
sensors

Article

A Robust Camera-Based Interface for
Mobile Entertainment
Maria Francesca Roig-Maimó †, Cristina Manresa-Yee *,† and Javier Varona †

Department of Mathematics and Computer Science, University of the Balearic Islands, Crta.
Valldemossa km. 7.5, 07122 Palma, Spain; xisca.roig@uib.es (M.F.R.-M.); xavi.varona@uib.es (J.V.)
* Correspondence: cristina.manresa@uib.es; Tel.: +34-971-259-721
† These authors contributed equally to this work.

Academic Editors: Fabrizio Lamberti, Andrea Sanna and Jon Rokne
Received: 30 December 2015; Accepted: 17 February 2016; Published: 19 February 2016

Abstract: Camera-based interfaces in mobile devices are starting to be used in games and apps,
but few works have evaluated them in terms of usability or user perception. Due to the changing
nature of mobile contexts, this evaluation requires extensive studies to consider the full spectrum of
potential users and contexts. However, previous works usually evaluate these interfaces in controlled
environments such as laboratory conditions, therefore, the findings cannot be generalized to real users
and real contexts. In this work, we present a robust camera-based interface for mobile entertainment.
The interface detects and tracks the user’s head by processing the frames provided by the mobile
device’s front camera, and its position is then used to interact with the mobile apps. First, we evaluate
the interface as a pointing device to study its accuracy, and different factors to configure such as the
gain or the device’s orientation, as well as the optimal target size for the interface. Second, we present
an in the wild study to evaluate the usage and the user’s perception when playing a game controlled
by head motion. Finally, the game is published in an application store to make it available to a large
number of potential users and contexts and we register usage data. Results show the feasibility
of using this robust camera-based interface for mobile entertainment in different contexts and by
different people.

Keywords: mobile gaming; mobile entertainment; gestural interface; vision-based interface;
image sensor; head-tracker

1. Introduction

Nowadays, mobile devices are equipped with different sensors such as accelerometers or
gyroscopes, which allow for new sensor-based mobile interaction. Further, cameras on mobile devices
can allow for vision-based interfaces, that is, interfaces which use visual information as an input to
the system in a human-computer interaction (HCI) context. Mobile vision-based interfaces have been
analyzed specially to detect the movement of the device [1,2], but if we take into account the front
camera, the face and the head of the user can be assumed to be visible and, therefore, the user can
interact with face expressions/gestures [3] or head movements [4–7].

Mobile devices are used with numerous purposes apart from communication needs. The
entertainment category and the gaming subcategory are very popular in the application stores [8–10]
and the market will accelerate in the years to come. Just as an example, the number of mobile gamers
in the USA for 2014 was 147.6 million and it is expected to grow up to 209.5 million in 2019 [11]. Mobile
gaming is primarily for quick entertainment, however, mobile gamers are playing more often, and
for longer periods of time, a 57% more from 2012 (one hour and 20 min) to 2014 (over two hours per

Sensors 2016, 16, 254; doi:10.3390/s16020254 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/journal/sensors

Sensors 2016, 16, 254 2 of 18

day) [12], so introducing new sensor-based interfaces for mobile gaming can increase the possibilities
for entertainment options and make the experience more compelling.

Gesture interfaces gained in popularity for gaming purposes in video consoles thanks to systems
such as the Microsoft Kinect, but in mobile devices, these interfaces have still not been really exploited.
As entertainment apps using head tracking are still rare, we will focus our analysis on mobile gaming
interaction based on head movements. Further, although we could find a few research works studying
or comparing different aspects of head-trackers [13–15] and several apps which use this kind of input
for accessing the mobile device [16,17] or for gaming [18–21], the system’s usability and user experience
were not evaluated. Moreover, studies in HCI are often conducted in a highly controlled environment.
Such studies can have a high internal validity but often lack external validity, that is, the findings can
be reliable but cannot always be generalizable to other people and other situations [22]. Therefore
the external validity should be pursued on two fronts: the participants involved in the study have
to be representative of a larger intended population (i.e., study in the large), and the experimental
environment and procedures have to be representative of real world situations where the interface will
be used (i.e., study in the wild).

In this work, we describe the design and development of a camera-based interface for mobile
devices and we evaluate its use, usage and the user’s perception towards it for mobile interaction.
Specifically, we analyze the camera-based interface applied to an entertainment context. First, we
present an evaluation in laboratory conditions to explore the effectiveness and efficiency of the system,
different factors to configure the interface such as the gain or the device’s orientation, as well as the
optimal target size for the interface. Then, we present a game developed for studying its usage and the
user’s perception through an in the wild user study with 25 participants. In addition, the camera-based
game is published in an application store to make it available to a large number of potential users and
contexts, and we analyze the data of the users who downloaded it.

The paper is arranged as follows: Section 2 presents the related work regarding mobile head
trackers and camera-based interfaces for mobile devices used in entertainment contexts. Section 3
describes the design and development of the head-tracker for mobile devices. Section 4 reports the
experience in evaluating the camera-based interface when used as a pointing device. Section 5 presents
the case of study of a game for users to interact with the camera-based interface and the results of the
evaluation and the usage. Finally, the last section discusses the work and presents our conclusions.

2. Related Work

Both academia and industry are developing interfaces based on processing the images provided
by the mobile device’s camera. The kind of interactions is twofold: interactions based on the mobile
device’s movement and those based on detecting the movement of a user’s body part. We are
interested in the latter ones focusing on head or face movement, and especially those interfaces being
used for games.

2.1. Head Tracking in Mobile Devices

Research on head tracker interfaces based on image sensors for desktop computers is mature and
has been conducted for a long time for HCI purposes [23–26]. This kind of research is now focusing
on mobile devices as cameras are integrated and devices count with sufficient processing capacity
to develop vision-based interfaces. In this subsection, we compile works related to face tracking in
mobile devices used in human computer interfaces.

The representation of the head and the features selection for tracking (e.g., skin color or face
geometry) is a key point for the tracking step. The tracking can be done detecting the face at each frame
or by corresponding the face across frames, which would update the face location based on information
from previous frames. Basically, the head tracking is performed by tracking facial features [4,27] or the
entire face (in 2D or 3D) [7,15,28,29]. Frequently, the facial features selected to track are the eyes [27] or
the nose [30] and the entire face is usually tracked based on skin color [15,30] or face detectors [7].

Sensors 2016, 16, 254 3 of 18

We also find commercial apps and projects with no related technical papers that track the head
for diverse purposes such as the Smart Screen Samsung Galaxy S4 that uses the front camera to detect
the position of the face and eyes to perform functions like scroll within documents, screen rotation or
pause video playback. To offer accessibility to users with impairments, we find the EVA Facial Mouse
app [16] or the Go Ahead project [17] that aim to use the head motion as a pointing device.

2.2. Head-Tracker Interfaces for Mobile Gaming

In this subsection, we compile works related to camera-based interfaces for mobile entertaining
apps and works evaluating this kind of interfaces in entertainment contexts. Most games found in the
application stores or used in research works, use the facial information to change the user’s viewpoint
in first-person games or to steer the avatar in the game environment.

Mobile entertainment applications using camera-based interfaces are fairly new (all the ones
mentioned in this work were published in the last two years), and can be downloaded from the main
application stores, but no information is given about their development or usability evaluation.

Umoove’s Flying Experience for iOS was published in 2014 and uses the device’s front camera to
track the user’s head to fly in a 3D environment and collect as many potion bottles as possible [18].
The Shtick Studios HeadStart game [21], which uses the Umoove face tracking technology, detects
the horizontal head movements to turn a car right or left and avoid the obstacles. In both games,
subtle movements are enough to control the interaction. The Head Moves Game (by Electronic Rescue
Service) [20] controls the entire head/face position to move a character through a maze, so complete
displacements of the whole head have to be made to move the character, and it is not sufficient to just
turn slightly the head. Finally, FaceScape (by Inisle Interactive Technologies) [19] was published in 2015,
and it is used in this work to explore the camera-based interface use and usage in entertaining contexts.

Research evaluating the usability of this kind of camera-based interfaces for mobile devices or
head-trackers for mobile entertaining is scarce. Cuaresma and Mackenzie [13] compared accuracy and
speed using a tilt-input interface and a head-tracker interface to play a game. Participants performed
better with the tilt-input, but according to their comments, they enjoyed the head-tracker, although
in some cases they felt head fatigue. In [14], the authors implemented a head-tracker which detected
the face position and was used with different games or apps such as Pong or an image viewer. They
used the histograms to identify the face, so they encountered problems with skin colored backgrounds.
The work did not present quantitative data, but listed characteristics and challenges of head-trackers
in mobile devices such as visualizing what the camera sees and how well it sees it, or noticing that
sometimes is easier to tilt the device instead of moving it. The works evaluating this kind of interfaces
are usually conducted in controlled environments such as laboratory conditions. Therefore, the
findings cannot be always generalized to real users and real contexts.

3. Camera-Based Interface for Mobile Devices

In this section, an overview of the camera-based interface is given, and then we describe in detail
each of the stages that comprise the system.

3.1. Interface Design and Development

To design the interface, we followed the design recommendations for camera-based
head-controlled interfaces listed in [31] which summarizes design decisions to be taken into account for
any interface based on a head-tracker and the different approaches researchers have used in desktop
computers. Our camera-based interface is based on facial feature tracking instead of tracking the
overall head or face. The selected facial feature region is the nose, because this region has specific
characteristics (distinction, uniqueness, invariance and stability) to allow tracking, it is not occluded
by facial hair or glasses and it is always visible while the user is interacting with the mobile device
(even with the head rotated).

