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Abstract: The concept of precision agriculture, which proposes farming management adapted to crop
variability, has emerged in recent years. To effectively implement precision agriculture, data must be
gathered from the field in an automated manner at minimal cost. In this study, a small autonomous
field inspection vehicle was developed to minimise the impact of the scouting on the crop and soil
compaction. The proposed approach integrates a camera with a GPS receiver to obtain a set of basic
behaviours required of an autonomous mobile robot to inspect a crop field with full coverage. A
path planner considered the field contour and the crop type to determine the best inspection route.
An image-processing method capable of extracting the central crop row under uncontrolled lighting
conditions in real time from images acquired with a reflex camera positioned on the front of the robot
was developed. Two fuzzy controllers were also designed and developed to achieve vision-guided
navigation. A method for detecting the end of a crop row using camera-acquired images was
developed. In addition, manoeuvres necessary for the robot to change rows were established. These
manoeuvres enabled the robot to autonomously cover the entire crop by following a previously
established plan and without stepping on the crop row, which is an essential behaviour for covering
crops such as maize without damaging them.

Keywords: generation of autonomous behaviour; crop inspection; visual servoing; fuzzy control;
precision agriculture; GPS

1. Introduction

Farming practices have traditionally focused on uniform management of the field and ignored
spatial and temporal crop variability. This approach has two main negative outcomes: a) air and soil
pollution, with consequent pollution of groundwater, and b) increased production costs [1]. Moreover,
agricultural production must double in the next 25 years to sustain the increasing global population
while utilising less soil and water. In this context, technology will become an essential aspect of
minimising production costs while crops and environment are properly managed [2–4].

The development of technologies such as global positioning systems (GPS), crop sensors, humidity
or soil fertility sensors, multispectral sensors, remote sensing, geographic information systems (GIS)
and decision support systems (DSS) have led to the emergence of the concept of precision agriculture
(PA), which proposes the adaptation of farming management to crop variability. Particularly important
within PA are techniques aimed at selective treatment of weeds (site-specific management) by
restricting herbicide use to infested crop areas and even varying the amount of treatment applied
according to the density and/or type of weeds, in contrast to traditional weed control methods.
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Selective herbicide application requires estimations of the herbicide needed for each crop unit [5].
First, data must be acquired in the field to determine the location and estimated density of the weeds
(perception stage). Using this information, the optimal action for the crop is selected (decision-making
stage). Finally, the field operations corresponding to the decision made in the previous stage must
be performed to achieve the selective treatment of weeds (action stage). At the ground level, data
collection can be accomplished by sampling on foot or using mobile platforms. Sampling on foot is
highly time-consuming and requires many skilled workers to cover large treatment areas. Discrete
data are collected from pre-defined points throughout an area using sampling grids, and interpolation
is employed to estimate the densities of the intermediary areas [6].

In continuous sampling, data are collected over the entire sample area. Continuous data enable a
qualitative description of abundance (e.g., presence or absence; zero, low, medium, or high) rather
than the quantitative plant counts that are usually generated by discrete sampling [7].

To effectively implement PA, the perception stage should be substantially automated to minimise
its cost and to increase the quality of the gathered information. Among the various means of collecting
well-structured information with reasonably priced autonomous, vehicles that are equipped with
on board sensing elements are considered to be one of the most promising technologies in the
medium-term. However, the use of mobile robots in agricultural environments remains challenging as
navigation in agricultural environments presents difficulties due to the variability and nature of the
terrain and vegetation [8,9].

Research in navigation systems for agricultural applications has focused on guidance methods
that employ global or local information. Guidance systems that use global information attempt to
direct the vehicle along a previously calculated route based on a terrain map and the position of the
vehicle relative to an absolute reference. In this case, global navigation satellite systems (GNSS), such
as GPS, are usually employed. Guidance systems that utilise local information attempt to direct a
vehicle based on the detection of local landmarks, such as planting patterns and intervals between
crop rows.

The precision of the absolute positions that are derived from a GNSS can be enhanced by real-time
kinematics (RTK), which is a differential GNSS technique that employs measurements of the phase
of the signal carrier wave and relies on a single reference station or interpolated virtual station to
provide real-time corrections and centimetre-level accuracy. The use of a RTK-GPS receiver as the only
positioning sensor for the automatic steering system of agricultural vehicles has been examined in
several previous studies [10,11]. Furthermore, recent studies [12,13] evaluate the use of low-cost GPS
receivers for the autonomous guidance of agricultural tractors along straight trajectories.

Regardless of the type of GNSS used, this navigational technology has some limitations when
the GNSS serves as the only position sensor for autonomous navigation of mobile robots. For this
reason, RTK-GNSS is frequently combined with other sensors, such as inertial measurement units
(IMUs) [14,15] or fibre-optic gyroscopes (FOGs) [16–18]. When a GNSS, even a RTK-GNSS, is employed
as the only sensor for navigating across a crop without stepping on plants, an essential behaviour in
crops such as maize, it is an indispensable requirement to perfectly know the layout of the crop rows
and therefore, crops must be sowed with an RTK-GNSS-guided planting system or mapped using a
georeferenced mapping technique. This approach is expensive and may not be feasible, which reduces
the scope of the navigation systems that are based in GNSS. In this context, the proposed approach
integrates a GNSS sensor with a camera (vision system) to obtain a robot’s behaviour, which enables it
to autonomously cover an entire crop by following a previously established plan without stepping
on the crop rows to avoiding damage to the plants. As discussed in the next section, the plan only
considers the field contour and the crop type, which is readily available.

