there is no content]



(1)




where [image: there is no content] is the stochastic drift error of the gyroscope measurements, [image: there is no content] is the random constant bias with the variance of [image: there is no content], [image: there is no content] is the Markov process, [image: there is no content] is the ARW, [image: there is no content] is the RRW.



The random bias can be described as an unpredictable random quantity with a constant value, that is:


[image: there is no content]



(2)






[image: there is no content]



(3)




where [image: there is no content] is the variance of [image: there is no content].



The Markov noise is the low-frequency component in the error sources. Usually, the noise is modeled as a First order Gauss-Markov process [11]:


[image: there is no content]



(4)




where [image: there is no content] is the process time constant, [image: there is no content] is the zero-mean Gaussian white noise, [image: there is no content] is the variance of [image: there is no content]:


[image: there is no content]



(5)




where [image: there is no content] is the variance of [image: there is no content].



In Equation (1), the characteristics of the stochastic errors are usually estimated by an optimal estimation algorithm, such as a Kalman filter [13]. The parameters of the stochastic error model are necessary for a Kalman filter algorithm. Hence, there is a need to determine the parameters of the error model using Allan variance analysis. The sampling data of a HRG in 3 h is present in Figure 1a. The Allan variance results of the HRG are presented in Figure 1b. The sampling frequency is 10 Hz.


Figure 1. (a) Measurements of a HRG in 10Hz; (b). Allan variance of the HRG.
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The parameters of the error models for the Coriolis vibration gyroscopes in an IMU based north-finding system are given in Table 1.



Table 1. Parameters of the error models for the Coriolis vibration gyroscopes (a kind of cost effective HRG in this paper).







	
Bias Instability [image: there is no content]

	
[image: there is no content]




	
ARW [image: there is no content]

	
[image: there is no content]




	
RRW [image: there is no content]

	
[image: there is no content]




	
Markov time constant [image: there is no content]

	
[image: there is no content]




	
Markov process driving noise [image: there is no content]

	
[image: there is no content]










Consider the error models in Figure 1, the major parts of the gyroscope errors are ARW, Markov process, bias instability and RRW, which indicates that the error model in Equation (1) is sufficient to characterize the gyroscope. The parameters of the models show that the primary error source for the gyroscope are Markov noise and RRW.




2.2. Propagation of Gyroscope Errors in a North-Finding System


The drift error of the equivalent east gyroscope [image: there is no content] in an IMU based north-finding system propagates to the azimuth misalignment [image: there is no content], which can be expressed as follows [14]:


[image: there is no content]



(6)




where [image: there is no content] is the earth rotation rate, [image: there is no content] is the local latitude.



Similar to Equation (1), [image: there is no content] can be expressed as follows:


[image: there is no content]



(7)




where the random constant bias [image: there is no content], the ARW [image: there is no content], the RRW [image: there is no content] and the Markov process [image: there is no content] correspond to [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] in Equation (1).



The RMS (Root Mean Square) of azimuth misalignment [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] due to [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] can be expressed as [15,16]:


[image: there is no content]



(8)






[image: there is no content]



(9)






[image: there is no content]



(10)






[image: there is no content]



(11)




where [image: there is no content] is the alignment time. [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] are the variances corresponding to [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] in the error model of the equivalent east gyroscope. [image: there is no content] is the variance of the initial value of Markov process. The proofs of Equations (8)–(11) are shown in Appendix A.



It should be explained that the initial value of RRW noise can be regarded as part of a constant bias. Thus the RRW starts from zero.



Assuming the alignment time [image: there is no content] is 10 min, the local latitude is 28.22° N, the RMS values of the azimuth misalignment can be obtained from Equations (8)–(11). The azimuth misalignment due to the equivalent east gyroscope errors are shown in Table 2.



Table 2. The azimuth misalignment due to the equivalent east gyroscope errors in 10 min at 28.22° N.







