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Abstract: Prognostics and health management techniques have drawn widespread attention due to
their ability to facilitate maintenance activities based on need. On-line prognosis of fatigue crack
propagation can offer information for optimizing operation and maintenance strategies in real-time.
This paper proposes a Lamb wave-particle filter (LW-PF)-based method for on-line prognosis of
fatigue crack propagation which takes advantages of the possibility of on-line monitoring to evaluate
the actual crack length and uses a particle filter to deal with the crack evolution and monitoring
uncertainties. The piezoelectric transducers (PZTs)-based active Lamb wave method is adopted
for on-line crack monitoring. The state space model relating to crack propagation is established by
the data-driven and finite element methods. Fatigue experiments performed on hole-edge crack
specimens have validated the advantages of the proposed method.

Keywords: prognostics and health management; fatigue crack propagation; on-line; active Lamb
wave monitoring; particle filter

1. Introduction

Reliability and availability are key problems for safety-critical systems such as aircraft, wind
turbines, bridges and nuclear plants [1,2]. However, conventional maintenance frameworks may
involve longer downtime and greater cost without considering the actual status of the systems [3].
In recent years, prognostics and health management (PHM) techniques, which consider the actual
system condition via diagnostic techniques and the future condition through prognosis methods, have
drawn widespread attention due to their ability to enable maintenance activities based on need [4–6].
Accurate prognosis for the degradation state and failure time of the critical structure plays an important
role in the PHM technique, which leads to an increase of reliability and availability. Moreover, the life
cycle cost will be reduced by undertaking maintenance activities only as necessary and minimizing
downtime and spare part storage.

Fatigue cracks are commonly regarded as a principal failure mode for various structural and
mechanical systems [7,8]. In recent years, a lot of attention has been paid to the methods which combine
fatigue crack propagation models with Bayes’ theorem for fatigue crack propagation prognosis,
including stochastic filters [9–15] and the Bayesian inference [16–18]. Within these methods, the
uncertainties during fatigue crack propagation are taken into account. The measurement information of
the actual crack propagation state is used to update the result obtained by the crack propagation model
to achieve a more accurate one. As to stochastic filters, the Kalman filter (KF) [19] offers the optimal
solution to linear problems under Gaussian uncertainty assumption. Nevertheless, most realistic
cases such as the process of fatigue crack propagation are nonlinear with non-Gaussian uncertainty.
To tackle these cases, various types of approximation are developed for the KF [20]. The extended
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Kalman filter (EKF) utilizes the first-order Taylor expansion of the nonlinear model to solve the fatigue
crack propagation problem [9]. The unscented Kalman filter (UKF) is proposed to deal with the fatigue
crack propagation problem using unscented transformation [10]. However, the Gaussian uncertainty
assumption is still needed for the EKF and UKF. As an improvement of the KF, the particle filter
(PF) is capable of handling the prognosis problem of nonlinear and non-Gaussian processes without
restrictive assumptions based on Monte Carlo methods [21]. In recent years, several PF based methods
have been reported for fatigue crack propagation prognosis. Shin et al. [11] adopted the PF to deal with
the prognosis problem of fatigue crack propagation. The visual inspections performed by an optical
magnifier were used as the measurements of the crack lengths. Corbetta et al. [12] proposed a kind
of stochastic dynamic state space model for the PF based method, which utilized the crack lengths
obtained with a caliper as the measurements. Compare and Zio [13] proposed a PF-based method for
predictive maintenance, in which simulated crack lengths were employed for validation. Sun et al. [14]
analyzed the sources of uncertainties in fatigue crack propagation prognosis using Virkler’s data
which was measured by a zoom stereomicroscope and explored a PF-based algorithm for uncertainty
management. All these studies indicate that the PF has the potential for fatigue crack propagation
prognosis under uncertainties.