Sensors 2016, 16, 254 4 of 18

An overview of the interface design is depicted in Figure 1. The process is divided into two stages,
the User detection and Tracking. The User detection stage is responsible for the processing of the initial
frames coming from the camera to detect the user’s facial features to track. Once these facial features
are detected, the Tracking stage performs their tracking and filtering. Finally, the average of all features,
the nose point, is sent to a transfer function, which will use the tracking information and the device’s
characteristics (e.g., screen size) to fulfill the requirements of each mobile application.

Sensors 2016, 16, 254 4 of 18

initial frames coming from the camera to detect the user’s facial features to track. Once these facial
features are detected, the Tracking stage performs their tracking and filtering. Finally, the average of
all features, the nose point, is sent to a transfer function, which will use the tracking information and
the device’s characteristics (e.g., screen size) to fulfill the requirements of each mobile application.

Figure 1. Camera-based interface design.

3.2. User Detection (and Facial Feature Selection)

A fundamental requirement for the interface is that the user has to be automatically detected to
get the control of the interaction by means of its head movements with no need of a calibration stage.
Assuming that the user keeps his or her head steady for a predefined number of frames, the system
automatically detects the user’s face in the image, i.e., the position and width of the image region
corresponding to the user’s face. This facial user detection process can be based on face detection
APIs integrated into the mobile platforms, which makes the capability readily available to those
platforms in an optimized way. Specifically, native APIs for face detection were introduced in
Android 1.5 and iOS 5. Even if different people are present in the image, the system will consider the
main face (the bigger one) as the user of the system. Finally, we introduce a temporal consistency
scheme in order to avoid false positives and ensure a steady user action for a proper algorithm
initialization (see Figure 2a). The algorithm details to detect the user’s face region in the image are
shown in Figure 3.

(a) (b) (c) (d)

Figure 2. (a) Automatic face detection; (b) Initial set of features; (c) Feature re-selection using
symmetrical constraints; (d) Mean of the selected features: nose point.

Camera

Facial features
position registration

Device
information

User detection Tracking

Frame

Face detection
(main face)

Nose region
detection

Facial features
extraction

Frame

Kalman filter

Nose point

New features
extraction

Nose point
filtered

Transfer
function

App
Nose point

Figure 1. Camera-based interface design.

3.2. User Detection (and Facial Feature Selection)

A fundamental requirement for the interface is that the user has to be automatically detected to
get the control of the interaction by means of its head movements with no need of a calibration stage.
Assuming that the user keeps his or her head steady for a predefined number of frames, the system
automatically detects the user’s face in the image, i.e., the position and width of the image region
corresponding to the user’s face. This facial user detection process can be based on face detection APIs
integrated into the mobile platforms, which makes the capability readily available to those platforms in
an optimized way. Specifically, native APIs for face detection were introduced in Android 1.5 and iOS 5.
Even if different people are present in the image, the system will consider the main face (the bigger
one) as the user of the system. Finally, we introduce a temporal consistency scheme in order to avoid
false positives and ensure a steady user action for a proper algorithm initialization (see Figure 2a).
The algorithm details to detect the user’s face region in the image are shown in Figure 3.

Sensors 2016, 16, 254 4 of 18

initial frames coming from the camera to detect the user’s facial features to track. Once these facial
features are detected, the Tracking stage performs their tracking and filtering. Finally, the average of
all features, the nose point, is sent to a transfer function, which will use the tracking information and
the device’s characteristics (e.g., screen size) to fulfill the requirements of each mobile application.

Figure 1. Camera-based interface design.

3.2. User Detection (and Facial Feature Selection)

A fundamental requirement for the interface is that the user has to be automatically detected to
get the control of the interaction by means of its head movements with no need of a calibration stage.
Assuming that the user keeps his or her head steady for a predefined number of frames, the system
automatically detects the user’s face in the image, i.e., the position and width of the image region
corresponding to the user’s face. This facial user detection process can be based on face detection
APIs integrated into the mobile platforms, which makes the capability readily available to those
platforms in an optimized way. Specifically, native APIs for face detection were introduced in
Android 1.5 and iOS 5. Even if different people are present in the image, the system will consider the
main face (the bigger one) as the user of the system. Finally, we introduce a temporal consistency
scheme in order to avoid false positives and ensure a steady user action for a proper algorithm
initialization (see Figure 2a). The algorithm details to detect the user’s face region in the image are
shown in Figure 3.

(a) (b) (c) (d)

Figure 2. (a) Automatic face detection; (b) Initial set of features; (c) Feature re-selection using
symmetrical constraints; (d) Mean of the selected features: nose point.

Camera

Facial features
position registration

Device
information

User detection Tracking

Frame

Face detection
(main face)

Nose region
detection

Facial features
extraction

Frame

Kalman filter

Nose point

New features
extraction

Nose point
filtered

Transfer
function

App
Nose point

Figure 2. (a) Automatic face detection; (b) Initial set of features; (c) Feature re-selection using
symmetrical constraints; (d) Mean of the selected features: nose point.

Sensors 2016, 16, 254 5 of 18
Sensors 2016, 16, 254 5 of 18

Figure 3. Facial region detection algorithm carried out in the User detection stage.

Observing the anthropometrical measurements of the human face, the nose region can be found
in approximately the second third of the facial region. We apply this rule to select the nose image
region over the facial image region detected, for searching good facial features to track. For this
purpose, we use the Hessian covariance matrix over an image patch around each point of the nose
image region. Generalizing, for a point u, its Hessian covariance matrix is defined such as ܪ = .ܣ்ܣ
The matrix ܣ is defined as:

ܣ = ێێۏ
(ଵݑ)௫ܫۍ (ଶݑ)௫ܫ(ଵݑ)௬ܫ ⋮(ଶݑ)௬ܫ (ேݑ)௫ܫ⋮ ۑۑے(ேݑ)௬ܫ

ې

where ܫ௫ and ܫ௬ are the spatial partial derivatives at the image point ݑ of the neighborhood
around the evaluated point ݑ (we use a neighborhood of 10x10 pixels, i.e., ܰ = 121) . In order to
select an image point ݑ as a facial feature, the eigenvalues of the Hessian matrix are computed. Let
us define the facial feature quality, ߣ, as the minimum eigenvalue. Then, if ߣ	is greater than a
predefined threshold,	ߣ௧, the point of the image region is selected as a good nose feature (we set ߣ௧ =	0.01 ∙ of the entire nose region). By applying thisߣ ெ is the maximum value of theߣ ெ, whereߣ
strategy, the nostrils and the corners of the nose are found (see Figure 2b), but due to the lighting
environment causing shadows, other unstable features can be detected too. The center of the nose is
the ideal point to send to the transfer function. Therefore, features will be preferably placed on both
sides of the nose and with certain symmetrical conditions. A re-selection of the initially found
features is carried out to achieve a more robust tracking process, selecting pairs of features
symmetrical respect to the vertical axis as it is described in the algorithm in Figure 4 and it is shown
in Figure 2c.

Figure 4. Feature re-selection algorithm for User Detection.

Finally, the nose point is the average of all facial features being tracked, which will be centered
on the nose, between the nostrils (see Figure 2d).

The User detection process has been evaluated using the BioID face database [32]. The BioID is a
head-and-shoulder image face database, where special emphasis has been placed on real world
conditions. Therefore the test set features 23 people in 1521 frontal view images considering a large
variety of illumination, background, and face size. The images have been manually marked up, being the

Let us define It as the camera image frame at time t.
 Select the main face:
Let Fi,t = {positioni,t, widthi,t} be the ith-detected face in It.
Ft = { Fi,t | widthi,t > widthj,t }.
 Temporal consistency:
Let positiont be the main face position components in x and y dimensions, FD the
allowed maximum face displacement (in image pixels), and NF a predefined number
of frames.
If (|positiont - positiont-1| < FD) in NF images then

User’s face detected: Ft facial region.

Let us define xc as the horizontal coordinate of the center of the nose image region.

 Create two sets of the selected facial features, one for the left facial features, xL = { x | x < xc },
and another for the right facial features, xR.

 Select pairs of facial features of each set that are approximately at the same line and
compute for each selected pair:
If the horizontal distances of each feature to xc are equal re-select this feature.

Figure 3. Facial region detection algorithm carried out in the User detection stage.

Observing the anthropometrical measurements of the human face, the nose region can be found in
approximately the second third of the facial region. We apply this rule to select the nose image region
over the facial image region detected, for searching good facial features to track. For this purpose, we
use the Hessian covariance matrix over an image patch around each point of the nose image region.
Generalizing, for a point u, its Hessian covariance matrix is defined such as H “ AT A. The matrix A is
defined as:

A “

»

—

—

—

—

–

Ix pu1q Iy pu1q

Ix pu2q Iy pu2q
...

...
Ix puNq Iy puNq

fi

ffi

ffi

ffi

ffi

fl

where Ix and Iy are the spatial partial derivatives at the image point ui of the neighborhood around
the evaluated point u (we use a neighborhood of 10 ˆ 10 pixels, i.e., N “ 121). In order to select an
image point u as a facial feature, the eigenvalues of the Hessian matrix are computed. Let us define
the facial feature quality, λmin, as the minimum eigenvalue. Then, if λmin is greater than a predefined
threshold, λt, the point of the image region is selected as a good nose feature (we set λt “ 0.01¨λM,
where λM is the maximum value of the λmin of the entire nose region). By applying this strategy, the
nostrils and the corners of the nose are found (see Figure 2b), but due to the lighting environment
causing shadows, other unstable features can be detected too. The center of the nose is the ideal point
to send to the transfer function. Therefore, features will be preferably placed on both sides of the nose
and with certain symmetrical conditions. A re-selection of the initially found features is carried out to
achieve a more robust tracking process, selecting pairs of features symmetrical respect to the vertical
axis as it is described in the algorithm in Figure 4 and it is shown in Figure 2c.