	
Gyroscope Errors

	
RMS of Azimuth Misalignment






	
Bias Instability [image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
ARW [image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
RRW [image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Markov process [image: there is no content]

	
[image: there is no content]

	
[image: there is no content]




	
Markov process [image: there is no content]

	
[image: there is no content]










Although the azimuth misalignment are most affected by the bias instability, the random constant bias can be easily eliminated through north-finding algorithms (such as two-position alignment [6] and continuous rotation alignment [9]). And compared with RRW and Markov noise, the azimuth misalignment due to ARW is slim. RRW and Markov process are the main error source in a north-finding system.





3. Error Compensation Approach for IMU Based North-Finding System


3.1. System Error Model for IMU Based North-Finding


A local level NED (North-East-Down) frame is used as the navigation frame. The common SINS error equations in the navigation frame can be expressed as follows [14]:


[image: there is no content]



(12)






[image: there is no content]



(13)




where [image: there is no content] is the attitude error, [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] represent north, east and down in navigation frame respectively; [image: there is no content] is the velocity error, [image: there is no content]. [image: there is no content] can be estimated by the observation of [image: there is no content] in an alignment process. [image: there is no content] is the measurement of specific force in frame n, [image: there is no content] is the coordinate transformation matrix from the IMU frame b to the navigation frame n, [image: there is no content] is the turn rate of the navigation frame to the earth frame in the frame n, [image: there is no content] is the turn rate of the earth frame to the inertial frame in the frame n, [image: there is no content] is the error of the gyroscope measurements, [image: there is no content] is the error of the specific force measurements.



In the North finding scenario discussed here, since the IMU is stationary on the Earth:


[image: there is no content]



(14)







The SINS error model for alignment or IMU based north-finding can be written as:


[image: there is no content]



(15)




where:


[image: there is no content]



(16)







[image: there is no content] and [image: there is no content] are the bias error states of the accelerometers, [image: there is no content], [image: there is no content] and [image: there is no content] are the random constant bias error states of the gyroscopes, [image: there is no content], [image: there is no content] and [image: there is no content] are the rate random walk of the gyroscopes, [image: there is no content], [image: there is no content] and [image: there is no content] are the error states for the Markov process of the gyroscopes.



For the filter noise vector:


[image: there is no content]



(17)




where [image: there is no content] and [image: there is no content] are the white noise of the accelerometer x and the accelerometer y, respectively. That is:


[image: there is no content]



(18)




where [image: there is no content] is the variance of the white noise [image: there is no content] and [image: there is no content].



[image: there is no content], [image: there is no content] and [image: there is no content] are the angular random walk of the gyroscope x, the gyroscope y and the gyroscope z, [image: there is no content], [image: there is no content] and [image: there is no content] are the driving noise in the Markov process of the gyroscope x, the gyroscope y and the gyroscope z.


[image: there is no content]



(19)




where [image: there is no content] is the local gravity.



The matrix [image: there is no content] is defined as follows:


[image: there is no content]



(20)




where [image: there is no content] is defined as:


[image: there is no content]



(21)







The matrices [image: there is no content] and [image: there is no content] are defined as follows:


[image: there is no content]



(22)




where [image: there is no content] is the Markov time constant of the gyroscope.



As shown in the analysis above, based on the condition that the system is stationary on the earth, the horizontal velocity errors are used as observation states. Thus, the observation model can be written as:


[image: there is no content]



(23)




where [image: there is no content] is the observation noise vector. [image: there is no content] and [image: there is no content] represent north and east components of the estimated velocity, respectively.




3.2. Traditional Two-Position Gyrocompassing


Two-position alignment is demonstrated in Figure 2 [6].


Figure 2. Schematic diagram of two-position alignment.
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As shown in Figure 2, the axis [image: there is no content] and [image: there is no content] of the IMU frame lie on the turntable plane, the axis [image: there is no content] coincides with the rotation axis. We define the [image: there is no content] frame when [image: there is no content] coincides with the turntable null indicator:


[image: there is no content]



(24)




where [image: there is no content] is the coordinate transformation matrix from the frame [image: there is no content] to the frame [image: there is no content].



[image: there is no content] can be written as:


[image: there is no content]



(25)




where [image: there is no content] is the short time period when the IMU changes the angular position through the turntable rotation.