Vision sensors have been extensively utilised in mobile robot navigation guidance [19–26] due
to their cost-effectiveness and ability to provide large amounts of information, which can also be
employed in generating steering control signals for mobile robots. In addition, diverse approaches
have been proposed for crop row detection. In previous studies [25,27], a segmentation step is applied
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to a colour image to obtain a binary image, in which white pixels symbolise the vegetation cover. Then,
the binary image is divided into horizontal strips to address the perspective of the camera. For each
strip, they review all columns of pixels. Columns with more white pixels than black pixels are labelled
as potential crop rows, and all pixels in the column are set to white; otherwise, they are set to black. To
determine the points that define crop rows, the geometric centre of the block with the largest number of
adjacent white columns of the image is selected. Then, the method estimates the line defined by these
points, which is based on the average values of their coordinates. Other approaches [28] transform
an RGB colour image to grayscale and divide it into horizontal strips, where maximum grey values
indicate the presence of a candidate row. Each maximum defines a row segment, and the centres of
gravity of the segments are joined via a similar method to the centre of gravity that is utilised in the
Hough transform or by applying linear regression. In [29], the original RGB image is transformed to
a grayscale image and divided into horizontal strips. They construct a bandpass filter that is based
on the finding that the intensity of the pixels across these strips exhibits a periodic variation due
to the parallel crop rows. Sometimes, detection of the row is difficult as crops and weeds form a
unique patch. The Hough transform [30] has been employed for the automatic guidance of agricultural
vehicles [23,31–33]. Depending on the crop densities, several lines are feasible, and a posterior merging
process is applied to lines with similar parameters [34–36]. When weeds are present and irregularly
distributed, this process may cause failure detection. In [26,37], the authors employ stereo-images for
crop row tracking to create an elevation map. However, stereo-based methods are only adequate when
appreciable differences exist between the heights of crops and the heights of weeds, which is usually
not the case when an herbicide treatment is performed in the field. In [38–40], crop rows are mapped
under perspective projection onto an image that shows some behaviours in the frequency domain. In
maize fields, where the experiments were performed, crops did not show a manifest frequency content
in the Fourier space. In [41], authors analyse images that were captured from the perspective from
a vision system that is installed onboard a vehicle and consider that the camera is being submitted
to vibrations and undesired movements, which are produced as a result of vehicle movements on
uneven ground. They propose a fuzzy clustering process to obtain a threshold to separate green plants
or pixels (crops and weeds) from the remaining items in the field (soil and stones). Similar to other
approaches, crop row detection applies a method that is based on image perspective projection, which
searches for the maximum accumulation of segmented green pixels along straight alignments.

Regarding the type of vehicle, most studies of the autonomous guidance of agricultural vehicles
have focused on tractors or heavy vehicles [10,12,13,15,17,20–24,26]. Moreover these large vehicles
can autonomously navigate along the crop rows, but they are unable to autonomously cover an
entire crop by performing the necessary manoeuvres for switching between crop rows. In other cases,
the autonomous navigation is related to fleets of medium sized tractors able to carry weed control
implements [42]. In PA, the use of small robots for inspecting an entire crop is a suitable choice over
large machines to minimise the soil compaction. In this context, this study was conducted to support
the use of small autonomous vehicles for inspection, with improved economic efficiency and reduced
the impact on crops and soil compaction, which integrate both global location and vision sensors
for obtaining a navigation system that enables the covering of an entire field without damage to the
crop. Inspection based on small autonomous vehicles can be very useful for early pest detection by
gathering geo-referenced information that is needed to construct accurate risk maps. More than one
sampling is performed throughout the year, due to minimal crop impact, primarily if they can navigate
across a field by following the crop rows, and soil compaction.

2. Materials and Methods

The robot used in this project is a commercial model (mBase-MR7 built by MoviRobotics, Albacete,
Spain). It has four wheels with differential locomotion, no steering wheel and can rotate on its vertical
axis. This work considered that the robot carries out the manoeuvres as if it could not rotate on its
vertical axis, like other vehicles used within the agricultural fields (tractors, all-terrain vehicles, etc.).



Sensors 2016, 16, 276 4 of 23

The reason is that often, in our experiments, the vehicle's wheels have dug up the land and the robot
has gotten stuck. The on-board camera is a digital single-lens reflex camera (EOS 7D, Canon, Tokyo,
Japan). The camera is located 80 cm aboveground at a pitch angle of 18˝ and is connected to an
on-board computer (a Toughbook CF-19 laptop, Panasonic, Osaka, Japan equipped with an Intel Core
i5 processor and 2 GB of DDR3 RAM) via a USB connector. The camera supplies approximately five
frames per second, and each frame has a resolution of 1056 ˆ 704 pixels. Other camera locations
were studied, such as placing it facing down, focusing directly on the soil. However, this case only
covered a small portion of terrain, and therefore the detection of the crop row was more vulnerable
to local changes as sowing errors, weed patches, etc. Furthermore, the covered terrain was the area
immediately in front of the robot, so when the robot needed to react to what it was present in the
image, part of it had been left behind. Another analysed option was to place it ahead of the robot, in a
forward position using a steel mast. However, this caused more vibrations on the camera during robot
navigation, deteriorating the system operation significantly.