Sensors 2016, 16, 254 5 of 18

Figure 3. Facial region detection algorithm carried out in the User detection stage.

Observing the anthropometrical measurements of the human face, the nose region can be found
in approximately the second third of the facial region. We apply this rule to select the nose image
region over the facial image region detected, for searching good facial features to track. For this
purpose, we use the Hessian covariance matrix over an image patch around each point of the nose
image region. Generalizing, for a point u, its Hessian covariance matrix is defined such as ܪ = .ܣ்ܣ
The matrix ܣ is defined as:

ܣ = ێێۏ
(ଵݑ)௫ܫۍ (ଶݑ)௫ܫ(ଵݑ)௬ܫ ⋮(ଶݑ)௬ܫ (ேݑ)௫ܫ⋮ ۑۑے(ேݑ)௬ܫ

ې

where ܫ௫ and ܫ௬ are the spatial partial derivatives at the image point ݑ of the neighborhood
around the evaluated point ݑ (we use a neighborhood of 10x10 pixels, i.e., ܰ = 121) . In order to
select an image point ݑ as a facial feature, the eigenvalues of the Hessian matrix are computed. Let
us define the facial feature quality, ߣ, as the minimum eigenvalue. Then, if ߣ	is greater than a
predefined threshold,	ߣ௧, the point of the image region is selected as a good nose feature (we set ߣ௧ =	0.01 ∙ of the entire nose region). By applying thisߣ ெ is the maximum value of theߣ ெ, whereߣ
strategy, the nostrils and the corners of the nose are found (see Figure 2b), but due to the lighting
environment causing shadows, other unstable features can be detected too. The center of the nose is
the ideal point to send to the transfer function. Therefore, features will be preferably placed on both
sides of the nose and with certain symmetrical conditions. A re-selection of the initially found
features is carried out to achieve a more robust tracking process, selecting pairs of features
symmetrical respect to the vertical axis as it is described in the algorithm in Figure 4 and it is shown
in Figure 2c.

Figure 4. Feature re-selection algorithm for User Detection.

Finally, the nose point is the average of all facial features being tracked, which will be centered
on the nose, between the nostrils (see Figure 2d).

The User detection process has been evaluated using the BioID face database [32]. The BioID is a
head-and-shoulder image face database, where special emphasis has been placed on real world
conditions. Therefore the test set features 23 people in 1521 frontal view images considering a large
variety of illumination, background, and face size. The images have been manually marked up, being the

Let us define It as the camera image frame at time t.
 Select the main face:
Let Fi,t = {positioni,t, widthi,t} be the ith-detected face in It.
Ft = { Fi,t | widthi,t > widthj,t }.
 Temporal consistency:
Let positiont be the main face position components in x and y dimensions, FD the
allowed maximum face displacement (in image pixels), and NF a predefined number
of frames.
If (|positiont - positiont-1| < FD) in NF images then

User’s face detected: Ft facial region.

Let us define xc as the horizontal coordinate of the center of the nose image region.

 Create two sets of the selected facial features, one for the left facial features, xL = { x | x < xc },
and another for the right facial features, xR.

 Select pairs of facial features of each set that are approximately at the same line and
compute for each selected pair:
If the horizontal distances of each feature to xc are equal re-select this feature.

Figure 4. Feature re-selection algorithm for User Detection.

Finally, the nose point is the average of all facial features being tracked, which will be centered on
the nose, between the nostrils (see Figure 2d).

Sensors 2016, 16, 254 6 of 18

The User detection process has been evaluated using the BioID face database [32]. The BioID is
a head-and-shoulder image face database, where special emphasis has been placed on real world
conditions. Therefore the test set features 23 people in 1521 frontal view images considering a large
variety of illumination, background, and face size. The images have been manually marked up, being
the “tip of the nose” one of the feature points marked. We compared the average of the selected
features for tracking, i.e., the nose position, given by the proposed algorithm with this annotated
facial feature.

We used 1457 images (95.79%) as we did not consider those images where the face was not
detected due to the lack of visibility of the whole face. We computed the distance between our nose
position and the “tip of the nose” mark. We achieved 96.08% of nose detections with a mean of
2.34 pixels of horizontal displacement (SD: 2.05) and a mean of 4.98 pixels of vertical displacement
(SD: 4.86). Errors in the nose detection are mainly due to lighting conditions that lead to different
brightness on both sides of the face. The vertical displacement is bigger than the horizontal one,
because nostrils are normally detected as features to track in the proposed algorithm due to the
vertical symmetrical constraint. Results prove that the accuracy of the User detection stage is robust
in real conditions. In addition, as depicted in Figure 5 in images from the front camera of the mobile
device, the face and facial features detection is stable and robust for different users, light conditions
and backgrounds.

Sensors 2016, 16, 254 6 of 18

“tip of the nose” one of the feature points marked. We compared the average of the selected features for
tracking, i.e., the nose position, given by the proposed algorithm with this annotated facial feature.

We used 1457 images (95.79%) as we did not consider those images where the face was not
detected due to the lack of visibility of the whole face. We computed the distance between our nose
position and the ‘tip of the nose’ mark. We achieved 96.08% of nose detections with a mean of 2.34
pixels of horizontal displacement (SD: 2.05) and a mean of 4.98 pixels of vertical displacement (SD:
4.86). Errors in the nose detection are mainly due to lighting conditions that lead to different brightness
on both sides of the face. The vertical displacement is bigger than the horizontal one, because nostrils
are normally detected as features to track in the proposed algorithm due to the vertical symmetrical
constraint. Results prove that the accuracy of the User detection stage is robust in real conditions. In
addition, as depicted in Figure 5 in images from the front camera of the mobile device, the face and
facial features detection is stable and robust for different users, light conditions and backgrounds.

Figure 5. The system’s functioning with different users, lightings and backgrounds.

3.3. Tracking

It is important to highlight that in the Tracking stage, the face does not need to be fully visible,
unlike the User detection stage.

To track the facial features, the spatial intensity gradient information of the images is used to
find the best image registration [33]. Let ݑ	 = 	 ,௫ݑ) ௬) be the position of a feature in a frame, theݑ
goal of feature tracking is to find the location ݒ = ௫ݑ) + ݀௫, ௬ݑ + ݀௬) on the next frame assuming
that the brightness of the feature does not change. In addition, to handle large motions, we use a
pyramidal implementation of the classical Lucas-Kanade algorithm [34]. The tracking algorithm is
robust to handle head rotation, scaling or shearing, so the user can move in a flexible way. Basically,
this algorithm solves	(ܣ்ܣ) ∙ ࢊ = :is ܤ where ,ܤ்ܣ

ܤ = 	 ൦ܫ௧(ݑଵ)ܫ௧(ݑଶ)⋮ܫ௧(ݑே)൪

and ܫ௧ is the temporal derivative at the image point ݑ.
However, fast head movements can cause the lost or displacement of features to track. As we

are only focusing on the nose region, when a feature is separated from the average point more than a
predefined value, the feature will be discarded. When there are not enough features to track, then
the User detection stage restarts.

To provide robustness to the Tracking, we recover and update the nose features used to track.
We follow a typical Bayesian approach to sensor fusion, combining measurements in the
representation of a posterior probability. In this case, we combine for each new frame, the tracked
nose features with new detected features. For this goal, when the user's face is looking up towards
the camera, we search for new features to track on the nose region. To update the set of tracked
features, a probability of re-initialization is used to include the new detected features in the current

Figure 5. The system’s functioning with different users, lightings and backgrounds.

3.3. Tracking

It is important to highlight that in the Tracking stage, the face does not need to be fully visible,
unlike the User detection stage.

To track the facial features, the spatial intensity gradient information of the images is used to
find the best image registration [33]. Let u “

`

ux, uy
˘

be the position of a feature in a frame, the
goal of feature tracking is to find the location v “

`

ux ` dx, uy ` dy
˘

on the next frame assuming
that the brightness of the feature does not change. In addition, to handle large motions, we use a
pyramidal implementation of the classical Lucas-Kanade algorithm [34]. The tracking algorithm is
robust to handle head rotation, scaling or shearing, so the user can move in a flexible way. Basically,
this algorithm solves

`

AT A
˘

¨d “ AT B, where B is:

B “

»

—

—

—

—

–

It pu1q

It pu2q
...

It puNq

fi

ffi

ffi

ffi

ffi

fl

and It is the temporal derivative at the image point ui.

Sensors 2016, 16, 254 7 of 18

However, fast head movements can cause the lost or displacement of features to track. As we
are only focusing on the nose region, when a feature is separated from the average point more than a
predefined value, the feature will be discarded. When there are not enough features to track, then the
User detection stage restarts.

To provide robustness to the Tracking, we recover and update the nose features used to track.
We follow a typical Bayesian approach to sensor fusion, combining measurements in the representation
of a posterior probability. In this case, we combine for each new frame, the tracked nose features with
new detected features. For this goal, when the user's face is looking up towards the camera, we search
for new features to track on the nose region. To update the set of tracked features, a probability of
re-initialization is used to include the new detected features in the current nose feature set. In our case,
this probability value has been set to 0.05. The user does not participate actively in this phase; he or
she will just feel a subtle readjustment of the point on to the nose. Then, we apply a velocity constant
Kalman filter to smooth the positions [35] (see blue point in Figure 5).

The proposed Tracking stage is able to run in real-time on current mobile devices with different
CPU platforms. Table 1 shows the processing times in milliseconds (ms) of the head-tracker for
different mobile devices when operating with the current image resolution (144 ˆ 192). A performance
test with different image resolutions in an iPhone 6 Plus platform (A8: 64 bits, 1.4 GHz ARMv8-A dual
core) is also included as a comparison in Table 2.

