Laccase-Functionalized Graphene Oxide Assemblies as Efficient Nanobiocatalysts for Oxidation Reactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Graphene Oxide Preparation and Functionalization
2.3. Immobilization of Laccase
2.4. Determination of Immobilization Yield
2.5. Atomic Force Microscopy Studies
2.6. FT-IR Spectroscopy
2.7. Raman Spectroscopy
2.8. Determination of the Activity of Free TvL and of fGO-TvL Nanoassemblies
2.9. Determination of the Stability of Free TvL and of fGO-TvL Nanoassemblies
2.10. Anthracene Degradation by fGO-TvL Nanoassemblies
2.11. Dye decolorization
2.12. Reuse of fGO-TvL Nanoassemblies
3. Results and Discussion
3.1. AFM
3.2. Spectroscopic Characterization of fGO-TvL Nanoassemblies
3.3. Oxidation Activity of fGO-TvL Nanoassemblies
3.4. Stability of fGO-TvL Nanoassemblies
3.5. Use of fGO-TvL Nanoassemblies for the Oxidation of Anthracene
3.6. Use of fGO-TvL Nanoassemblies for Dye Decolorization
3.7. Reusability of the Nano-Ezyme Assemblies
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid |
AFM | Atomic Force Microscopy |
fGO | Functionalized graphene oxide with terminal amine groups |
HBT | 1-hydroxybenzoitriazole |
HPLC | High-Performance Liquid Chromatography |
PAHs | Polycyclic aromatic hydrocarbons |
TvL | Laccase from Trametes versicolor |
UV-Vis | Ultra-violet-Visible |
References
- Goenka, S.; Sant, V.; Sant, S. Graphene-based nanomaterials for drug delivery and tissue engineering. J. Control. Release 2014, 173, 75–88. [Google Scholar] [CrossRef] [PubMed]
- Krishna, K.V.; Ménard-Moyon, C.; Verma, S.; Bianco, A. Graphene-based nanomaterials for nanobiotechnology and biomedical applications. Nanomedicine 2013, 8, 1669–1688. [Google Scholar] [CrossRef] [PubMed]
- Du, D.; Yang, Y.; Lin, Y. Graphene-based materials for biosensing and bioimaging. MRS Bull. 2012, 37, 1290–1296. [Google Scholar] [CrossRef]
- Pavlidis, I.V.; Patila, M.; Bornscheuer, U.T.; Gournis, D.; Stamatis, H. Graphene-based nanobiocatalytic systems: Recent advances and future prospects. Trends Biotechnol. 2014, 32, 312–320. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Yang, K.; Yao, K.; Zhang, S.; Tao, H.; Lee, S.T.; Liu, Z.; Peng, R. Functionalized graphene oxide in enzyme engineering: A selective modulator for enzyme activity and thermostability. ACS Nano 2012, 6, 4864–4875. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Fan, F.; Wang, Y.; Feng, W.; Ji, W. Enzyme immobilization on carboxyl-functionalized graphene oxide for catalysis in organic solvent. Ind. Eng. Chem. Res. 2013, 52, 6343–6348. [Google Scholar] [CrossRef]
- Cipolatti, E.P.; Silva, M.J.A.; Klein, M.; Feddern, V.; Feltes, M.M.C.; Oliveira, J.V.; Ninow, J.L.; Oliveira, D. Current status and trends in enzymatic nanoimmobilization. J. Mol. Catal. B Enzym. 2014, 99, 56–67. [Google Scholar] [CrossRef]
- Gokhale, A.A.; Lu, J.; Lee, I. Immobilization of cellulase on magnetoresponsive graphene nano-supports. J. Mol. Catal. B Enzym. 2013, 90, 76–86. [Google Scholar] [CrossRef]