3.3. Continuous Rotation Gyrocompassing


As an alternative to the two-position alignment, continuous rotation is another efficient method to reduce the alignment errors.



In contrast to the two-position alignment, the coordinate transformation matrix [image: there is no content] is varying as [image: there is no content] changes by continuous rotation, that is:


[image: there is no content]



(26)




where [image: there is no content] is the rotation rate of the turntable. T is the rotation cycle.



Except for the coordinate transformation matrix [image: there is no content] and [image: there is no content], the error model and the observation equation between the continuous rotation gyrocompassing are the same as that of the two-position gyrocompassing.




3.4. A New Continuous Rotation North-Finding Method Based on an Extended Observation Model


Although the constant random biases of gyroscopes are mostly eliminated by the above compensation approaches, the noise of the gyroscopes will also still affect the efficiency of the Kalman filter. For Coriolis vibration gyroscopes, the noise level is high. It is difficult to estimate the drift errors of the gyroscopes exactly. The accuracy of the North-finding system is limited. To solve the problem, we present an extended observation model for the continuous rotation alignment.



After each [image: there is no content] turn, the integration of the measurements of the gyroscopes can be written as:


[image: there is no content]



(27)







While the integration of the estimated measurements of the gyroscopes can be written as:


[image: there is no content]



(28)






[image: there is no content]



(29)




where [image: there is no content] represents the integration of the gyroscope measurements in a rotation cycle of the turntable, [image: there is no content] represents the estimated measurements of the gyroscopes in the b-frame, [image: there is no content] represents the earth rotation rate in the n-frame. [image: there is no content], [image: there is no content] and [image: there is no content] are the Euler angles of the [image: there is no content]-frame relative to the n-frame. [image: there is no content] is the estimated coordinate transformation matrix with attitude errors.



Considering [image: there is no content] and [image: there is no content] are very small after coarse alignment:


[image: there is no content]



(30)







From Equations (29) and (30)


[image: there is no content]



(31)






[image: there is no content]



(32)







Under static conditions, we have:


[image: there is no content]



(33)







Substituting Equations (28), (31)–(33) into Equation (27) gives:


[image: there is no content]



(34)







When there is latitude error and heading error, the estimated measurements of the gyroscopes are inaccurate. After each [image: there is no content] turn of the turntable, the equivalent east gyroscope error caused by these errors can be calculated as follows:


[image: there is no content]



(35)







The equivalent east gyroscope error caused by heading error and latitude error is shown in Equations (36) and (37) respectively:


[image: there is no content]



(36)






δωibE,δLn=(sinγ0cosφ0−cosγ0sinθ0sinφ0)[cosγ0sinθ0cosφ0tanL+sinγ0sinφ0tanL+cosγ0cosθ0]δLΩcosL



(37)




where [image: there is no content] is the equivalent east gyroscope error caused by heading error, [image: there is no content] is the equivalent east gyroscope error caused by latitude error [image: there is no content].



Assuming that:


[image: there is no content]



(38)







Equations (36) and (37) can be written as:


[image: there is no content]



(39)







In general, the initial heading error is less than 5° ([image: there is no content]) and the latitude error is less than 0.1° ([image: there is no content]). Considering Equation (39), the equivalent azimuth error caused by initial heading error and latitude error can be ignored when tilt is smaller than 5°.



The additional observation can be obtained using the integration measurements of the gyroscopes in each [image: there is no content] turn of the turntable.



The observation model can be written as:


[image: there is no content]



(40)






[image: there is no content]



(41)






[image: there is no content]



(42)






[image: there is no content]



(43)




where [image: there is no content], [image: there is no content] and [image: there is no content] are the observation noise corresponding to [image: there is no content].





4. Comparisons of the Kalman Filter Convergence Rapidity and North-Finding Accuracy


Comparisons of the Kalman filter convergence rapidity and the north-finding accuracy between the proposed algorithms and the traditional alignment methods can be made with the covariance matrix for the estimated states in the Kalman filter.



For the piecewise constant time varying system the covariance matrix of the estimated states [image: there is no content] can be obtained by calculating the discrete Riccati matrix equation [7]:


[image: there is no content]



(44)




which is based on the continuous system error model and observation equations (Equations (15)–(43)) as follows:


[image: there is no content]



(45)




where [image: there is no content] is the sampling time.