Table 1. Average processing time of the head-tracker for different mobile devices.

Device CPU Time to Process (ms)

iPad 2 A5: 32 bits, 1 GHZ, ARM Cortex-A9 dual core 251
iPhone 5s A7: 64 bits, 1.3 GHz ARMv8-A dual core 37
iPad Air A7: 64 bits, 1.4 GHz ARMv8-A dual core 36
iPhone 6 A8: 64 bits, 1.4 GHz ARMv8-A dual core 31

Table 2. Average processing time of the head-tracker with different resolutions on an iPhone 6 Plus
mobile device with a CPU A8: 64 bits, 1.4 GHz ARMv8-A dual core.

Frame Height (px) Frame Width (px) ms

192 144 31
352 288 54
480 360 68
640 480 89

Finally, the app using the head-tracker will decide how to proceed with the nose point given.
There will be a transfer function responsible on translating the head-tracker information to the app.
As an example, we will describe the transfer functions for two different apps in Sections 4 and 5.

4. Evaluating the Interface as a Pointing Device

In this first evaluation, the nose point is mapped to the screen to provide the user with a pointing
device (see Figure 6). In the next subsection, the transfer function for this app is described and then,
the evaluation test is explained together with the achieved results.

Sensors 2016, 16, 254 8 of 18

Sensors 2016, 16, 254 7 of 18

nose feature set. In our case, this probability value has been set to 0.05. The user does not participate
actively in this phase; he or she will just feel a subtle readjustment of the point on to the nose. Then,
we apply a velocity constant Kalman filter to smooth the positions [35] (see blue point in Figure 5).

The proposed Tracking stage is able to run in real-time on current mobile devices with different
CPU platforms. Table 1 shows the processing times in milliseconds (ms) of the head-tracker for
different mobile devices when operating with the current image resolution (144 × 192). A
performance test with different image resolutions in an iPhone 6 Plus platform (A8: 64 bits, 1.4 GHz
ARMv8-A dual core) is also included as a comparison in Table 2.

Table 1. Average processing time of the head-tracker for different mobile devices.

Device CPU Time to Process (ms)
iPad 2 A5: 32 bits, 1 GHZ, ARM Cortex-A9 dual core 251

iPhone 5s A7: 64 bits, 1.3 GHz ARMv8-A dual core 37
iPad Air A7: 64 bits, 1.4 GHz ARMv8-A dual core 36
iPhone 6 A8: 64 bits, 1.4 GHz ARMv8-A dual core 31

Table 2. Average processing time of the head-tracker with different resolutions on an iPhone 6 Plus
mobile device with a CPU A8: 64 bits, 1.4 GHz ARMv8-A dual core.

Frame Height (px) Frame Width (px) ms
192 144 31
352 288 54
480 360 68
640 480 89

Finally, the app using the head-tracker will decide how to proceed with the nose point given.
There will be a transfer function responsible on translating the head-tracker information to the app.
As an example, we will describe the transfer functions for two different apps in Sections 4 and 5.

4. Evaluating the Interface as a Pointing Device

In this first evaluation, the nose point is mapped to the screen to provide the user with a
pointing device (see Figure 6). In the next subsection, the transfer function for this app is described
and then, the evaluation test is explained together with the achieved results.

Figure 6. The camera-based interface processes the user’s head motion to translate it to a position in
the mobile’s screen.

4.1. Transfer Function

Figure 6. The camera-based interface processes the user’s head motion to translate it to a position in
the mobile’s screen.

4.1. Transfer Function

The average of all facial features, nose point, is translated to the mobile screen by means of a
predefined transfer function based on differential positioning. In this approach, the interface reports
the change in coordinates and the function’s given location is relative to the previous location rather
than relative to a fixed origin.

The transfer function, Φ, maps the user’s nose position (the average of all tracked facial features),
v = (vi, vj), to a device screen position, p = (px, py), at every time stamp t considering a scale factor
(sx, sy) (see Equation (1)):

φ
`

px, py
˘

“
`

sx¨ vi, sy¨ vj
˘

(1)

Specifically, the head-tracker was implemented and optimized for an iPhone 5S running iOS 8.0.
The iPhone 5S has a 4-inch retina display with 1136-by-640-pixel resolution at 326 pixels per inch
(568ˆ 320 pt). Apple’s point (pt.) is an abstract unit that covers two pixels on retina devices. On iPhone
5S, one point equals 1/163 inch.

To assign the best values for the scale factor (sx, sy) for users to be able to reach all screen
positions in a comfortable way and considering the mobile screen width (w) and height (h) we applied
Equation (2), where 55 is the image range of the user’s nose movement (in pixels):

sx “
w
55

, sy “
h

55
(2)

Further, a gain factor is included, that is, the amount of movement on the device in response to
a unit amount of movement of the user, where the velocity (m, in pixels/frame rate) is a function
between the scale factor and the gain factor (see Equation (3)):

m “ p¨ gainFactor (3)

4.2. Evaluation of the Interface’s Effectiveness and Efficiency

In order to evaluate the effectiveness and efficiency of the camera-based interface, an experiment
was conducted to explore its performance with different target sizes (accuracy and velocity), target
locations (test if all the screen positions were accessible) and influence of the gain or device
orientation [30]. Due to the small screen size, we could not perform the ISO 9241-9 Multi-directional
tapping task [36].

The interface was evaluated with 19 users (four females) whose ages ranged from 23 a 69
(mean = 38.21, SD = 14.05) and none of them had previous experience with this kind of interaction. The
participants in the experiment were volunteers recruited from the local town and university campus.

Sensors 2016, 16, 254 9 of 18

The task to carry out was a position-select task, where the screen was divided in 15 areas (see
Figure 7) whose centre was the center of the target to be selected. To perform a selection on a target,
the user had to place a circular cursor inside it and tap on any part of the screen. At each moment
and randomly, only one target was enabled and highlighted, and users had one chance to perform
the selection. The user had a visual feedback when the cursor was inside the target, and only in this
condition, the selection was considered successful; otherwise, an error was registered.

Sensors 2016, 16, 254 9 of 18

16.34 min (mean = 8.91 min, SD = 2.6 min). The total number of trials for all users was: 15 trials × 2
device orientation × 2 gain × 3 target width × 19 users = 3420.

When performing the evaluation test, users were sitting and holding the mobile phone in a
comfortable position. Then, the application instructed users to proceed as accurate and fast as
possible. Accuracy meant to tap as close as possible to the centre of the target.

For each target, we registered the success or error of the selection, the Euclidian distance
between the effective user selection and the center of the target (accuracy) and the effective distance
of the task trial divided by the movement time (velocity).

Figure 7. Regions of the screen in portrait and landscape right orientation.

4.2.1. Accuracy

The mean accuracy per task was 32 points and the effect of the target width on the accuracy was
statistically significant (F2,36 = 55.5; p < 0.001). The 44-target width achieved the best results in
accuracy (25.12 pt) and the 106-target width was the worst (36.37 points) (see Figure 8a). Pairwise
comparisons with Bonferroni correction showed that the 88 and 106-target widths were no longer
significantly different p = 0.45 > 0.0166.

(a) (b)

Figure 8. (a) Accuracy and (b) velocity by target width and gain. Error bars show 95% CI.

The gain had a statistically significant effect on the accuracy (F1,18 = 18:8; p < 0.001). The mean for
the 1-gain was 14.38% lower than the mean of 34.48 pt. for the 1.5-gain. Finally, the effect of the
device orientation on accuracy was not statistically significant (F1,18 = 1.32; p > 0.05).

Figure 7. Regions of the screen in portrait and landscape right orientation.

The test was conducted combining different device orientations, gains and target widths. The
device orientation was an interesting factor to study, as the camera on a landscape mode is not
centrally placed. The target width values were selected according to the guidelines given in the iOS
Human Interface Guidelines [37,38] regarding the optimal size for tappable user interface element’s.
The values were:

‚ Device orientation (D) = {portrait, landscape right}.
‚ Gain (G): {1, 1.5}.
‚ Target width (W) = {44, 88, 106 pt}.

Each test had 12 blocks, that is, the 12 combinations of (D) ˆ (G) ˆ (W) with 15 trials or targets
each, the first three of which were practice unbeknownst to the participant, and the order of the blocks
was random. Breaks were allowed between blocks and the test duration ranged from 5.85 to 16.34 min
(mean = 8.91 min, SD = 2.6 min). The total number of trials for all users was: 15 trials ˆ 2 device
orientation ˆ 2 gain ˆ 3 target width ˆ 19 users = 3420.

When performing the evaluation test, users were sitting and holding the mobile phone in a
comfortable position. Then, the application instructed users to proceed as accurate and fast as possible.
Accuracy meant to tap as close as possible to the centre of the target.

For each target, we registered the success or error of the selection, the Euclidian distance between
the effective user selection and the center of the target (accuracy) and the effective distance of the task
trial divided by the movement time (velocity).

4.2.1. Accuracy

The mean accuracy per task was 32 points and the effect of the target width on the accuracy was
statistically significant (F2,36 = 55.5; p < 0.001). The 44-target width achieved the best results in accuracy
(25.12 pt) and the 106-target width was the worst (36.37 points) (see Figure 8a). Pairwise comparisons
with Bonferroni correction showed that the 88 and 106-target widths were no longer significantly
different p = 0.45 > 0.0166.

The gain had a statistically significant effect on the accuracy (F1,18 = 18:8; p < 0.001). The mean for
the 1-gain was 14.38% lower than the mean of 34.48 pt. for the 1.5-gain. Finally, the effect of the device
orientation on accuracy was not statistically significant (F1,18 = 1.32; p > 0.05).