- Liu, J.; Cui, L.; Losic, D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 2013, 9, 9243–9257. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Wang, E. Electrochemical biosensors on platforms of graphene. Chem. Commun. 2013, 49, 9526–9539. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liao, Q.; Chu, M.; Liu, S.; Zhang, Y. Structure effect on graphene-modified enzyme electrode glucose sensors. Biosens. Bioelectron. 2014, 52, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Lau, S.C.; Lim, H.N.; Basri, M.; Masoumi, H.R.F.; Tajudin, A.A.; Huang, N.M.; Pandikumar, A.; Chia, C.H.; Andou, Y. Enhanced biocatalytic esterification with lipase-immobilized chitosan/graphene oxide beads. PLoS ONE 2014, 9, e104695. [Google Scholar]
- Patel, V.; Gajera, H.; Gupta, A.; Manocha, L.; Madamwar, D. Synthesis of ethyl caprylate in organic media using Candida rugosa lipase immobilized on exfoliated graphene oxide: Process parameters and reusability studies. Biochem. Eng. J. 2015, 95, 62–70. [Google Scholar] [CrossRef]
- Dronov, R.; Kurth, D.G.; Möhwald, H.; Scheller, F.W.; Lisdat, F. A self-assembled cytochrome c/xanthine oxidase multilayer arrangement on gold. Electrochim. Acta 2007, 53, 1107–1113. [Google Scholar] [CrossRef]
- Riklin, A.; Willner, I. Glucose and acetylcholine sensing multilayer enzyme electrodes of controlled enzyme layer thickness. Anal. Chem. 1995, 67, 4118–4126. [Google Scholar] [CrossRef]
- Lisdat, F.; Dronov, R.; Möhwald, H.; Scheller, F.W.; Kurth, D. Self-assembly of electro-active protein architectures on electrodes for the construction of biomimetic signal chains. Chem. Commun. 2009, 3, 277–283. [Google Scholar] [CrossRef]
- Feifel, S.C.; Lisdat, F. Silica nanoparticles for the layer-by-layer assembly of fully electro-active cytochrome c multilayers. J. Nanobiotechnol. 2011, 9, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yan, F.; Yang, W.; Sun, C. Multilayered construction of glucose oxidase and silica nanoparticles on Au electrodes based on layer-by-layer covalent attachment. Biomaterials 2006, 27, 4042–4049. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.M.; Lin, C.J.; Jheng, K.R.; Kosasih, A.; Chang, J.Y. Effect of graphene oxide on affinity-immobilization of purple membranes on solid supports. Colloids Surf. B 2014, 116, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Dimitrijevic, N.M.; Chang, A.Y.; Schaller, R.D.; Liu, Y.; Rajh, T.; Rozhkova, E.A. Photoinduced electron transfer pathways in hydrogen-evolving reduced graphene oxide-boosted hybrid nano-bio catalyst. ACS Nano 2014, 8, 7995–8002. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Cui, D.; Li, H.; Zhang, Y.; Liu, S. Cytochrome P450 bienzymes assembled on Au/chitosan/reduced graphene oxide nanosheets for electrochemically-driven drug cascade metabolism. Electrochim. Acta 2015, 165, 36–44. [Google Scholar] [CrossRef]
- Mei, L.P.; Feng, J.J.; Wu, L.; Zhou, J.Y.; Chen, J.R.; Wang, A.J. Novel phenol biosensor based on laccase immobilized on reduced graphene oxide supported palladium-copper alloyed nanocages. Biosens. Bioelectron. 2015, 74, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Aguila, S.A.; Shimomoto, D.; Ipinza, F.; Bedolla-Valdez, Z.I.; Romo-Herrera, J.; Contreras, O.E.; Farías, M.H.; Alonso-Núñez, G. A biosensor based on Coriolopsis gallica laccase immobilized on nitrogen-doped multiwalled carbon nanotubes and graphene oxide for polyphenol detection. Sci. Technol. Adv. Mater. 2015, 16. [Google Scholar] [CrossRef]