However, most literatures published so far have only used simulation or off-line NDT results,
which have limitations for on-line application. On-line crack monitoring is capable of offering
convenient and quick inspections of crack damages with sensors. Timely detection and prognosis
of crack damages can maximize the operational availability and safety by optimizing operation and
maintenance strategies in real-time. Recently, on-line crack monitoring methods have been gradually
combined with PF-based methods to realize on-line crack propagation prognosis. For example,
Chen et al. [15] proposed a PF-based method for the machine condition prediction, in which the
vibration feature extraction method is applied for crack monitoring. However, vibration feature
extraction- based methods are insensitive to small damage or damage growth [22]. In general,
research on prognosis methods integrating on-line crack monitoring with the PF is still lacking,
as well as experimental verifications. With the development of the structural health monitoring
(SHM) technology, different kinds of methods have been developed for on-line crack monitoring [23].
Among them, The PZTs-based active Lamb wave (LW) technique is one of the most appealing and
effective methods [24–26], which has the merits including the ability of traveling a long distance, the
capacity to access hidden components, as well as sensitivity to small crack damages [27,28].

Aiming at realizing on-line fatigue crack propagation prognosis, a LW-PF-based method is
proposed to combine the PZTs-based active Lamb wave method with the PF. The PZT sensor array
is used to actuate and acquire Lamb wave signals in the structure. The cross-correlation damage
index extracted from the monitored Lamb wave signal is employed to capture signal characteristics
and quantify the actual crack length. Each time a new damage index is available, the PF utilizes this
damage index to estimate the posterior probability density function (pdf) of the crack length with
the crack propagation state space model. This state space model is derived from a stochastic Paris’s
law and an active Lamb wave-based measurement equation, whose parameters and uncertainty are
determined by data driven methods. On the basis of the obtained posterior pdf, the prognosis of the
crack propagation is performed and the failure cycle is calculated afterwards. The proposed method is
evaluated with the fatigue experiments of 6 hole-edge crack specimens, and the posterior estimation
and prognostic value of the crack length are discussed, as well as the failure cycle.

The rest of the paper is organized as follows: in Section 2, the proposed on-line LW-PF-based crack
propagation prognosis method is explained. First, the state equation of the fatigue crack propagation
is presented. Then, the PZTs-based active Lamb wave method is introduced. The modeling process
of the measurement equation is proposed with the cross-correlation damage indices extracted from
experimental Lamb wave signals. At the end, the LW-PF based prognosis method is presented in detail.
In Section 3, the proposed method is implemented and validated on 6 hole-edge crack specimens.
Finally, the conclusions are given in Section 4.
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2. On-Line LW-PF-Based Crack Propagation Prognosis Method

To apply the PF-based method, essentially a state space model describing fatigue crack
propagation is needed, which consists of a state equation and a measurement equation. The state
equation describes the evolution of the crack length, and the measurement equation governs the
relationship between the damage index and the crack length.

2.1. Physical Model Based State Equation with Data Driven Parameters

In this section, the method of establishing the state equation is proposed, in which the crack
propagation mechanism is based on Paris’ law with the parameters obtained by data driven methods.

2.1.1. Stochastic Paris’ Law Based State Equation

The general state equation of fatigue crack propagation can be expressed by Equation (1):

xk “ f pxk´1, ωk´1q (1)

where k is the discrete time index, xk is the crack length at time k, f p¨q is a nonlinear function
representing the evolution of the crack length from time k ´ 1 to time k, ωk´1 is a random variable
denoting the uncertainty during fatigue crack propagation.

Paris’ law [29] has been widely used to describe fatigue crack propagation, giving the crack
propagation rate as Equation (2):

dx
dN

“ Cp∆Kqm (2)

where N is the number of loading cycles, C and m are material constants, ∆K is the stress intensity
factor (SIF) range determined by the crack length and the fatigue load.

To take the uncertainty during fatigue crack propagation into consideration, the crack propagation
rate can be modified as Equation (3) according to Yang and Manning’s model [30]:

dx
dN

“ XpNqCp∆Kqm (3)

where X(N) is a stationary random process denoting the uncertainty during fatigue crack propagation.
For simplification, X(N) can be reduced to a lognormal random variable X [31] and expressed as
exppωq, where ω follows the normal distribution Np0, σ2

ωq. As a result, Equation (3) can be discretized
as the state Equation (4):

xk “ xk´1 ` exppωqCp∆Kqm∆N (4)

where ∆N is the discrete step of loading cycles.