Sensors 2016, 16, 254 10 of 18

Sensors 2016, 16, 254 9 of 18

16.34 min (mean = 8.91 min, SD = 2.6 min). The total number of trials for all users was: 15 trials × 2
device orientation × 2 gain × 3 target width × 19 users = 3420.

When performing the evaluation test, users were sitting and holding the mobile phone in a
comfortable position. Then, the application instructed users to proceed as accurate and fast as
possible. Accuracy meant to tap as close as possible to the centre of the target.

For each target, we registered the success or error of the selection, the Euclidian distance
between the effective user selection and the center of the target (accuracy) and the effective distance
of the task trial divided by the movement time (velocity).

Figure 7. Regions of the screen in portrait and landscape right orientation.

4.2.1. Accuracy

The mean accuracy per task was 32 points and the effect of the target width on the accuracy was
statistically significant (F2,36 = 55.5; p < 0.001). The 44-target width achieved the best results in
accuracy (25.12 pt) and the 106-target width was the worst (36.37 points) (see Figure 8a). Pairwise
comparisons with Bonferroni correction showed that the 88 and 106-target widths were no longer
significantly different p = 0.45 > 0.0166.

(a) (b)

Figure 8. (a) Accuracy and (b) velocity by target width and gain. Error bars show 95% CI.

The gain had a statistically significant effect on the accuracy (F1,18 = 18:8; p < 0.001). The mean for
the 1-gain was 14.38% lower than the mean of 34.48 pt. for the 1.5-gain. Finally, the effect of the
device orientation on accuracy was not statistically significant (F1,18 = 1.32; p > 0.05).

Figure 8. (a) Accuracy and (b) velocity by target width and gain. Error bars show 95% CI.

4.2.2. Velocity

The mean velocity per task was 108.61 pt./s. The effect of the target width on the velocity was
statistically significant (F2,36 = 78.5; p < 0.001). The 44-target width achieved the lowest velocity
(81.9 pt./s) and the 106-target width the highest (124.96 pt./s) (see Figure 8(b)). Pairwise comparisons
with Bonferroni correction show that the 88 and 106-target widths were no longer significantly different
p = 0.064 > 0.0166.

The effect of the gain on the velocity was statistically significant (F1,18 = 10.1; p < 0.01). The
1.5-gain = 1.5 achieved the highest velocity (113.01 pt./s.) and the 1-gain, the lowest (104.22 pt./s.).
With the 44- target width the mean velocity was higher for the 1-gain that for the 1.5-gain. Finally, the
effect of the device orientation on velocity was not statistically significant (F1,18 = 0.18, ns).

4.2.3. Error Rate and Target Position

The error rate is calculated as the erroneous selections per total number of selections. The mean
per task was 0.22.

With the 1-gain, an average of correct selection rate above 0.83 was achieved for the 88-target
width (0.83) and the 106- target width (0.89). An average of correct selection rate of 0.7 was achieved
for the 44-target width. There does not seem to exist a relation between the correct selection rate and
the target location (see Figure 9).

Sensors 2016, 16, 254 10 of 18

4.2.2. Velocity

The mean velocity per task was 108.61 pt./s. The effect of the target width on the velocity was
statistically significant (F2,36 = 78.5; p < 0.001). The 44-target width achieved the lowest velocity
(81.9 pt./s) and the 106-target width the highest (124.96 pt./s) (see Figure 8(b)). Pairwise comparisons
with Bonferroni correction show that the 88 and 106-target widths were no longer significantly
different p = 0.064 > 0.0166.

The effect of the gain on the velocity was statistically significant (F1,18 = 10.1; p < 0.01). The
1.5-gain = 1.5 achieved the highest velocity (113.01 pt./s.) and the 1-gain, the lowest (104.22 pt./s.).
With the 44- target width the mean velocity was higher for the 1-gain that for the 1.5-gain. Finally,
the effect of the device orientation on velocity was not statistically significant (F1,18 = 0.18, ns).

4.2.3. Error Rate and Target Position

The error rate is calculated as the erroneous selections per total number of selections. The mean
per task was 0.22.

With the 1-gain, an average of correct selection rate above 0.83 was achieved for the 88-target
width (0.83) and the 106- target width (0.89). An average of correct selection rate of 0.7 was achieved
for the 44-target width. There does not seem to exist a relation between the correct selection rate and
the target location (see Figure 9).

(a) (b)

Figure 9. Correct selection rate by target width and with 1-gain condition for (a) portrait orientation
and (b) landscape orientation.

5. Evaluation in the wild for Mobile Entertainment

In this section we present the FaceScape game, which uses the camera-based interface to
interact with it. The game itself does not contain real innovations, but the aim was to study the usage
and the user’s perception towards this kind of interaction mode in entertainment activities, where
users are more willing to explore new input devices and it is a voluntary activity. Further, it was
designed for short playing sessions throughout the day in a casual gaming style (each session lasted
roughly one minute and a half).

We wanted to keep the game relatively simple regarding the interaction; therefore, the game
just reacts to the horizontal head motion. The user has to move horizontally a ball affected by upper
gravity force to avoid the obstacles that go randomly appearing (see Figure 10a). The collision with
them causes the ball to be dragged down (see Figure 10b), so the game finishes when the ball crosses
the bottom border as shown in Figure 10c.

Figure 9. Correct selection rate by target width and with 1-gain condition for (a) portrait orientation
and (b) landscape orientation.

Sensors 2016, 16, 254 11 of 18

5. Evaluation in the wild for Mobile Entertainment

In this section we present the FaceScape game, which uses the camera-based interface to interact
with it. The game itself does not contain real innovations, but the aim was to study the usage and the
user’s perception towards this kind of interaction mode in entertainment activities, where users are
more willing to explore new input devices and it is a voluntary activity. Further, it was designed for
short playing sessions throughout the day in a casual gaming style (each session lasted roughly one
minute and a half).

We wanted to keep the game relatively simple regarding the interaction; therefore, the game
just reacts to the horizontal head motion. The user has to move horizontally a ball affected by upper
gravity force to avoid the obstacles that go randomly appearing (see Figure 10a). The collision with
them causes the ball to be dragged down (see Figure 10b), so the game finishes when the ball crosses
the bottom border as shown in Figure 10c.Sensors 2016, 16, 254 11 of 18

(a) (b) (c)

Figure 10. Screenshots of the game: (a) Ball avoiding the obstacles; (b) Ball being dragged down due
to the collision with an obstacle; (c) Game lost.

The design of the game includes game mechanics to design for engagement and fun [39,40]
such as points, levels or rankings. To increase the playability, the game’s difficulty is increased
progressively by speeding the falling obstacles and the gravity force applied to the ball. Moreover, to
motivate and engage players we show the ranking, the achieved level results and the number of
played sessions.

The game has two difficulty phases: the onboarding and the challenge. The onboarding phase
goes from level 0 up to 40, and is where gamers learn the rules and train with the interface to play
the game. Levels are increased when an obstacle is avoided. Once level 40 is achieved for the first
time, the challenge phase is unlocked and it is the default level. However, the gamer can always play
the onboarding phase.

The game is designed to be self-explained as evaluators will not be close to the user to give
explanations. While playing the onboarding phase, there are instructions at the beginning of every
session, explaining the objective of the game and the correct position to use the head-tracker (see
Figure 11).

Figure 11. Screenshots of the instructions: (a) Instructions for the correct position for using the
head-tracker (“Place your head inside the circle”); (b,c) Instructions explaining how to interact with
the game and its objective (“The white circle represents your nose tip” “Move it horizontally to avoid
falling walls”).

In the next subsections, we describe the transfer function, and then we present the results of the
evaluation of the head-tracker being used to play FaceScape. First, we report the results of a
supervised evaluation done in the wild with 29 participants. Then, we summarize the data obtained
from the users who downloaded the game from the iOS App Store.

5.1. Transfer Function

The sequence of nose points returned by the head-tracker is analyzed to detect the horizontal
movement of the user’s head in both directions: left and right. The moving left head-gesture is

Figure 10. Screenshots of the game: (a) Ball avoiding the obstacles; (b) Ball being dragged down due to
the collision with an obstacle; (c) Game lost.

The design of the game includes game mechanics to design for engagement and fun [39,40] such
as points, levels or rankings. To increase the playability, the game’s difficulty is increased progressively
by speeding the falling obstacles and the gravity force applied to the ball. Moreover, to motivate and
engage players we show the ranking, the achieved level results and the number of played sessions.

The game has two difficulty phases: the onboarding and the challenge. The onboarding phase
goes from level 0 up to 40, and is where gamers learn the rules and train with the interface to play the
game. Levels are increased when an obstacle is avoided. Once level 40 is achieved for the first time,
the challenge phase is unlocked and it is the default level. However, the gamer can always play the
onboarding phase.

The game is designed to be self-explained as evaluators will not be close to the user to give
explanations. While playing the onboarding phase, there are instructions at the beginning of
every session, explaining the objective of the game and the correct position to use the head-tracker
(see Figure 11).

In the next subsections, we describe the transfer function, and then we present the results of the
evaluation of the head-tracker being used to play FaceScape. First, we report the results of a supervised
evaluation done in the wild with 29 participants. Then, we summarize the data obtained from the users
who downloaded the game from the iOS App Store.

Sensors 2016, 16, 254 12 of 18

Sensors 2016, 16, 254 11 of 18

(a) (b) (c)

Figure 10. Screenshots of the game: (a) Ball avoiding the obstacles; (b) Ball being dragged down due
to the collision with an obstacle; (c) Game lost.