- Ormategui, N.; Veloso, A.; Leal, G.P.; Rodriguez-Couto, S.; Tomovska, R. Design of stable and powerful nanobiocatalysts, based on enzyme laccase immobilized on self-assembled 3D graphene/polymer composite hydrogels. ACS Appl. Mater. Interfaces 2015, 7, 14104–14112. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Delgado, M.M.; Alemán-Nava, G.S.; Rodríguez-Delgado, J.M.; Dieck-Assad, G.; Martínez-Chapa, S.O.; Barceló, D.; Parra, R. Laccase-based biosensors for detection of phenolic compounds. Trends Anal. Chem. 2015, 74, 21–45. [Google Scholar] [CrossRef]
- Camarero, S.; García, O.; Vidal, T.; Colom, J.; del Río, J.C.; Gutiérrez, A.; Martínez, M.J.; Martínez, A.T. Flax pulp bleaching and residual lignin modification by laccase-mediator systems. Prog. Biotechnol. 2002, 21, 213–222. [Google Scholar]
- Chandra, R.P.; Lehtonen, L.K.; Ragauskas, A.J. Modification of high lignin content kraft pulps with laccase to improve paper strength properties. Laccase treatment in the presence of gallic acid. Biotechnol. Prog. 2004, 20, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Nyanhongo, G.S.; Gübitz, G.; Sukyai, P.; Leitner, C.; Haltrich, D.; Ludwig, R. Oxidoreductases from Trametes spp. in biotechnology: A wealth of catalytic activity. Food Technol. Biotechnol. 2007, 45, 250–268. [Google Scholar]
- Fernandez-Fernandez, M.; Sanroman, M.A.; Moldes, D. Recent developments and applications of immobilized laccase. Biotechnol. Adv. 2012, 31, 1808–1825. [Google Scholar] [CrossRef] [PubMed]
- Tzialla, A.A.; Taha, A.A.; Kalogeris, E.; Stamatis, H. Improving the catalytic performance of fungal laccases in monoterpene-based reaction systems. Biotechnol. Lett. 2009, 31, 1451–1456. [Google Scholar] [CrossRef] [PubMed]
- Enotiadis, A.; Angeli, K.; Baldino, N.; Nicotera, I.; Gournis, D. Graphene-based nafion nanocomposite membranes: Enhanced proton transport and water retention by novel organo-functionalized graphene oxide nanosheets. Small 2012, 8, 3338–3349. [Google Scholar] [CrossRef] [PubMed]
- Patila, M.; Pavlidis, I.V.; Diamanti, E.K.; Katapodis, P.; Gournis, D.; Stamatis, H. Enhancement of cytochrome c catalytic behaviour by affecting the heme environment using functionalized carbon-based nanomaterials. Process Biochem. 2013, 48, 1010–1017. [Google Scholar] [CrossRef]
- Pavlidis, I.V.; Tsoufis, T.; Enotiadis, A.; Gournis, D.; Stamatis, H. Functionalized multi-wall carbon nanotubes for lipase immobilization. Adv. Eng. Mater. 2010, 12, B179–B183. [Google Scholar] [CrossRef]
- Pavlidis, I.V.; Vorhaben, T.; Tsoufis, T.; Rudolf, P.; Bornscheuer, U.T.; Gournis, D.; Stamatis, H. Development of effective nanobiocatalytic systems through the immobilization of hydrolases on functionalized carbon-based nanomaterials. Bioresour. Technol. 2012, 115, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.K.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem. 1985, 150, 76–85. [Google Scholar] [CrossRef]