In this study, an initial covariance matrix [image: there is no content], spectral density matrix [image: there is no content] of system noise and measurement noise covariance matrix [image: there is no content] are given as follows:


[image: there is no content]



(46)







When using the continuous rotation method based on the extended observation model, measurement noise covariance matrix [image: there is no content] is expressed as follows:


[image: there is no content]



(47)







The rotation rate of the turntable is [image: there is no content]. The number of iterations performed for calculating [image: there is no content] using Equation (44) is 15,000 which is equivalent to 600 s. For two-position alignment, the IMU changes position at 300 s. Since the heading error [image: there is no content] is the most crucial error state in the north-finding system, we focus on the RMS value of [image: there is no content].



Figure 3 shows the RMS values of the heading error in the north-finding process. Obviously, the new continuous rotation alignment with the extended observation is more efficient than the existing north-finding algorithms.


Figure 3. Kalman filter convergence rapidity and accuracy comparison of the four north-finding approaches.
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In order to analyze the gyroscope error compensation effect of the new continuous rotation alignment approach, we use Allan variance technique to compare the compensated data with the uncompensated data of the equivalent east gyroscope, which determines the north-finding accuracy in a north-finding system.



The uncompensated equivalent east gyroscope data, denoted as [image: there is no content] is the measurement of the equivalent east gyroscope in the n frame, when the turntable is not rotating, that is:


[image: there is no content]



(48)







The compensated equivalent east gyroscope data, denoted as [image: there is no content] is the measurement of the equivalent east gyroscope in the n frame, when the turntable is rotating. The compensated data is obtained after the Kalman filter has converged. The drift error of the gyroscope has been estimated and compensated by the Kalman filter. That is:


[image: there is no content]



(49)







The sampling data are collected over 3 h as shown in Figure 2, and the sampling frequency is 10 Hz. As shown in Figure 4, after compensation, the bias instability of the equivalent east gyroscope is almost eliminated, but the ARW remains as before. It should be noticed that RRW is almost eliminated through the continuous rotation modulation.


Figure 4. Allan variance of compensated and uncompensated data of the equivalent east gyroscope.
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The experiment demonstrated that the RRW and Markov noise could be compensated by continuous rotation alignment, but ARW remained unchanged. The theoretical proofs are shown in Appendix B.




5. Experimental Results


The experimental platform is shown in Figure 5.


Figure 5. The experimental platform.



[image: Sensors 16 02113 g005]






Considering the installation error, it is difficult to determine the absolute north. The previous north-finding experimental result was used as a reference to evaluate the performance of the approaches. The assumed azimuth was the mean value of 15 experimental results in two weeks north-finding tests. In this study, the experimental north-finding system stayed on a fixed azimuth. For each north-finding algorithm, the north-finding process was repeated five times.



Since the errors of the gyroscopes and accelerometers are unobservable in the fixed-position alignment, which may cause the divergence of the Kalman filter in the practice. We used 5-state Kalman filter for the fixed-position alignment. From Equations (15)–(23), the model can be expressed as follows:


[image: there is no content]



(50)







The coarse alignment method using the gravity in the initial frame as a reference was employed in the experiments [17].



As shown in Figure 6a–d, the azimuth errors converged with time, the experimental results are coincident with the simulation analysis as shown in Figure 3 in which the new continuous rotation alignment with extended observation is the most efficient algorithm for a Coriolis vibration gyroscope based north-finding system.


Figure 6. (a) The accuracy of the heading angle using the fixed-position alignment; (b) The accuracy of the heading angle using the two-position alignment; (c) The accuracy of the heading angle using the continuous rotation method; (d) The accuracy of the heading angle using the continuous rotation based on the extended observation model.
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In order to further compare the performances of the north-finding methods, we changed the azimuth of the north-finding system to 6 different directions as shown in Equation (51):


[image: there is no content]



(51)







For each azimuth, the north-finding process was repeated for 5 times with the 4 different north-finding algorithms. Then, the RMS of heading errors for each of these algorithms was calculated. As shown in Figure 7, the new approach (continuous rotation alignment with the extended observation model) is the best one, the north-finding accuracy is 0.1° (1σ).