2.1.2. Parameters of the State Equation

The parameters ∆K, C, m, and σ2
ω in Equation (4) should be determined in advance for prognosis.

Since different kinds of structures have different parameters, the parameters of a certain kind of
structure need to be decided specifically. A data driven method is proposed to obtain the parameters
as the process shown in Figure 1, where the variable S denotes the number of the specimens.

Computation of the ∆K with the Finite Element Method

First, the finite element method (FEM) is adopted to compute the SIF range ∆K. Given the
structure, the crack with specific crack length and position can be simulated in the finite element model
by introducing discontinuities between elements.
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Figure 1. The process to obtain the state equation parameters.

The ∆K is then calculated through J-integral after applying the boundary conditions and the
load range ∆P “ Pmax ´ Pmin. To improve the numerical results, singular elements and fine mesh are
applied around the crack tip [32]. By repeating analyses for cracks with different lengths assuming the
crack position is constant, a set of SIF ranges can be acquired. A third-order polynomial approximation
is then applied for the relationship between the crack length and ∆K as expressed in Equation (5):

∆Kpxq “ a0 ` a1x` a2x2 ` a3x3 (5)

where tan, n “ 0, 1, 2, 3u are the polynomial coefficients, x is the crack length.

Calculating Material Constants

Fatigue experiments are performed for a set of this kind of structures to determine the material
constants C and m. The logarithmic transformation of Equation (2) is expressed as Equation (6):

lnp
dx
dN
q “ lnpCq `mlnp∆Kq (6)

where ln(C) and m are the intercept and slope considering the linear relationship between lnpdx{dNq
and lnp∆Kq.

During the experiments, S specimens labeled as
 

Tj, j “ 1, . . . , S
(

are tested and measurements

of the crack lengths txj
i , i “ 1, ..., Mu are performed M times for each specimen. Their corresponding

loading cycles are recorded as tN j
i , i “ 1, ..., Mu. It should be noted that xj

0 is the crack length first

measured, and N j
0 is the corresponding loading cycle. The crack propagation rate at crack length xj

i of
the specimen Tj can be calculated approximately using the experimental data as shown in Equation (7):

ˆ

dx
dN

˙j

i
«

∆xj
i

∆N j
i

“
xj

i ´ xj
i´1

N j
i ´ N j

i´1

(7)

Taking these crack propagation rates tpdx{dNqji , i “ 1, ..., Mu of each specimen with corresponding

SIF ranges t∆Kpxj
iq, i “ 1, ...., Mu, the two parameters lnpCjq and mj of the specimen Tj are calculated

using linear regression [31]. In this paper, the mean value of lnpCjq and the mean value of mj are
adopted as the material constants in the state equation.



Sensors 2016, 16, 320 5 of 21

Estimation of the Crack Propagation Uncertainty

The logarithm transformation of Equation (4) is shown as Equation (8). Empirically, the difference
between the logarithm of the crack propagation rate obtained from the experimental observations
and the one from Paris’ law is used to approximate the crack propagation uncertainty as illustrated in
Equation (9):

lnp
∆x
∆N

q “ lnrCp∆Kqms `ω (8)

ej
i “ lnp

∆xj
i

∆N j
i

q ´ lntCr∆Kpxj
iqs

m
u (9)

where the material constants C and m are determined previously, the difference value ej
i is supposed to

be the crack propagation uncertainty that disturbs the crack propagation rate. Therefore, the variance
σ2

ω of the random variable ω is calculated as the variance of all the difference values from all the
specimens as shown in Equation (10):

σ2
ω « Var

!

ej
i , i “ 1, ..., M, j “ 1, ..., S

)

(10)

where Var denotes the variance of the difference values.
After these processes, the state equation is obtained as Equation (11):

xk “ xk´1 ` exppωqCra0 ` a1xk´1 ` a2x2
k´1 ` a3x3

k´1s
m

∆N (11)

2.2. Active Lamb Wave-Based Measurement Equation

2.2.1. On-Line Crack Monitoring by the Active Lamb Wave Method

The PZTs-based active Lamb wave method is adopted for on-line crack monitoring. Lamb waves
are elastic waves that propagate in plate-like structures. A typical configuration used for crack
monitoring is the pitch-catch way as shown in Figure 2.