The vehicle equipment is complemented with a R220 GPS receiver (Hemisphere, Scottsdale, AZ,
USA) with RTK correction for geo-referencing the gathered data and determining whether the robot
has reached a field edge. A laptop (a tablet) is used to remotely control the robot. The architecture of
the developed system is illustrated in Figure 1a, and photographs of the vehicle and maize crop rows
in a field are shown in Figure 1b.
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The plan to be followed by the robot is generated by a path planner. Path planning in agricultural
fields is a complex task. Generally, it can be formulized as the well-known Capacited Vehicle Routing
Problem (CVRP), as stated in [43]. Basically, the problem consists of determining the best inspection
route that provides complete coverage of the field considering features such as the field shape, the
crop row direction, the type of crop and some characteristics of the vehicles, such as the turning radii.
The vehicles must completely traverse each row exactly once; therefore, the planner determines the
order for performing the rows in such a manner that some optimisation criterion is minimal. Given a
field contour, the planner can deduce the layout of the rows and the inter-row distance required by the
plants, due to it assumed that the sowing was carried out by a mechanical tool that kept that distance
in a reasonably precise way. In addition, a high precision is not required since the proposed platform
and the proposed method exclusively use the trajectory points as guiding references to enter and leave
the field rows.

The planner employed in this work is described in [44] and uses a simulated annealing algorithm
to address a simplified case of the general path planning problem with only one vehicle and considering
the travelled distance as the optimisation criterion. Figure 2 shows the route that is generated by the
planner for the crop field in which the experiments were performed. The field size was approximately
7 mˆ 60 m, which represents a total of ten crop rows in a maize planting schema with 0.7 m of distance
between rows. In this case, the optimal trajectory was to sequentially explore the field, beginning at
one edge and always going to an adjacent row as the vehicle is very small and has a turning radius
that enables movement between adjacent rows despite the very small distances between rows. It is
important to note that the system proposed in this study can work with any planner able to return the
path to be followed as an ordered sequence of the number of pairs of GPS points as crop rows must be
travelled, where the first pair of points represents the input point to the field to scout a row and the
second pair point defines the field output point to go to the next row to be inspected.
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Figure 2. Path taken by the planner traversed all rows of the crop field in which the experiments
were performed.

To inspect a crop row, the robot is positioned at the beginning of the row, i.e., in the approximate
point established by the plan, with the row between its two front wheels. The robot advances, tracking
the crop row using its on-board camera, until it reaches the end of the row. Once it has inspected a
row, the robot executes the necessary manoeuvres to position itself at the head of the next row to be
inspected; the approximate position of this row is also established in the plan. The process is repeated
until all rows in the field have been inspected or when the plan has been completely executed. To
achieve field inspection with complete coverage, a set of individual behaviours is required, including:
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(1) tracking of a crop row, (2) detection of the end of a crop row, and (3) transition to the head of
the next row to be inspected (note that the plan provides only an approximate point). The proposed
approaches to generate these behaviours in the robot are discussed in the following sections.

2.1. Crop Row Tracking Behaviour

An image-processing method capable of extracting the layout of the crop rows in real time from
images acquired with the camera positioned on the front of the robot was designed to allow the robot
to use images of the crop rows to navigate. The purpose of the image processing is to obtain the
vehicle’s position with respect to the crop row (see Figure 3), i.e., the motion direction angle (α) and
displacement or offset (d) between the robot centre and the closest point along the line defining the
crop row.
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Figure 3. Pose of the robot with respect to the central crop row.

The values of the vehicle’s offset (d) and angle (α) are provided to two fuzzy controllers, one
for angular speed and one for linear speed, which determine the correction values for the steering to
generate crop row tracking behaviour in the robot.

2.1.1. Image Processing

In the row recognition process, the main problem is the identification of accurate features that
are stable in different environmental conditions. The row detection process is accompanied by some
difficulties, such as incomplete rows, missing plants, and irregular plant shapes and sizes within the
row. In addition, the presence of weeds along the row may distort row recognition by adding noise to
the row structure. The majority of the studies have focused on large agricultural vehicles, in which the
displacement is more uniform than the displacement of small vehicles. In this study, the challenge
is to robustly detect a crop row in the presence of weeds, despite the vibrations and variations in
the camera, which are caused by the movement of a vehicle in the field. The majority of all methods
for vegetation detection usually consider that all pixels that are associated with vegetation have a
strong green component [45–52]. To take advantage of this characteristic, the utilisation of digital
cameras in the visible spectrum and the use of the RGB colour model is frequent when working at
the ground level [27–29,33,35,40,41,45,49–52]. The proposed row detection approach takes advantage
of our previous study (refer to introduction) for designing and developing a real-time technique that
properly works with RGB images that are acquired in varying environmental conditions.

A typical image acquired by the camera of the robot is shown in Figure 4a. In the upper corners of
the image, the crop rows are difficult to distinguish due to the perspective in the image. To avoid these
effects, the image was divided in half, and the upper half was discarded (Figure 4b). Thus, the image
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processing presented below only utilises the bottom half of each frame. Figure 5 shows a flowchart
diagram of the image processing phase.
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The objective of the first processing stage (segmentation stage) is to isolate the vegetation cover
against the background, i.e., to convert the input RGB image into a black-and-white image in which
the white pixels represent the vegetation cover (weeds and crop) and the black pixels represent the
remaining elements in the image (soil, stones, debris, straws, etc.).