The design of the game includes game mechanics to design for engagement and fun [39,40]
such as points, levels or rankings. To increase the playability, the game’s difficulty is increased
progressively by speeding the falling obstacles and the gravity force applied to the ball. Moreover, to
motivate and engage players we show the ranking, the achieved level results and the number of
played sessions.

The game has two difficulty phases: the onboarding and the challenge. The onboarding phase
goes from level 0 up to 40, and is where gamers learn the rules and train with the interface to play
the game. Levels are increased when an obstacle is avoided. Once level 40 is achieved for the first
time, the challenge phase is unlocked and it is the default level. However, the gamer can always play
the onboarding phase.

The game is designed to be self-explained as evaluators will not be close to the user to give
explanations. While playing the onboarding phase, there are instructions at the beginning of every
session, explaining the objective of the game and the correct position to use the head-tracker (see
Figure 11).

Figure 11. Screenshots of the instructions: (a) Instructions for the correct position for using the
head-tracker (“Place your head inside the circle”); (b,c) Instructions explaining how to interact with
the game and its objective (“The white circle represents your nose tip” “Move it horizontally to avoid
falling walls”).

In the next subsections, we describe the transfer function, and then we present the results of the
evaluation of the head-tracker being used to play FaceScape. First, we report the results of a
supervised evaluation done in the wild with 29 participants. Then, we summarize the data obtained
from the users who downloaded the game from the iOS App Store.

5.1. Transfer Function

The sequence of nose points returned by the head-tracker is analyzed to detect the horizontal
movement of the user’s head in both directions: left and right. The moving left head-gesture is

Figure 11. Screenshots of the instructions: (a) Instructions for the correct position for using the
head-tracker (“Place your head inside the circle”); (b,c) Instructions explaining how to interact with
the game and its objective (“The white circle represents your nose tip” “Move it horizontally to avoid
falling walls”).

5.1. Transfer Function

The sequence of nose points returned by the head-tracker is analyzed to detect the horizontal
movement of the user’s head in both directions: left and right. The moving left head-gesture is
recognized when a displacement to the right is detected on the points returned by the head-tracker (see
Figure 12) and a moving left head-gesture is recognized if the displacement is in the opposite direction.

Sensors 2016, 16, 254 12 of 18

recognized when a displacement to the right is detected on the points returned by the head-tracker
(see Figure 12) and a moving left head-gesture is recognized if the displacement is in the opposite
direction.

Figure 12. The head-tracker processes the user’s horizontal head gesture to translate it to an action on
the device as a moving right gesture.

When a horizontal head-gesture is detected, the transfer function applies a horizontal impulse
to a physic body to change its linear velocity without changing its angular velocity, following
Newton's second law. In our case, we just want to impart a momentum to the x-dimension
proportional to the horizontal displacement of the head performed by the user, so a gain factor is
included and our imparted momentum responds to vx·gainFactor, where the velocity (vx, in
pixels/frame rate) corresponds to the difference in the x-coordinates of the nose points returned by
the system in two consecutive frames.

5.2. Evaluation in the Wild

We conducted an in the wild user study of the mobile head-tracker being used with the
FaceScape game before publishing it in the application store. The aim was to explore in detail how
users might use and feel about this kind of input interaction method within their daily life.

The evaluation was supervised because although participants were using the game in the wild,
we limited the length of the evaluation to a week. Further, we sent them a pre-test and post-test
questionnaires, registered data (with the participant’s consent), ask them to play at least once per
day and fired 6 notifications per day (scheduled at different day hours) to remind them to play and
to answer several questions such as Where are you?

The study was conducted completely in the wild with no previous training and all the
instructions were provided via email only at the beginning of the evaluation.

Twenty-five unpaid participants (eight females) with an age ranging from 21 to 69 (mean = 32.4,
SD = 12.6) were recruited from Germany and Spain (52% of them from Germany) from university
campuses. None of them had previous experience with head-based interaction. The only
requirement to participate in the evaluation was to own an iOS device (iPhone, iPod, iPad) with iOS
8.0 installed.

5.2.1. Played Sessions

During the evaluation week, a total of 2186 playing sessions were registered with an average
duration of 1.46 min per session (SD = 0.87, min = 0.07, max = 4.97) and an average of 84.77 sessions
played per participant (SD = 80.48, min = 15, max = 331).

By observing the number of played sessions, we get insights on the usage of the system. All the
participants played more sessions than the minimum required, so the combination of the game and
the camera-based interface may be engaging. Moreover, as the game was installed on their personal
device, eighteen out of the twenty-five participants continued playing once the evaluation was over,
registering a total of 244 sessions out of the experiment (after two weeks).

Figure 12. The head-tracker processes the user’s horizontal head gesture to translate it to an action on
the device as a moving right gesture.

When a horizontal head-gesture is detected, the transfer function applies a horizontal impulse to
a physic body to change its linear velocity without changing its angular velocity, following Newton’s
second law. In our case, we just want to impart a momentum to the x-dimension proportional to
the horizontal displacement of the head performed by the user, so a gain factor is included and
our imparted momentum responds to vx¨ gainFactor, where the velocity (vx, in pixels/frame rate)
corresponds to the difference in the x-coordinates of the nose points returned by the system in two
consecutive frames.

5.2. Evaluation in the Wild

We conducted an in the wild user study of the mobile head-tracker being used with the FaceScape
game before publishing it in the application store. The aim was to explore in detail how users might
use and feel about this kind of input interaction method within their daily life.

The evaluation was supervised because although participants were using the game in the wild,
we limited the length of the evaluation to a week. Further, we sent them a pre-test and post-test

Sensors 2016, 16, 254 13 of 18

questionnaires, registered data (with the participant’s consent), ask them to play at least once per day
and fired 6 notifications per day (scheduled at different day hours) to remind them to play and to
answer several questions such as Where are you?

The study was conducted completely in the wild with no previous training and all the instructions
were provided via email only at the beginning of the evaluation.

Twenty-five unpaid participants (eight females) with an age ranging from 21 to 69 (mean = 32.4,
SD = 12.6) were recruited from Germany and Spain (52% of them from Germany) from university
campuses. None of them had previous experience with head-based interaction. The only requirement
to participate in the evaluation was to own an iOS device (iPhone, iPod, iPad) with iOS 8.0 installed.

5.2.1. Played Sessions

During the evaluation week, a total of 2186 playing sessions were registered with an average
duration of 1.46 min per session (SD = 0.87, min = 0.07, max = 4.97) and an average of 84.77 sessions
played per participant (SD = 80.48, min = 15, max = 331).

By observing the number of played sessions, we get insights on the usage of the system. All the
participants played more sessions than the minimum required, so the combination of the game and
the camera-based interface may be engaging. Moreover, as the game was installed on their personal
device, eighteen out of the twenty-five participants continued playing once the evaluation was over,
registering a total of 244 sessions out of the experiment (after two weeks).

5.2.2. Playing Location

Participants could choose to ignore or not the notification, so we registered 193 answers for the
in-app questionnaires (the ones included with the daily notifications). Due to the short length of the
game, participants felt comfortable playing in different contexts, even at work (see Figure 13).

Sensors 2016, 16, 254 13 of 18

5.2.2. Playing Location

Participants could choose to ignore or not the notification, so we registered 193 answers for the
in-app questionnaires (the ones included with the daily notifications). Due to the short length of the
game, participants felt comfortable playing in different contexts, even at work (see Figure 13).

A Friedman’s test revealed a significant effect in the answers for the “Where are you?” responses,
(χ2(4) = 57.0, p < 0.001). A post-hoc test using pair-wise Wilcoxon tests with Bonferroni correction
showed only significant differences for the “At home” answer and the rest of places (p < 0.001 for the
three pairs).

Figure 13. Total number of sessions played in a place.

5.2.3. User’s Perception

At the end of the evaluation, a System Usability Scale (SUS) questionnaire [41] was answered by
all participants (see Figure 14). The overall average SUS score was 60.7 (SD: 16.4). Even though
Bangor et al. [42] consider that systems with scores less than 70 should be considered candidates for
continued improvement, this score is in the high marginal acceptability range.

Figure 14. SUS questionnaire.

0

20

40

60

80

100

At home At work Other On the move In a café

Se

ss
io

ns
 p

la
ye

d

Where are you playing?

Figure 13. Total number of sessions played in a place.

A Friedman’s test revealed a significant effect in the answers for the “Where are you?” responses,
(χ2(4) = 57.0, p < 0.001). A post-hoc test using pair-wise Wilcoxon tests with Bonferroni correction
showed only significant differences for the “At home” answer and the rest of places (p < 0.001 for the
three pairs).

5.2.3. User’s Perception

At the end of the evaluation, a System Usability Scale (SUS) questionnaire [41] was answered
by all participants (see Figure 14). The overall average SUS score was 60.7 (SD: 16.4). Even though
Bangor et al. [42] consider that systems with scores less than 70 should be considered candidates for
continued improvement, this score is in the high marginal acceptability range.

Sensors 2016, 16, 254 14 of 18

Sensors 2016, 16, 254 13 of 18

5.2.2. Playing Location

Participants could choose to ignore or not the notification, so we registered 193 answers for the
in-app questionnaires (the ones included with the daily notifications). Due to the short length of the
game, participants felt comfortable playing in different contexts, even at work (see Figure 13).

A Friedman’s test revealed a significant effect in the answers for the “Where are you?” responses,
(χ2(4) = 57.0, p < 0.001). A post-hoc test using pair-wise Wilcoxon tests with Bonferroni correction
showed only significant differences for the “At home” answer and the rest of places (p < 0.001 for the
three pairs).

Figure 13. Total number of sessions played in a place.