Figure 2. The PZTs-based active Lamb wave method for on-line crack monitoring.
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The PZT sensor array is arranged on the structure. After the Lamb wave is excited in the structure
by a PZT, interaction of the Lamb wave with the crack can influence the Lamb wave propagation.
By comparing the received signals under healthy and cracked conditions from other PZTs, the crack
can be estimated.

To evaluate the variations between the baseline signal collected when the structure is healthy and
the monitored signal when the crack propagates in the structure, many damage indices have been
proposed [22]. In this paper, the cross-correlation damage index is adopted to quantify the crack length
as expressed in Equation (12):

DI “ 1´

g

f

f

f

e

t
r t1

t0
H ptqD ptqdtu

2

t
r t1

t0
H2 ptqdt

r t1
t0

D2 ptqdtu
(12)

where H(t) is the baseline signal, D(t) is the monitored signal during the crack propagation process,
t0 and t1 are the sampling start time and stop time. This damage index reflects the phase changes
between the signals caused by the increasing crack length.

2.2.2. Active Lamb Wave-Based Measurement Equation

The measurement equation is defined as Equation (13):

yk “ gpxk, νq (13)

where the function gp¨q represents the relationship between the damage index yk and the crack length
xk, ν is a random variable denoting the measurement uncertainty.

The proposed active Lamb wave-based measurement equation is established by the data driven
method as shown in Figure 3.

Figure 3. The process to establish the measurement equation by the data driven method.

During the fatigue experiment of each specimen Tj, j “ 1, ..., S, the baseline signal is acquired
from the initial state. With the crack propagation in the specimen Tj, damage indices are obtained at M

specific crack lengths txi, i “ 1, ..., Mu, which are denoted as tyj
i , i “ 1, ..., Mu. The mean value of the

damage indices at the crack length xi of all the specimens can be calculated as Equation (14):

yi “

řS
j“1 yj

i

S
(14)

After that, a third order polynomial as shown in Equation (15) is employed to govern the
relationship between the crack length and the mean value of the damage indices:

y “ b0 ` b1x` b2x2 ` b3x3 (15)
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where tbn, n “ 0, 1, 2, 3u are the polynomial coefficients.
The measurement uncertainty is assumed to be normally distributed, which denotes ν „ Np0, σ2

ν q.
With the damage indices obtained from all the specimens, the variance pσ2

v qi of the damage indices at
crack length xi can be approximated as Equation (16):

pσ2
v qi « Var

!

yj
i , j “ 1, ..., S

)

(16)

where Var is the variance of the damage indices.
As a result, the maximum one in the set

 

pσ2
v qi, i “ 1, ..., M

(

is adopted as σ2
v of the measurement

uncertainty to illustrate the capability the proposed method.
Hence, the measurement equation is obtained as Equation (17):

yk “ b0 ` b1xk ` b2x2
k ` b3x2

k ` ν (17)

2.3. On-Line LW-PF-Based Crack Propagation Prognosis Method

Assuming the current time is k, the objective of the prognosis method is to predict the crack
length xk` d, where k + d is the future time of interest. In this paper, the PF is employed to incorporate
the damage index of the actual crack state for a more precise prognostic result, which gives the
conditional pdf ppxk`d |y1:k q with the on-line monitored damage indices y1:k “

 

yj, j “ 1, ..., k
(

.
This conditional pdf represents the probability distribution of xk`d and contains all the available
measurement information to the current time k. Then the estimation of the crack length x̂k`d can be
expressed as Equation (18):

x̂k`d “

ż

xk`d ppxk`d |y1:k qdxk`d (18)

It should be noted that the latest damage index in ppxk`d |y1:k q can be obtained at time k is yk.
There are two procedures in the proposed LW-PF method: the first one is to estimate the posterior pdf
ppxk |y1:k q of the current crack length xk according to the on-line monitored damage indices y1:k. The
second procedure is to predict the future crack length xk`d on the basis of the posterior pdf ppxk |y1:k q.