Segmentation exploits the strong green components of the pixels representing vegetation. The
coloured image can be transformed into a greyscale image by a linear combination of the red, green
and blue planes, as shown in Equation (1):

@i P rows_image^@j P colums_image :
Grey pi, jq “ r ˚ inputredpi,jq ` g ˚ inputgreenpi,jq ` b ˚ input_blue pi, jq

(1)
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where i varies from 0 to 352, j from 0 to 1056, the input_red(i, j), input_green(i, j), input_blue(i, j) values
are the non-normalised red, green, and blue intensities (0–255), respectively, at pixel (i, j) and r, g, b are
the set of real coefficients that determine how the monochrome image is constructed. These values
are crucial in the segmentation of vegetation against non-vegetation, and their selection is discussed
in detail in [46,51]. In the proposed approach, the constant values were established to a set of values
(r = ´0.884, g = 1.262, and b = ´0.311) that previously showed good results for similar images [53]
compared with other well-known indices, such as ExG (r = ´l, g = 2, b = ´1) [46].

In the next step, a threshold is used to convert the monochrome greyscale image into a binary
image in which the white pixels represent vegetation and the black pixels non-vegetation. The
threshold depends on the lighting conditions. Therefore, the threshold is not fixed in the approach
outlined here but is instead calculated for each analysed image as the mean value of the grey intensities
in the image. The results of the segmentation stage are illustrated in Figure 6.
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The goal of the next stage (central crop row detection), which processes the binary images obtained
in the previous stage, is to discriminate the white pixels belonging to the central crop row from those
belonging to weeds or other crop rows. To achieve this goal, the method developed based on [54] first
performs a morphological opening operation (erosion followed by dilation) of the binary image to
eliminate isolated white pixels and highlight areas with a high density of white pixels. One of the
aims of this operation is to eliminate the small groups of black pixels that appear inside the crops. The
structural element used for the dilation and erosion is a 3 ˆ 3 square. The borders of the resulting
image are then extracted using the Sobel operator such that all pixels in the transitions (white to
black and vice versa) are marked. The image is then divided into three horizontal strips to deal with
perspective. Each strip is processed independently using the following methods.

The potential centre of the central crop row is the column of the strip with the greatest number
of white pixels within a search window. To identify this column, a vector is built using the same
number of components as the size of the window, where each component stores the number of white
pixels (vegetation) of the associated column. The perspective of the original images is also considered
when defining this window; thus, the size of the window varies depending on the proximity of the
camera to the analysed strip (Thales’ intercept theorem). The search window is centred in the middle
of the image in the first frame, but due to overlap between subsequent frames (the robot advances
6 cm between frames at its highest speed), the possible centre of the row in the next frame is searched
around the central position identified in the previous frame.

After the potential centre of the row is identified, the algorithm begins to identify the edges
delimiting the crop row, searching to the right and to the left from the centre found. To confirm that a
crop edge has been reached, the method uses three pixel labels: white, black and border. When the
pixel encountered is white, it is marked as belonging to the crop row, and the algorithm continues with
the next pixel. When a border pixel is located, the exploration has reached either a crop edge or a group
of black pixels inside the crop. The distance to the next border pixel can be used to distinguish between
these two cases. The distance to the next crop row or to a weed between crop rows is greater in the
former case than in the latter, i.e., inside the crop row. In fact, two distance thresholds are established,
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D1 ď D2, such that if the computed distance is greater than threshold D2, the exploration has reached
a crop edge, whereas if the distance is less than D1, a group of black pixels inside the crop has been
reached. If the distance is between D1 and D2, the method uses the previously generated vector to
locate the centre of the row and proceeds as follows. The percentage of white pixels in each column is
calculated for the range of components of the vector between the current position of the pixel and the
position of the edge. If this percentage is higher than a threshold called min_proportion, the algorithm
indicates that it has reached a group of black pixels inside the crop because the column to which this
group of black pixels belongs has a large number of white pixels because it is part of a crop row. If it is
lower than this threshold, the algorithm indicates that it has reached the edge of the crop row because
the number of black pixels in the columns that separate it from the next crop row or weed is large.

This procedure is formally set out in Table 1, where p is the pixel currently being explored, n is the
next (not black) pixel in the processing order at a distance d, and D1, D2 and min_proportion are the
three parameters of the method.

Table 1. Crop row detection method.

Type of
Current Pixel

Distance d (in pixels) until next non-Black Pixel

d ď D1 D1 ă d ď D2 d ą D2

White Mark all pixels from p to
n and jump to n (pÐn) Mark all pixels from p to n and jump to n (pÐn) Stops

Border Mark all pixels from p to
n and jump to n (pÐn)

IF White pixels(input(1 . . . N), p . . . n)) > min_proportion
THEN Mark all pixels from p to n and jump to n (p = n) ELSE

Stops
Stops

Black Jump to n (pÐn) Jump to n (pÐn) Stops

Due to the effects of perspective in the image, the width of the crop rows varies depending on
proximity to the camera. This phenomenon is considered in the method. The parameter D1 varies
between 5 and 10, starting at 5 when the farthest strip from the camera is analysed and reaching 10
when analysing the closest strip. Likewise, the parameter D2 varies between 10 and 20. The value of
the threshold min_proportion is 0.6. Using this process, the central crop row can be detected from the
binary image in the presence or absence of weeds (see Figure 7).
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perspective of the camera, the image is divided into three horizontal strips, which are processed to 
obtain three points to define the central crop row. The previous stage assumed that the potential 
centre of the central crop row was the column with the greatest number of white pixels. However, 
this may not be the case when groups of black pixels are present inside the crop. In the previous 

Figure 7. (a) Segmented image. (b) Central crop row detected by applying the proposed detection
method to Figure 6a.