- Wolfenden, B.S.; Willson, R.L. Radical cations as reference chromogens in kinetic studies of one-electron transfer reactions: Pulse radiolysis studies of ABTS. J. Chem. Soc. Perkin Trans. 1982, 2, 805–812. [Google Scholar] [CrossRef]
- Vazquez-Duhalt, R.; Westlake, D.W.S.; Fedorak, M.P. Kinetics of chemically modified lignin peroxidase and enzymatic oxidation of aromatic nitrogen-containing compounds. Appl. Microbiol. Biotechnol. 1995, 42, 675–681. [Google Scholar] [CrossRef]
- Spyrou, K.; Calvaresi, M.; Diamanti, E.K.; Tsoufis, T.; Gournis, D.; Rudolf, P.; Zerbetto, F. Graphite oxide and aromatic amines: Size matters. Adv. Funct. Mater. 2015, 25, 263–269. [Google Scholar] [CrossRef]
- Spyrou, K; Potsi, G.; Diamanti, E.K.; Ke, X.; Serestatidou, E.; Verginadis, I.I.; Velalopoulou, A.P.; Evangelou, A.M.; Deligiannakis, Y.; van Tendeloo, G.; et al. Towards novel multifunctional pillared nanostructures: Effective intercalation of adamantylamine in graphene oxide and smectite clays. Adv. Funct. Mater. 2014, 24, 5841–5850. [Google Scholar]
- Kudin, K.N.; Ozbas, B.; Schniepp, H.C.; Prud’homme, R.K.; Aksay, I.A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K.S.; Basko, D.M.; Ferrari, A.C. Raman spectroscopy of graphene edges. Nano Lett. 2009, 9, 1433–1441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Zhang, J.; Huang, X.; Zhou, X.; Wu, H.; Guo, S. Assembly of graphene oxide-enzyme conjugates through hydrophobic interaction. Small 2012, 8, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.L.; Ge, Z.Q. Effect of graphene oxide on conformation and activity of catalase. Carbon 2013, 60, 401–409. [Google Scholar] [CrossRef]
- Cao, L. Covalent Enzyme Immobilization. In Carrier-Bound Immobilized Enzymes; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; pp. 169–316. [Google Scholar]
- Iyer, P.V.; Ananthanarayan, L. Enzyme stability and stabilization—Aqueous and non-aqueous environment. Process Biochem. 2008, 43, 1019–1032. [Google Scholar] [CrossRef]
- Patila, M.; Pavlidis, I.V.; Kouloumpis, A.; Dimos, K.; Spyrou, K.; Katapodis, P.; Gournis, D.; Stamatis, H. Graphene oxide derivatives with variable alkyl chain length and terminal functional groups as supports for stabilization of cytochrome c. Int. J. Biol. Macromol. 2016, 84, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Nair, R.R.; Demarche, P.; Agathos, S.N. Formulation and characterization of an immobilized laccase biocatalyst and its application to eliminate organic micropollutants in wastewater. New Biotechnol. 2013, 30, 814–823. [Google Scholar] [CrossRef] [PubMed]
- Qiu, H.; Xu, C.; Huang, X.; Ding, Y.; Qu, Y.; Gao, P. Adsorption of laccase on the surface of nanoporous gold and the direct electron transfer between them. J. Phys. Chem. C 2008, 112, 14781–14785. [Google Scholar] [CrossRef]
- Dodor, D.E.; Hwang, H.M.; Ekunwe, S.I.N. Oxidation of anthracene and benzo(a)pyrene by immobilization laccase from Trametes versicolor. Enzym. Microb. Technol. 2004, 35, 210–217. [Google Scholar] [CrossRef]
- Majcherczyk, A; Johannes, C.; Hüttermann, A. Oxidation of polycyclic aromatic hydrocarbons (PAH) by laccase of Trametes versicolor. Enzym. Microb. Technol. 1998, 22, 335–341. [Google Scholar]