5.2.3. User’s Perception

At the end of the evaluation, a System Usability Scale (SUS) questionnaire [41] was answered by
all participants (see Figure 14). The overall average SUS score was 60.7 (SD: 16.4). Even though
Bangor et al. [42] consider that systems with scores less than 70 should be considered candidates for
continued improvement, this score is in the high marginal acceptability range.

Figure 14. SUS questionnaire.

0

20

40

60

80

100

At home At work Other On the move In a café

Se

ss
io

ns
 p

la
ye

d

Where are you playing?

Figure 14. SUS questionnaire.

Although head-trackers are a new and unknown interaction technique for mobile devices and in
addition, none of the participants had previous experience with head-based interaction, the results
of the SUS questionnaire showed that the head-tracker was easy to use and learn (see Figure 14).
Moreover, the quantitative metrics support that evidence because all participants were able to complete
the onboarding stage with an average number of attempts of 10.48 (SD = 9.84, mode = 7).

The open comments registered in the post-test questionnaire by the participants also offered
information on the head-tracker and its use in this entertaining context. Not all participants found
the head-tracker an interesting input device commenting “[The interface is] not suitable for me” or
they thought “When sitting its use is OK, but it's a little tiring when standing”. Others did not find the
system easy to use as some said that it was “hard to control because it's slow to adapt to my movement” or
“head-trackers are not as flexible as hand trackers”.

However, many positive comments were given over the enjoyability of the interface “It’s funny for
games”, “They are spectacular, useful and funny” or its suitability as an input device: “I think that it could
be a promising new interaction model for mobile devices”, “Great tool for gaming and accessibility”, “I think
that it's a really nice system”.

Further, people around the participant found the system intriguing, curious and surprising:
“[People] look at me interested”, “People were interested because they haven't seen anything alike”, “A friend
was surprised that I could play and control a game with my head”, “The reaction I noticed [from the people
around me] was surprise and expectation”. Others did not understand what was happening “People asked
what was happening to me, as if my neck was aching” or found the system funny: “Friends think it looks
funny”, “Many laughed, but tried to play the game too”, “When I played the game beside friends, they were
curious and thought that it was very interesting.”

5.2.4. FaceScape in the Application Store

A version of the iOS application FaceScape which did not include the Onboarding and Challenge
phases was published in the iOS App Store on 1 September 2015. With hardly any advertising, we

Sensors 2016, 16, 254 15 of 18

show the usage statistics for almost three months and a half (until 14 December). It must be taken
into account that these users did not know that we were evaluating the camera-based interface, so no
demographic data is registered nor are questionnaires included in the app. By means of a predefined
set of web services, we registered data of the app’s usage in real conditions in all the contexts, including
the device, operating system, country, number of sessions played and levels achieved.

Three hundred and seven people downloaded the game (78% for iPhone, 18% for iPad and 4% for
iPod). Most users were from Europe (62.9%), but downloads were also done from different regions
such as Latin America and the Caribbean (12.7%), the United States and Canada (12.7%), Asia Pacific
(8.8%) or Africa, Middle East, and India (2.9%). The country with most downloads was France, but
users came from many different countries such as Brazil, Russia, China or Kuwait.

A total of 1191 gaming sessions were played (mean: 10.7, SD: 25.4) from 114 users. Users achieved
an average level of 31, and 32.4% completed level 40. For users that played the previously so-called
Challenge phase, they achieved and average level of 77 (min: 40, max: 154). These results were
registered in the first three and a half months after the game’s deployment, and although more data is
needed, it clearly shows how the presented camera-based interface is being used in real conditions in
any context, showing its robustness as a novel interface for mobile entertainment.

5.3. Limitations of the Study

One of the main advantages of in the wild studies is their characteristic of representing the real
conditions of use of the interactive systems. However, researchers lose control of the participant
and some variables in the experiment. To minimize these obstacles, in our supervised study we set
the evaluation period to a week, had contact by mail with the participants to send the pre and post
questionnaires and sent remainders via notifications. But, it is unknown for us information on the user
(e.g., how busy he or she was during the evaluation period) or a detailed description of the context
where they were using the system (e.g., lighting conditions, body posture). Even more dramatic is
to collect data when the game is published on an application store and people are not aware that the
system is being assessed. In this last case, we just have access to the game information and data that
can be automatically registered (e.g., device, country). Further, as happens with many apps [43] there
is a high number of people that may download the app but will never play or will just test it and
abandon it due to multiple reasons, so it is important to have a big sample of users.

6. Discussion and Conclusions

An extensive evaluation on how real users interact with new interfaces in mobile devices in real
contexts is a requirement to ensure its robustness. This evaluation requires exhaustive studies to take
into account the full spectrum of potential users and contexts, which cannot be performed only in
controlled environments. Further, results in controlled environments cannot be always generalized to
real users and real context.

In this work, we have described a robust camera-based interface for mobile entertainment, as
these interfaces are starting to appear in games and apps. This kind of interfaces has not been really
evaluated in terms of usability and user’s perception. Therefore, we gather the insights and conclusions
obtained from the studies conducted.

The interface is based on detecting and tracking the nose of the user by means of processing the
frames provided by the mobile device’s front camera, and its position is then used to interact with the
app. We presented two evaluations: the first one, with the camera-based interface acting as a pointing
device which is used to study the accuracy, different factors to configure the interface such as the gain
or the device’s orientation, as well as the optimal target size for the interface. Second, we evaluated
the usage and the user’s perception and impressions towards this kind of input system when playing
a game controlled by head motion in a in the wild study to ensure real conditions.

The first evaluation demonstrated that it is feasible to interact with the interface as a pointing
device to be able to reach all screen positions. Moreover, it analyzed different configuration parameters

Sensors 2016, 16, 254 16 of 18

and the optimal target size to achieve the best results in accuracy. Based on this study, entertaining
apps and games based on pointing could be designed to be controlled by the interface. These apps
could be designed in portrait or landscape orientation, as our results demonstrated that the orientation
has no effect on the accuracy. Results on the target size could be considered for the design of the
playability of the game to increase the challenge of the game or to use the optimal size to design the
interactive graphical elements of the app.

The second user study showed the viability of using head movements to control a game. The
interface combined with the game was positively rated by users in terms of usability, especially in
learnability and easiness of use. The analysis of the game’s data, reported a higher number of playing
sessions than the one required in the in the wild user study, encouraging us to believe that the input
device used with the game is engaging for users. Further, 72% of the participants continued playing
after the evaluation period. Most playing sessions were carried out at home, but, users played too
at work, in public places or on the move, which shows users were comfortable playing in different
contexts. Moreover, the comments given by the users highlighted the amusement, the potential of
these interfaces and the interest, surprise and expectation generated in their social environment.

Then, to get data from a larger group of users and maintaining the in the wild condition, we made
the game available through the application store. Results from these users show how the presented
camera-based interface is widely used by users without any instruction or training, and in very
different set of contexts.

Further, a new group of users could be targeted. This kind of interface does not require contact
with the device, so users with motor impairments who cannot access mobile devices though touch (e.g.,
due to structural deviations, mobility limitations or lack of muscle power), but count with head control,
could access the mobile device. We encourage developers to consider vision based interfaces especially
for implicit or short length interactions such as the ones we can find in mobile games. Further analysis
in the evaluation of these interfaces has to be done regarding the fatigue and social acceptability.

Acknowledgments: This work has been partially supported by grant BES-2013-064652 (FPI) and project
TIN2012-35427 by the Spanish MINECO, FEDER funding, and by the Spanish MECD through the University of
Balearic Islands International Excellence Campus Program (e-MTA).

Author Contributions: All authors contributed to this work during its entire phase. The author’s team performed
the design of the system and the design of the evaluations. Cristina Manresa-Yee and Javier Varona designed the
first version of the system. Maria Francesca Roig-Maimó added contributions to the design, was responsible for
all the developments used in this work and conducted the evaluations. Cristina Manresa-Yee was responsible
for writing the core of the paper and extended the literature review. Javier Varona did the statistical analysis.
In addition, all authors wrote and revised the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
HCI: Human Computer Interaction

References

1. Langlotz, T.; Regenbrecht, H.; Zollmann, S.; Schmalstieg, D. Audio Stickies: Visually-Guided Spatial
Audio Annotations on a Mobile Augmented Reality Platform. In Proceedings of the 25th Australian
Computer-Human Interaction Conference: Augmentation, Application, Innovation, Collaboration,
Melbourne, Australia, 7–10 December 2015; pp. 545–554.

2. Hannuksela, J.; Sangi, P.; Heikkilä, J. Vision-based motion estimation for interaction with mobile devices.
Comput. Vis. Image Underst. 2007, 108, 188–195. [CrossRef]

3. Suk, M.; Prabhakaran, B. Real-Time Mobile Facial Expression Recognition System—A Case Study.
In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), Columbus, OH, USA, 23–28 June 2014; pp. 132–137.

http://dx.doi.org/10.1016/j.cviu.2006.10.014

Sensors 2016, 16, 254 17 of 18

4. Hannuksela, J.; Sangi, P.; Turtinen, M.; Heikkilä, J. Face Tracking for Spatially Aware Mobile User Interfaces.
In Image and Signal Processing; Springer Heidelberg: Berlin, Germany, 2008; pp. 405–412.

5. Li, R.; Taskiran, C.; Danielsen, M. Head Pose Tracking and Gesture Detection Using Block Motion Vectors on
Mobile Devices. In Proceedings of the 4th International Conference on Mobile Technology, Applications,
and Systems and the 1st International Symposium on Computer Human Interaction in Mobile Technology,
Singapore, 10–12 September 2007; pp. 572–575.