After the central crop row is detected, the purpose of the next stage is to extract the straight line
that defines the central crop row from the image resulting from the last stage. To address the slight
perspective of the camera, the image is divided into three horizontal strips, which are processed to
obtain three points to define the central crop row. The previous stage assumed that the potential centre
of the central crop row was the column with the greatest number of white pixels. However, this may
not be the case when groups of black pixels are present inside the crop. In the previous stage, such
an occurrence does not affect the algorithm, that is, it does not matter whether the algorithm starts in
the exact centre of the crop row as long as it is located inside the row. However, the extraction of the
straight line that defines the crop row requires that the centre of the crop row be located as accurately
as possible. Thus, a search window is defined in the same way as in the previous stage, and a vector is
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obtained with as many components as the window size, where each component stores the number
of white pixels of the associated column. Next, the maximum value of the vector is computed, and
all columns in the image whose vector component is greater than 80% of this maximum value are
converted to white, whereas the rest are converted to black (Figure 8a). To determine the points that
define the central crop row, in each strip, the geometric centre of the block with the largest number of
white columns together is chosen. The algorithm then estimates the straight line defining the three
centres identified (one for each strip) using the least squares method (Figure 8b). If less than two
centres are located (i.e., sowing errors), the algorithm employs the straight line that is obtained in the
previous frame. After obtaining the straight line that defines the crop row, the angle (α) between the
direction of motion of the robot and the centre line of the crop row and the displacement (d) between
the centre of the vehicle and the centre of the crop row are calculated (refer to Figure 3).
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2.1.2. Navigation Control

Many approaches exist that address the actuator control of a car. Conventional control methods
produce reasonable results at the expense of high computational and design costs because obtaining a
mathematical model of the vehicle becomes extremely expensive [55,56], since wheeled mobile robots
are characterised by nonlinear dynamics and are affected by an important number of disturbances,
such as turning and static friction or variations in the amount of cargo. Alternatively, we can approach
human behaviour for speed and steering control using artificial intelligence techniques, such as neural
networks [57]. However, the technique that provides a better approximation to human reasoning and
gives a more intuitive control structure is the fuzzy logic [58,59]. Some authors have proposed solutions
that are based in fuzzy logic for autonomous navigation [60–64], which demonstrates their robustness.
In [60], fuzzy control is employed in a real car to perform trajectory tracking and obstacle avoidance in
real outdoor and partially known environments. In [61], fuzzy controllers are implemented in a real
car to conduct experiments on real roads within a private circuit. Their results show that the fuzzy
controllers perfectly mimic human driving behaviour in driving and route tracking, as well as complex,
multiple-vehicle manoeuvres, such as adaptive cruise control or overtaking. In [62], the navigation
of multiple mobile robots in the presence of static and moving obstacles that employ different fuzzy
controllers is discussed. Their experiments demonstrate that robots are capable of avoiding obstacles
and negotiating dead ends, as well as efficiently attaining targets. In [63], authors develop and
implement fuzzy controllers for the steering and speed control of an autonomous guided vehicle.
Their results indicate that the proposed controllers are insensitive to parametric uncertainty and
load fluctuations and outperformed conventional proportional-integral-derivative (PID) controllers,
particularly in tracking accuracy, steady-state error, control chatter and robustness. In [64], an unknown
path-tracking approach is addressed, based on a fuzzy-logic set of rules, which emulates the behaviour



Sensors 2016, 16, 276 11 of 23

of a human driver. The method applies approximate knowledge about the curvature of the path ahead
of the vehicle and the distance between the vehicle and the next turn to attain the maximum value of
the linear velocity that is required by the vehicle to safely drive on the path.

The proposed navigation control that enables a robot to follow crop rows comprises two fuzzy
controllers (Figure 9): one for angular speed and one for linear speed. Both controllers are fuzzy and
therefore imitate the behaviour of a skilled driver; for example, if the vehicle is moved to one side
of the crop row to be tracked, the robot must correct its position in the other direction such that it
navigates with the crop row between its wheels.
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Figure 9. Visual scheme of the developed control.

The inputs of the controller acting on the angular speed of the robot are the displacement of the
centre of the vehicle from the midpoint of the crop row (d in Figure 3) and the angle of orientation of
the robot (α in Figure 3). The controller produces the angular speed of the vehicle as an output. The
rules used in the controller take the following form:

If (Offset is Negative Big) and (Angle is Positive Small) then (Angular Speed is Positive Small)
These rules are summarised in Table 2.

Table 2. Fuzzy control rules for angular speed. The fuzzy labels in this table correspond to the fuzzy
sets shown in Figure 10. Furthermore, Figure 11 shows the fuzzy set for linear speed used in Table 3
whereas fuzzy sets for the output variables are illustrated in Figure 12.