Figure 7. The accuracy of the system using four approaches.



[image: Sensors 16 02113 g007]







6. Conclusions


As analyzed in this paper, it is the gyroscope random drift errors that make it a challenge for a cost effective gyroscope based north-finding systems to be achieved. Since it is the equivalent east gyroscope that determines the north-finding accuracy, Allan variance analysis of the equivalent east gyroscope before and after error compensation provides an efficient technique for the evaluation of the gyroscope error estimation.



Comparisons of the Kalman filter convergence rapidity and north-finding accuracy have been made to evaluate the north-finding algorithms. Compared with the other traditional approaches, the new continuous rotation alignment approach based on the extended observation model can improve the north-finding accuracy and convergence rapidity effectively. The experiments have shown that a heading accuracy of 0.1° (1σ) can be achieved in 10 min at 28.22° north latitude using a HRG IMU with gyro bias instability of [image: there is no content], compared with 0.6° (1σ) north-finding accuracy for the two-position alignment and 1° (1σ) for the fixed-position alignment.



In fact, ARW, RRW and Markov noise are the main error source of many gyroscopes (e.g., fiber optic gyroscopes [18]). The new continuous rotation IMU alignment algorithm is not only applicable to the Coriolis vibration gyros (a kind of cost effective HRGs in this paper), but is also suitable for many other gyroscopes with similar stochastic error models.
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Appendix A


Appendix A.1. Proof of Equation (9) (Propagation of the ARW in a North-Finding System) [15,16]


The equivalent east gyroscope integration error [image: there is no content] caused by the ARW can be expressed as follows:


[image: there is no content]



(A1)







[image: there is no content] is the variance of [image: there is no content] which can be expressed as follows:


[image: there is no content]



(A2)




where [image: there is no content] is the variance of [image: there is no content]. [image: there is no content] is the integration time. Suppose [image: there is no content] is the alignment time, [image: there is no content], the RMS of azimuth misalignment [image: there is no content] due to ARW can be calculated as follows:


[image: there is no content]



(A3)







This completes the proof.




Appendix A.2. Proof of Equation (10) (Propagation of the RRW in a North-Finding System) [15,16]


The equivalent east gyroscope integration error [image: there is no content] caused by the RRW can be written in matrix form as:


[image: there is no content]



(A4)







The state transition matrix [image: there is no content] and the system noise matrix [image: there is no content] can be written as:


[image: there is no content]



(A5)







The state covariance matrix [image: there is no content] can be obtained by calculating the Riccati matrix equation:


[image: there is no content]



(A6)






[image: there is no content]



(A7)






[image: there is no content]



(A8)




where [image: there is no content] is the variance of [image: there is no content]. Thus, The RMS of azimuth misalignment [image: there is no content] due to the RRW can be calculated as follows:


[image: there is no content]



(A9)







This completes the proof.




Appendix A.3. Proof of Equation (11) (Propagation of the Markov Process in a North-Finding System)


The equivalent east gyroscope integration error [image: there is no content] caused by the Markov process can be expressed in matrix form as follows:


[image: there is no content]



(A10)







The state transition matrix [image: there is no content] and the system noise matrix [image: there is no content] can be written as:


[image: there is no content]



(A11)







The state covariance matrix [image: there is no content] can be obtained by calculating the Riccati matrix equation:


P˙m=AmPm+PmAmT+qm



(A12)






[image: there is no content]



(A13)






[image: there is no content]



(A14)







[image: there is no content] is the variance of the initial value of Markov process.



The RMS of azimuth misalignment [image: there is no content] due to the Markov process can be calculated as follows:


[image: there is no content]



(A15)







This completes the proof.





Appendix B


Appendix B.1. Theoretical Proof of the Effects of the Continuous Rotation on the ARW [15]


When the turntable is rotating, the equivalent east gyroscope integration error [image: there is no content] caused by the ARW can be expressed as follows:


[image: there is no content]



(B1)




in which [image: there is no content], [image: there is no content]Suppose:


[image: there is no content]



(B2)







The state covariance matrix [image: there is no content] can be calculated as follows:


[image: there is no content]



(B3)




which is the same as the Equation (A3). Therefore, continuous rotation alignment has no effort on the ARW of the gyroscope.