2.3.1. Estimation of the Posterior Pdf with On-Line Monitored Damage Indices

From a Bayesian perspective, the posterior pdf ppxk |y1:k q of the crack length xk is recursively
calculated with on-line monitored damage indices in two stages: prediction and update.

Suppose the posterior pdf ppxk´1 |y1:k´1 q at time k ´ 1 is obtained. The prior pdf ppxk |y1:k´1 q can
be calculated by Equation (19) in the prediction step, where ppxk |xk´1 q is the transition pdf defined by
Equation (11). Once the damage index yk is obtained, it is used to calculate the posterior pdf ppxk |y1:k q

through Bayes’ theorem as expressed in Equation (20):

Prediction : ppxk |y1:k´1 q “

ż

ppxk |xk´1 qppxk´1 |y1:k´1 qdxk´1 (19)

Update : ppxk |y1:k q “
ppyk |xk qppxk |y1:k´1 q

ppyk |y1:k´1 q
(20)

where ppyk |xk q is the likelihood function defined by the measurement equation, ppyk |y1:k´1 q is
a normalized constant [21].

If the posterior pdf ppxk |y1:k q is obtained, the posterior estimation of the crack length xk can be
calculated as Equation (21):

x̂k “

ż

xk ppxk |y1:k qdxk (21)

However, Equations (19) and (20) do not have analytical solutions in the most cases. The PF
makes the evaluation feasible by resorting to Monte Carlo methods. The basic idea of the PF is to
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approximate the posterior pdf ppxk |y1:k q by means of a set of particles txpiqk , i “ 1, ..., Nsu with their

normalized weights t rwpiqk , i “ 1, ..., Nsu:

ppxk |y1:k q «

Ns
ÿ

i“1

rwpiqk δpxk ´ xpiqk q (22)

where δ is the Dirac delta function, Ns is the number of particles, txpiqk , i “ 1, ..., Nsu are particles
sampled from the pdf ppxk |y1:k q. Since the posterior pdf is difficult to sampled from, instead, these
particles are sampled from a known and easily sampled pdf qpxk|y1:kq called the importance density
function [21]. Hence, the posterior estimation of xk can be expressed as Equation (23), and the
corresponding weight wpiqk is defined as Equation (24):

x̂k “

ż

xk
ppxk |y1:k q

qpxk |y1:k q
qpxk |y1:k qdxk (23)

wpiqk 9
ppxpiqk |y1:kq

qpxpiqk |y1:kq
(24)

If the importance density function is chosen to factorize such that:

qpxk|y1:kq “ qpxk´1|y1:k´1qqpxk|xk´1, y1:kq (25)

the non-normalized weight wpiqk can be derived in a iterative form as shown in Equation (26) [20], and
the weight normalization is given as Equation (27):

wpiqk “ wpiqk´1

ppyk

ˇ

ˇ

ˇ
xpiqk qppxpiqk |x

piq
k´1q

qpxpiqk |y1:kq
(26)

rwpiqk “
wpiqk

řN
i“1 wpiqk

(27)

where, ppyk|x
piq
k q is the likelihood value corresponding to the particle xpiqk given the damage index yk.

Due to the normal distribution assumption of the measurement uncertainty, this likelihood value is
calculated as Equation (28):

ppyk|x
piq
k q “

1
a

2πσ2
v

e
´

yk ´ rb0 ` b1px
piq
k q ` b2px

piq
k q

2
` b3px

piq
k q

3
s

2σ2
v (28)

A common choice of the importance density function is the transition pdf, i.e.,
qpxpiqk |y1:kq “ ppxpiqk |x

piq
k´1q. In this sense, the calculation of the weights can be reduced to Equation (29):

wpiqk “ wpiqk´1 ppyk

ˇ

ˇ

ˇ
xpiqk q (29)

One of the main problems of this PF is the degeneracy phenomenon. After a few iterations, all but
one particle will have negligible weight. The effective sample size Ne f f expressed in Equation (30) is
introduced to evaluate the degradation degree [21]. To deal with this problem, a resampling procedure
is performed when Ne f f is less than a fixed threshold Nth. The resampling eliminates particles with
small weights, copying which have large weights, and setting all the weights to 1{Ns:
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Ne f f “
Ns

1`Varp rwpiqk q
«

1
řNs

i“1 p rw
piq
k q

2 (30)

As a result, the flow chart to estimate the posterior pdf of the crack length is illustrated in Figure 4.