6. Cheng, L.-P.; Hsiao, F.-I.; Liu, Y.-T.; Chen, M.Y. iRotate: Automatic Screen Rotation Based on Face Orientation.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Austin, TX, USA,
5–10 May 2012; pp. 2203–2210.

7. Joshi, N.; Kar, A.; Cohen, M. Looking at You: Fused Gyro and Face Tracking for Viewing Large Imagery
on Mobile Devices. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
Austin, TX, USA, 5–10 May 2012; pp. 2211–2220.

8. Böhmer, M.; Hecht, B.; Schöning, J.; Krüger, A.; Bauer, G. Falling Asleep with Angry Birds, Facebook
and Kindle: A Large Scale Study on Mobile Application Usage. In Proceedings of the 13th International
Conference on Human Computer Interaction with Mobile Devices and Services, Stockholm, Sweden,
30 August–2 September 2011; pp. 47–56.

9. So Many Apps, So Much More Time for Entertainment. Nielsen. Available online: http://www.nielsen.
com/us/en/insights/news/2015/so-many-apps-so-much- (accessed on 20 November 2015).

10. Pace, J. The Ways We Play, Part 2: Mobile Game Changers. Computer 2013, 46, 97–99. [CrossRef]
11. Number of Mobile Phone Gamers in the United States from 2011 to 2019. Available online:

http://www.emarketer.com (accessed on 14 November 2015).
12. Mobile Gaming 2014. NPD. Available online: https://www.npd.com/latest-reports/mobile-gaming-2015/

(accessed on 25 November 2015).
13. Cuaresma, J.; MacKenzie, I.S. A Comparison between Tilt-Input and Facial Tracking as Input Methods for

Mobile Games. In Proceedings of the 6th IEEE Consumer Electronics Society Games Media Entertainment,
Toronto, ON, Canada, 22–24 October 2014; pp. 70–76.

14. Hansen, T.R.; Eriksson, E.; Lykke-Olesen, A. Use Your Head: Exploring Face Tracking for Mobile Interaction.
In Proceedings of the CHI ’06 Extended Abstracts on Human Factors in Computing Systems, Montréal, QC,
Canada, 22–27 April 2006; pp. 845–850.

15. Francone, J.; Nigay, L. Using the User’s Point of View for Interaction on Mobile Devices. In Proceedings
of the 23rd Conference on L’Interaction Homme-Machine, Sophia Antipolis, France, 24–27 October 2011;
pp. 4:1–4:8.

16. EVA Facial Mouse. Fundación Vodafone. Available online: https://play.google.com/store/apps/
details?id=com.crea_si.eviacam.service (accessed on 1 December 2015).

17. Go Ahead Project. Google and Beit Issie Shapiro. Available online: http://www.hakol-barosh.org.il/
(accessed on 1 December 2015).

18. Umoove Experience: The 3D Face & Eye Tracking Flying Game. Umoove Ltd. Available
online: https://itunes.apple.com/es/app/umoove-experience-3d-face/id731389410?mt=8 (accessed on
12 December 2015).

19. Face Scape. Inisle Interactive Technologies. Available online: https://itunes.apple.com/es/app/face-scape/
id1019147652?mt=8 (accessed on 14 December 2015).

20. Electronic Rescue Service Head Moves Game. Available online: https://play.google.com/store/apps/
details?id=ua.ers.headMoveGames&hl=es (accessed on 1 December 2015).

21. HeadStart. Shtick Studios. Available online: https://play.google.com/store/apps/details?id=com.yair.
cars&hl=es (accessed on 1 December 2015).

22. Henze, N.; Pielot, M. App Stores: External Validity for Mobile HCI. Interactions 2013, 20, 33–38. [CrossRef]
23. Toyama, K. Look, Ma-No Hands! Hands-Free Cursor Control with Real-Time 3D Face Tracking.

In Proceedings of the Workshop on Perceptual User Interfaces, San Francisco, CA, USA, 5–6 November 1998;
pp. 49–54.

24. Betke, M.; Gips, J.; Fleming, P. The Camera Mouse: Visual tracking of body features to provide computer
access for people with severe disabilities. IEEE Trans. Neural Syst. Rehabil. Eng. 2002, 10, 1–10. [CrossRef]
[PubMed]

http://dx.doi.org/10.1109/MC.2013.146
http://dx.doi.org/10.1145/2427076.2427084
http://dx.doi.org/10.1109/TNSRE.2002.1021581
http://www.ncbi.nlm.nih.gov/pubmed/12173734

Sensors 2016, 16, 254 18 of 18

25. Caballero, F.; Maza, I.; Molina, R.; Esteban, D.; Ollero, A. A Robust Head Tracking System Based on
Monocular Vision and Planar Templates. Sensors 2009, 9, 8924–8943. [CrossRef] [PubMed]

26. Varona, J.; Manresa-Yee, C.; Perales, F.J. Hands-free vision-based interface for computer accessibility. J. Netw.
Comput. Appl. 2008, 31, 357–374. [CrossRef]

27. Grubert, J.; Seichter, H.; Schmalstieg, D. Towards user perspective augmented reality for public displays.
In Proceedings of the 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR),
Munich, Germany, 10–12 September 2014; pp. 267–268.

28. Bordallo Lopez, M.; Hannuksela, J.; Silven, O.; Fan, L. Head-tracking virtual 3-D display for mobile devices.
In Proceedings of the 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops (CVPRW), Providence, RI, USA, 16–21 June 2012; pp. 27–34.

29. Bulbul, A.; Cipiloglu, Z.; Capin, T. A Face Tracking Algorithm for User Interaction in Mobile Devices.
In Proceedings of the International Conference on CyberWorlds, Bradford, UK, 7–11 September 2009;
pp. 385–390.

30. Roig-Maimó, M.F.; Varona Gómez, J.; Manresa-Yee, C. Face Me! Head-Tracker Interface Evaluation on
Mobile Devices. In Proceedings of the 33rd Annual ACM Conference Extended Abstracts on Human Factors
in Computing Systems, Seoul, Korea, 18–23 April 2015; pp. 1573–1578.

31. Manresa-Yee, C.; Varona, J.; Perales, F.; Salinas, I. Design recommendations for camera-based head-controlled
interfaces that replace the mouse for motion-impaired users. Univers. Access Inf. Soc. 2014, 13, 471–482.
[CrossRef]

32. BioID Face Database. BioID. Available online: https://www.bioid.com/About/BioID-Face-Database
(accessed on 1 February 2016).

33. Baker, S.; Matthews, I. Lucas-Kanade 20 Years on: A Unifying Framework. Int. J. Comput. Vis. 2004, 56,
221–255. [CrossRef]

34. Bouguet, J.-Y. Pyramidal Implementation of the Lucas Kanade Feature Tracker Description of the Algorithm.
Available online: http://robots.stanford.edu/cs223b04/algo_tracking.pdf (accessed on 4 November 2015).

35. Bar-Shalom, Y.; Li, X.R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation: Theory
Algorithms and Software; Wiley: New York, NY, USA, 2001.

36. ISO/TS 9241-411:2012, Ergonomics of Human-System Interaction—Part 411: Evaluation Methods
for the Design of Physical Input Devices. Available online: http://www.iso.org/iso/catalogue
_detail.htm?csnumber=54106 (accessed on 3 November 2015).

37. Apple Inc. iOS Human Interface Guidelines: Designing for iOS. Available online: https://developer.apple.
com/library/ios/documentation/UserExperience/Conceptual/MobileHIG/ (accessed on 10 October 2015).

38. Wang, F.; Ren, X. Empirical Evaluation for Finger Input Properties in Multi-Touch Interaction. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems, Boston, MA, USA, 4–9 April 2009;
pp. 1063–1072.

39. Deterding, S.; Dixon, D.; Khaled, R.; Nacke, L. From Game Design Elements to Gamefulness: Defining
“Gamification”. In Proceedings of the 15th International Academic MindTrek Conference: Envisioning
Future Media Environments, Tampere, Finland, 28–30 September 2011; pp. 9–15.

40. Reeves, B.; Read, J. Total Engagement: Using Games and Virtual Worlds to Change the Way People Work and
Businesses Compete; Harvard Business School Press: Boston, MA, USA, 2009.

41. Brooke, J. SUS—A quick and dirty usability scale. Usability Eval. Ind. 1996, 189, 4–7.
42. Bangor, A.; Kortum, P.T.; Miller, J.T. An Empirical Evaluation of the System Usability Scale. Int. J. Hum.

Comput. Interact. 2008, 24, 574–594. [CrossRef]
43. Localytics. App User Retention Improves in the U.S., but Declines Internationally. Available online:

http://info.localytics.com/blog/app-user-retention-improves-in-the-us (accessed on 1 February 2016).

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/s91108924
http://www.ncbi.nlm.nih.gov/pubmed/22291546
http://dx.doi.org/10.1016/j.jnca.2008.03.003
http://dx.doi.org/10.1007/s10209-013-0326-z
http://dx.doi.org/10.1023/B:VISI.0000011205.11775.fd
http://dx.doi.org/10.1080/10447310802205776
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Work
	Head Tracking in Mobile Devices
	Head-Tracker Interfaces for Mobile Gaming

	Camera-Based Interface for Mobile Devices
	Interface Design and Development
	User Detection (and Facial Feature Selection)
	Tracking

	Evaluating the Interface as a Pointing Device
	Transfer Function
	Evaluation of the Interface’s Effectiveness and Efficiency
	Accuracy
	Velocity
	Error Rate and Target Position

	Evaluation in the wild for Mobile Entertainment
	Transfer Function
	Evaluation in the Wild
	Played Sessions
	Playing Location
	User’s Perception
	FaceScape in the Application Store

	Limitations of the Study

	Discussion and Conclusions