Appendix B.2. Theoretical Proof of the Effects of the Continuous Rotation on the RRW [15]


When the turntable is rotating, the equivalent east gyroscope integration error [image: there is no content] caused by the RRW can be expressed as follows:


[image: there is no content]



(B4)







The matrices [image: there is no content], [image: there is no content] and [image: there is no content] are:


[image: there is no content]



(B5)







The state covariance matrix [image: there is no content] can be calculated by Equation (A6), that is:


[image: there is no content]



(B6)






[image: there is no content]



(B7)







Compared with Equations (A2) and(A8), Equation (B7) shows that continuous rotation transforms the RRW into a much small equivalent ARW, which gives an explanation for Figure 5.



When the turntable is rotating, the RMS of azimuth misalignment [image: there is no content] due to the RRW can be calculated as follows:


[image: there is no content]



(B8)







Assuming the alignment time [image: there is no content] is 10 min, the rotation rate of the turntable is 10°/s, the variance of the RRW is [image: there is no content], the RMS values [image: there is no content] of the azimuth misalignment due to the RRW can be obtained based on Equations (A9) and (B8).



When the turntable is not rotating:


[image: there is no content]



(B9)







When the turntable is rotating:


[image: there is no content]



(B10)







Thus, the RRW of the gyroscope can be eliminated by continuous rotation alignment.




Appendix B.3. Theoretical Proof of the Effects of the Continuous Rotation on the Markov Noise


When the turntable is rotating, the equivalent east gyroscope integration error [image: there is no content] caused by the Markov noise can be expressed as follows:


[image: there is no content]



(B11)







The matrix [image: there is no content], [image: there is no content] and [image: there is no content] is:


[image: there is no content]



(B12)







The state covariance matrix [image: there is no content] can be calculated by Equation (A3), that is:


[image: there is no content]



(B13)






PmE=τ2σm22(1+τ2ω02)2[−τe−2tτ−3τ+2t+τ3ω02(1−e−2tτ)+2τ2ω02t+4τcosω0te−tτ−4τ2ω0sinω0te−tτ]+τ2PεmE(0)(1+τ2ω02)2[1+e−2tτ+τ2ω02(1+e−2tτ)−2e−tτcosω0t−2τ2ω02e−tτcosω0t]≈τ2σm22(1+τ2ω02)2[−τe−2tτ−3τ+2t+τ3ω02(1−e−2tτ)+2τ2ω02t]+τ2PεmE(0)(1+τ2ω02)2[1+e−2tτ+τ2ω02(1+e−2tτ)]



(B14)







When the turntable is rotating, the RMS of azimuth misalignment [image: there is no content] due to the RRW can be calculated as follows:


σϕDm=PmE(tn)tnΩcosL=τ12σm2(−τe−2tτ−3τ+2t+τ3ω02(1−e−2tτ)+2τ2ω02t)+PεmE(0)(1+e−2tτ+τ2ω02(1+e−2tτ))tnΩcosL(1+τ2ω02)



(B15)







Similar to the theoretical proof of the RRW, assuming the alignment time [image: there is no content] is 10 min, the rotation rate of the turntable is 10°/s, the Markov time constant is 60 s, the variance of the Markov driving noise is [image: there is no content], the RMS values [image: there is no content] of the azimuth misalignment due to the Markov noise can be obtained based on Equations (A15) and (B15).



When the turntable is not rotating:


[image: there is no content]
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When the turntable is rotating:


σϕDm=τ12σm2(−τe−2tτ−3τ+2t+τ3ω02(1−e−2tτ)+2τ2ω02t)+PεmE(0)(1+e−2tτ+τ2ω02(1+e−2tτ))tnΩcosL(1+τ2ω02)=0.02(°)



(B17)







Thus, the Markov noise of the gyroscope can be eliminated by continuous rotation alignment.
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