Angle α
Offset d Negative Big Negative Small Zero Positive Small Positive Big

Negative Big Positive Big Positive Big Positive Big Positive Small Zero
Negative Small Positive Big Positive Small Positive Small Zero Negative Small

Zero Positive Big Positive Small Zero Negative Small Negative Big
Positive Small Positive Small Zero Negative Small Negative Small Negative Big

Positive Big Zero Negative Small Negative Big Negative Big Negative Big
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2.2. End of Crop Row Detection  
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(Figure 13). For this purpose, the number of pixels in the image belonging to vegetation is used. 
When the robot begins to track a crop row, the number of pixels belonging to vegetation in the first 
image of the tracking is stored as a reference value. As the robot advances, it detects the number of 
pixels that are associated with the vegetation in each image. When this number is less than 80% 
(threshold was determined using the trial and error method) of the reference value, the robot 
assumes that it has reached the end of the crop row and checks with the on board GPS to ensure that 
this position is consistent with the output point given in the plan (with a margin of error). If they are 
consistent, the robot stops; otherwise, it continues tracking the crop row using the direction of the 
central row that is obtained in the previous frame. The loss of pixels that are associated with 
vegetation is consistent with a possible sowing error.  

Figure 11. Linear speed controller. Fuzzy sets of input variables: (a) offset and (b) angle.

Table 3. Fuzzy control rules for linear speed. The fuzzy labels in this table correspond to the fuzzy sets
shown in Figures 11 and 12b.

Angle α
Offset d Negative

Big
Negative

Small
Zero Positive

Small
Positive Big

Negative Big Minimum Minimum Minimum Minimum Minimum
Negative Small Minimum Minimum Medium Medium Medium

Zero Minimum Medium Maximum Medium Minimum
Positive Small Medium Medium Medium Minimum Minimum

Positive Big Minimum Minimum Minimum Minimum Minimum

Negative_Big, Negative_Small, Zero, Positive_Small and Positive_Big are the fuzzy sets shown in
Figure 10 and are determined in consonance with the features of the robot. The value ranges of each
set in the input corresponding to the offset of the robot regarding the midpoint of the crop row (d)
were selected based on the distance between the wheels of the robot (41 cm). In the case of the angle of
orientation (α), to select the value ranges of each set, it was assumed that the robot would crush the
crop row if it turned at an angle of 30˝ or ´30˝.

The Takagi-Sugeno implication is compatible with applications that require on-time responses [58]
and is therefore used in this work. The output of the controller is the singleton-type membership
functions shown in Figure 12a. The range of angular speeds allowed by the robot is ´90 ˝/s to 90 ˝/s,
and the fuzzy sets are chosen to cover the speed range necessary to control the robot smoothly. The



Sensors 2016, 16, 276 13 of 23

input variables in the controller of the linear speed of the robot are the same as the previous controller,
i.e., offset and angle, and the fuzzy rules defined are summarised in Table 3.
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The value ranges of the fuzzy sets (Figure 11) for both displacement and angle are selected so that
the vehicle moves at maximum speed (30 cm/s) provided that it is correctly positioned; otherwise, it
slows to avoid treading on the crop row and crushing the crop.

The controller output is the linear speed applied to the vehicle and is characterised by three fuzzy
sets (MIN: minimum, MED: medium, MAX: maximum), whose values are selected to cover the robot’s
range of allowed speeds (Figure 12).

2.2. End of Crop Row Detection

To complete tracking of the inspected crop row, the robot must detect the end of the crop row
(Figure 13). For this purpose, the number of pixels in the image belonging to vegetation is used. When
the robot begins to track a crop row, the number of pixels belonging to vegetation in the first image
of the tracking is stored as a reference value. As the robot advances, it detects the number of pixels
that are associated with the vegetation in each image. When this number is less than 80% (threshold
was determined using the trial and error method) of the reference value, the robot assumes that it
has reached the end of the crop row and checks with the on board GPS to ensure that this position is
consistent with the output point given in the plan (with a margin of error). If they are consistent, the
robot stops; otherwise, it continues tracking the crop row using the direction of the central row that is
obtained in the previous frame. The loss of pixels that are associated with vegetation is consistent with
a possible sowing error.Sensors 2016, 16, 276 14 of 23 
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Figure 13. (a) Image acquired by the robot of the end of a crop row. (b) Segmented image of Figure 13a.
The number of pixels that is associated with vegetation (white pixels) is less than 80% of the number of
pixels in the reference image (Figure 6), and the robot location is very close to the output point that is
defined in the plan for the row that is being scouted. Thus, the robot determines that it has reached the
end of the crop row.
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2.3. Row Change Behaviour

After detecting the end of a crop row, the row change behaviour is performed. In this behaviour,
the robot performs the necessary manoeuvres to position itself at the head of the next row to
be inspected. This set of manoeuvres consists of a combination of straight-line and circular-arc
movements with the help of the on board GPS. Specifically, it is a sequence of the following five moves
(Figure 14): (1) straight-line forward movement to position itself outside the crop, in the header of the
crop, to avoid crushing the crop in subsequent manoeuvres; (2) circular-arc movement towards the
corresponding side of the next crop row to be inspected to position itself perpendicular to the crop
rows; (3) straight-line forward movement; (4) reverse circular-arc movement away from the crop row
to position itself parallel to the direction of the crop rows; and (5) straight-line forward movement to
place itself at the head of the next crop row to be inspected according to the plan.

Sensors 2016, 16, 276 14 of 23 

 

(a) (b) 

Figure 13. (a) Image acquired by the robot of the end of a crop row. (b) Segmented image of  
Figure 13a. The number of pixels that is associated with vegetation (white pixels) is less than 80% of 
the number of pixels in the reference image (Figure 6), and the robot location is very close to the 
output point that is defined in the plan for the row that is being scouted. Thus, the robot determines 
that it has reached the end of the crop row. 