- Han, M.J.; Choi, H.T.; Song, H.G. Degradation of phenanthrene by Trametes versicolor and its laccase. J. Microbiol. 2004, 42, 94–98. [Google Scholar] [PubMed]
- Hu, X.; Wang, P.; Hwang, H. Oxidation of anthracene by immobilized laccase from Trametes versicolor. Bioresour. Technol. 2009, 100, 4963–4968. [Google Scholar] [CrossRef] [PubMed]
- Johannes, C.; Majcherczyk, A.; Hüttermann, A. Degradation of anthracene by laccase of Trametes versicolor in the presence of different mediator compounds. Appl. Microbiol. Biotechnol. 1996, 46, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, F.D.; Cavaco-Paulo, A. Biosensors based on laccase for detection of commercially reactive dyes. Anal. Lett. 2010, 43, 1126–1131. [Google Scholar] [CrossRef] [Green Version]
- Asgher, M.; Bhatti, H.N.; Ashraf, M.; Legge, R.L. Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 2008, 19, 771–783. [Google Scholar] [CrossRef] [PubMed]
- Lanzafame, J.M.; Muenter, A.A.; Brumbaugh, D.V. The effect of J-aggregate size on photoinduced charge transfer processes for dye-sensitized silver halides. Chem. Phys. 1996, 210, 79–89. [Google Scholar] [CrossRef]
Immobilized TvL | Activity (U/mg of Immobilized Enzyme) |
---|---|
fGO-TvL | 0.55 ± 0.07 |
fGO-TvL-fGO | 1.00 ± 0.13 |
fGO-TvL-fGO-TvL | 1.63 ± 0.15 |
fGO-TvL-fGO-TvL-fGO | 0.97 ± 0.10 |
fGO-TvL-fGO-TvL-fGO-TvL | 4.89 ± 0.63 |
fGO-TvL-fGO-TvL-fGO-Tv-fGO | 1.05 ± 0.17 |
Enzyme | t1/2 (h) |
---|---|
Free TvL | 0.9 ± 0.1 |
fGO-TvL | 3.7 ± 0.4 |
fGO-TvL-fGO | 2.9 ± 0.2 |
fGO-TvL-fGO-TvL | 2.3 ± 0.1 |
fGO-TvL-fGO-TvL-fGO | 4.1 ± 0.5 |
fGO-TvL-fGO-TvL-fGO-TvL | 4.3 ±0.4 |
fGO-TvL-fGO-TvL-fGO-TvL-fGO | 4.1 ± 0.5 |
Enzyme | Anthracene Degradation (%) |
---|---|
Free TvL | 96.5 |
fGO-TvL | 37.2 |
fGO-TvL-fGO | 89.3 |
fGO-TvL-fGO-TvL | 98.6 |
fGO-TvL-fGO-TvL-fGO | 93.8 |
fGO-TvL-fGO-TvL-fGO-TvL | 97.4 |
fGO-TvL-fGO-TvL-fGO-TvL-fGO | 97.8 |
Immobilized TvL | Reaction Rate (μM·min−1·μg−1 Enzyme) |
---|---|
fGO-TvL | 0.20 ± 0.03 |
fGO-TvL-fGO | 0.36 ± 0.05 |
fGO-TvL-fGO-TvL | 0.45 ± 0.07 |
fGO-TvL-fGO-TvL-fGO | 0.38 ± 0.06 |
fGO-TvL-fGO-TvL-fGO-TvL | 0.46 ± 0.08 |
fGO-TvL-fGO-TvL-fGO-TvL-fGO | 0.43 ± 0.08 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patila, M.; Kouloumpis, A.; Gournis, D.; Rudolf, P.; Stamatis, H. Laccase-Functionalized Graphene Oxide Assemblies as Efficient Nanobiocatalysts for Oxidation Reactions. Sensors 2016, 16, 287. https://doi.org/10.3390/s16030287
Patila M, Kouloumpis A, Gournis D, Rudolf P, Stamatis H. Laccase-Functionalized Graphene Oxide Assemblies as Efficient Nanobiocatalysts for Oxidation Reactions. Sensors. 2016; 16(3):287. https://doi.org/10.3390/s16030287
Chicago/Turabian StylePatila, Michaela, Antonios Kouloumpis, Dimitrios Gournis, Petra Rudolf, and Haralambos Stamatis. 2016. "Laccase-Functionalized Graphene Oxide Assemblies as Efficient Nanobiocatalysts for Oxidation Reactions" Sensors 16, no. 3: 287. https://doi.org/10.3390/s16030287
APA StylePatila, M., Kouloumpis, A., Gournis, D., Rudolf, P., & Stamatis, H. (2016). Laccase-Functionalized Graphene Oxide Assemblies as Efficient Nanobiocatalysts for Oxidation Reactions. Sensors, 16(3), 287. https://doi.org/10.3390/s16030287