2.3. Row Change Behaviour 

After detecting the end of a crop row, the row change behaviour is performed. In this 
behaviour, the robot performs the necessary manoeuvres to position itself at the head of the next row 
to be inspected. This set of manoeuvres consists of a combination of straight-line and circular-arc 
movements with the help of the on board GPS. Specifically, it is a sequence of the following five 
moves (Figure 14): (1) straight-line forward movement to position itself outside the crop, in the 
header of the crop, to avoid crushing the crop in subsequent manoeuvres; (2) circular-arc movement 
towards the corresponding side of the next crop row to be inspected to position itself perpendicular 
to the crop rows; (3) straight-line forward movement; (4) reverse circular-arc movement away from 
the crop row to position itself parallel to the direction of the crop rows; and (5) straight-line forward 
movement to place itself at the head of the next crop row to be inspected according to the plan. 

 
Figure 14. Manoeuvres defined for crop row change. 

3. Results and Discussion 

To evaluate the performance and robustness of the proposed approach for central row 
detection, a set of 500 images, which were acquired by the robot working in remote control mode in 
different maize fields and distinct days at Arganda del Rey (Madrid, Spain), were utilised. The 
images were captured in different conditions of illumination, growth stages, weed densities and 
camera orientations; the robot operates in these conditions when it autonomously navigates. Figure 15 
illustrates several examples of the employed images.  

Figure 14. Manoeuvres defined for crop row change.

3. Results and Discussion

To evaluate the performance and robustness of the proposed approach for central row detection,
a set of 500 images, which were acquired by the robot working in remote control mode in different
maize fields and distinct days at Arganda del Rey (Madrid, Spain), were utilised. The images were
captured in different conditions of illumination, growth stages, weed densities and camera orientations;
the robot operates in these conditions when it autonomously navigates. Figure 15 illustrates several
examples of the employed images.

The proposed approach was compared with a detection method that is based on the Hough
transform [30], which is a strategy that was successfully integrated in some of our previous studies [36]
in terms of effectiveness and processing time. The last aspect is really important in cases, such as this
case, in which real-time detection is required. Both methods analysed the bottom half of each image,
i.e., 1056 ˆ 352 pixels. The effectiveness was measured based on an expert criterion, in which the line
that was detected was considered to be correct when it matched the real direction of the crop row.
Table 4 shows the results from processing the 500 images with both approaches. The performance of
the proposed approach exceeds the performance of a Hough-transform based strategy by 10%. The
processing time that is required by the proposed approach is approximately four times less than the
processing time required for the Hough transform, which indicates that the proposed approach can
process approximately 14 frames in the best case compared with the Hough transform approach. The
Hough transform approach can process three frames per second, which is less than the five frames per
second that the EOS 7D camera provides (refer to Section 2 of this paper).
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Figure 15. (a)–(c) are examples of different images that were acquired by the camera of the robot.
(a) shows the maize crops; (b) shows the crop rows where the irrigation system used is visible; (c) shows
the kind of image to be taken when a crop border is being reaching.

Table 4. Detection of the central crop row. Performance of the proposed approach and an approach
that is based on the Hough transform.

Approach Effectiveness (%) Mean Processing Time (seconds)

Proposed approach 96.4 0.069
Hough-transform-based approach 88.4 0.258

To test the different behaviours developed for the robot, a test environment was established.
Green lines were painted in an outside soil plane to simulate crop rows. The lines were 30 m in length
and spaced 70 cm apart, as illustrated in Figure 16a. To make the environment more realistic, weeds
and sowing errors were introduced along the lines.
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In this test environment, several experiments were performed to verify the proper functioning of
the three autonomous robot behaviours described above: tracking, detection of the end of the crop
row and row change. During the experiments, the robot followed the lines without headings, detected
the row end, and changed rows, continuing the inspection, without human intervention. Figure 17
shows the evolution of the linear and angular speeds of the robot during the inspection of a line and
the position of the robot with respect to the line (offset and angle) extracted by the image algorithm.
Table 5 shows the mean, standard deviation, minimum and maximum of the linear speed, angular
speed, offset and angle. The robot adjusted its linear speed depending on the error in its position; the
speed was highest when the error in its position was 0 and decreased as the error increased, confirming
the proper operation of the fuzzy controller of the linear speed. Variations in the angular speed were
minimal because the error in the position was very small (offset and angle). The slight corrections to
the left in the angular speed (negative values) were due to the tendency of the robot to veer towards
the right when moving forward in its working operation (remote control mode). The design of the
controller allowed these corrections to be made softly and imperceptibly during robot navigation and
yielded movement in a straight line, which is impossible in remote control mode.
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Table 5. Results obtained in the test environment.

Test environment Mean Std. dev. Minimum Maximum

Linear speed (cm/s) 28.66 0.68 26.20 30.00
Angular speed (˝/s) ´0.57 0.53 ´2.00 0.00

Offset (cm) 0.55 0.47 ´0.78 1.88
Angle (˝) 0.52 0.38 ´0.56 1.51

After confirming the performance of the robot in the test environment, several experiments were
conducted in a real field at Arganda del Rey (Madrid, Spain). The field was a cereal field with crop row
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spacing of 70 cm, which resembles a maize sowing schema. The rows were not perfectly straight and
were characterised by strong high weed presence, as illustrated in Figure 16b. The robot was tested
in different crop rows that covered the entire field. In this environment, the robot again followed the
crop rows without crushing the crops (Figure 18), detected the row end, and performed the necessary
manoeuvres to change rows (Figure 19) to continue the inspection without human intervention.
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algorithm correctly extracted the straight line defining the crop row. In contrast to the first test 
environment, the rows were not perfectly straight, which affected the performance of the robot. 
However, the difference in performance between the environments was primarily due to the 
differences between the flat soil of the first environment and the abrupt soil of the field. The 
irregularities and roughness of the field, which hindered the movement of the robot, and the 
features of the vehicle, which did not provide any damping, caused vibrations and swinging in the 
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field, which decreased the performance of the robot, slowed row tracking, and induced headings in 
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Figure 19. Sequence of manoeuvres performed by the robot to change rows. (a) corresponds with
manoeuvre 1 in Figure 14, i.e., the straight-line forward movement; (b) with the circular-arc movement,
manoeuvre 2; (c) with straight-line forward movement, manoeuvre 3; (d) with reverse circular-arc
movement, manoeuvre 4; (e) with straight-line forward movement, manoeuvre 5. Video can be found
in [65].
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However, the crop row tracking performance was worse in the real environment compared to the
first test environment. Figure 20 shows the evolution of the linear and angular speeds of the robot
during the inspection of a line and the position of the robot with respect to the line (offset and angle)
extracted by the image algorithm. Table 6 presents the values (mean, standard deviation, minimum and
maximum) obtained for linear speed, angular speed, offset and angle. The difference in performance
relative to the first environment is evident. The results were a consequence of the estimated position
of the robot relative to the crop row (offset and angle). The image-processing algorithm correctly
extracted the straight line defining the crop row. In contrast to the first test environment, the rows
were not perfectly straight, which affected the performance of the robot. However, the difference in
performance between the environments was primarily due to the differences between the flat soil of
the first environment and the abrupt soil of the field. The irregularities and roughness of the field,
which hindered the movement of the robot, and the features of the vehicle, which did not provide any
damping, caused vibrations and swinging in the pitch, yaw and roll angles of the camera during robot
navigation, particularly on the most rugged soil. These effects increased the variation in the estimated
position of the robot as it moved in the field, which decreased the performance of the robot, slowed
row tracking, and induced headings in stretches where the wheels of the robot had poor traction.
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The observed variations are one of the challenges of using small field inspection vehicles instead
of tractors or large machines; for the latter, the displacement is more uniform, with fewer vibrations
and variations in the camera. As observed in the experiments, although the robot was able to navigate
along the crop rows without crushing them, to improve its performance, the mechanical features of
the robot must be improved, or a more suitable vehicle must be adopted to navigate the crop field.
Note that the proposed navigation system can be easily adapted to control other types of vehicles as it
is based on driver behaviour rather than the vehicle model.

4. Conclusions

Crop inspection is a very important task in agriculture and PA, particularly when information
about weed distribution is essential for generating proper risk maps that aid in site-specific treatment
tasks. Among the various means of collecting field information, the use of small, autonomous vehicles
with on-board sensing elements to minimise the impact on crop and soil compaction is quite promising.
An autonomous field inspection vehicle, which autonomously navigates by visually tracking crop
rows and following a previously established plan that guarantees the entire coverage of a field, was
presented in this study.

A set of basic behaviours necessary for an autonomous mobile robot to inspect a crop field with
full coverage was established and implemented, including the tracking of a crop row, the detection of
the end of a crop row, and the correct positioning of the robot at the head of the next row.

An image-processing method capable of extracting the central crop row in the presence of
weeds under uncontrolled lighting conditions in real time from images acquired with a reflex camera
positioned at the front of the robot was developed. Two fuzzy controllers were also designed to
achieve visual servoing for robot navigation. A method for detecting the end of the crop row using the
images acquired by the camera was developed. In addition, the manoeuvres required to change rows
were implemented.

Several experiments were conducted to test the performance of the proposed and developed
behaviours. These behaviours were performed in a test environment with plane soil. The robot was
able to follow the lines, detect the row end, and change lines to continue the inspection without human
intervention. The good results are due to the very small errors in the estimated position of the robot
relative to the crop row.

After these tests, a set of trials was performed on a real crop field. The robot was able to perform
its behaviours correctly, although with reduced performance compared to the first test environment.
This decreased performance is due to the variations in the estimated position of the robot relative to
the crop row. The irregularities and roughness of the field hindered the movement of the robot, which
lacked damping features, resulting in camera vibrations and swinging in its pitch, yaw and roll angles
during robot navigation, particularly in the most rugged soil. These effects slowed the tracking of the
crop row and induced headings in some areas where the wheels of the robot had poor traction.

These variations were the main disadvantage we encountered when working with this small
vehicle in the field. To improve the performance of the developed behaviours, the mechanical features
of the robot should be modified, or an alternative vehicle better suited to navigating a crop field should
be adopted. In the latter case, the approaches that are proposed in this paper can be integrated in the
new vehicle just adapting slightly the value ranges of the fuzzy sets of the navigation control to the
new vehicle.
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Abbreviations

The following abbreviations are used in this manuscript:

CVRP Capacited Vehicle Routing Problem
DSS Decision Support System
FOG Fibre Optic Gyroscope
GIS Geographical Information System
GNSS Global Navigation Satellite System
IMU Inertial Measurement Unit
PA Precision Agriculture
PID Proportional Integral Derivative
RTK Real Time Kinematic
ExG Excess green index
b coefficient of the blue plane
d distance
g coefficient of the green plane
min_proportion Percentage threshold
r coefficient of the red plane
α motion direction angle
D1 : Lower distance threshold
D2 Upper distance threshold
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