Figure 4. Flow chart for estimating the crack length posterior pdf with the LW-PF.

2.3.2. On-Line Prognosis of Fatigue Crack Propagation

After the posterior pdf ppxk|y1:kq is obtained, the prognosis procedure is performed. During
this procedure, weight updates are no longer taken since no new damage indices can be collected.
The condition pdf ppxk`d |y1:k q is calculated with the posterior pdf ppxk|y1:kq under the hypothesis of
the Markov processes of order one as shown in Equation (31):

ppxk`d|y1:kq “

ż

ppxk|y1:kq

k`d
ź

j“k`1

ppxj|xj´1qdxk:k`d´1 (31)

Replacing ppxk|y1:kq as its approximation with the particles and corresponding weights gives
Equation (32):

ppxk`d|y1:kq «

Ns
ÿ

i“1

rwpiqk

ż

...
ż

ppxk`1|x
piq
k q

k`d
ź

j“k`2

ppxj|xj´1qdxk`1:k`d´1 (32)

These integrals can be evaluated by extending the particle xpiqk using the state equation as
shown in Equation (33). The conditional probability ppxk`d|y1:kq is approximated by the particles

txpiqk`d, i “ 1, ..., Nsu and the unchanged weights t rwpiqk , i “ 1, ..., Nsu as expressed in Equation (34):
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xpiqk`d “ xpiqk`d´1 ` exppωqCr∆Kpxpiqk`d´1qs
m

∆N (33)

ppxk`d |y1:k q «

Ns
ÿ

i“1

rwpiqk δpxk`d ´ xpiqk`dq (34)

After that, the prognostic result of the crack length x̂k`d can be evaluated as Equation (35):

x̂k`d “

Ns
ÿ

i“1

rwpiqk xpiqk`d (35)

2.3.3. Estimation of the Failure Cycle for the Structure

As to the fatigue crack propagation problem, the failure time of the structure may be represented
by the failure cycle N f , which indicates the loading cycle when the cracked structure becomes unusable.
Usually, a threshold crack length xth is defined to evaluate whether this structure is still usable. Once the
crack length exceeds this threshold, the cracked structure is regarded as failed. As mentioned above,
each particle with its weight represents a possible crack propagation path. The failure cycle is estimated
by collecting the loading cycle when each path reaches the threshold xth. The pdf of the failure cycle
can be expressed as Equation (36):

ppN f |y1:kq «

Ns
ÿ

i“1

rwpiqk δpN f ´ N f
piqq (36)

where Npiqf is the failure cycle of the i th crack propagation path.
Then the failure cycle is evaluated as Equation (37):

N̂ f “

Ns
ÿ

i“1

rwpiqk Npiqf (37)

As illustrated in Figure 5, the flow chart shows the process to obtain the crack propagation
prognosis and the estimation of the failure cycle based on the obtained posterior pdf.

Figure 5. Flow chart of the prognosis for the crack propagation and failure cycle.
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3. Experimental Evaluation on Hole-Edge Crack Specimens

3.1. Experimental Setup

The experiments of 6 hole-edge crack specimens were performed to verify the effectiveness of the
proposed method. The specimens were made of 2 mm thick YL12 aluminum plate and labeled from T1

to T6 as shown in Figure 6a.

Figure 6. The hole-edge crack specimens: (a) The specimens; (b) The geometry and PZTs layout.

Table 1 lists their mechanical properties. For each specimen, a 3 mm notch was machined at
the edge of the through hole to initiate the crack and control the crack propagation direction during
the fatigue test. Two PZTs were attached to the specimen and used as the actuator and the sensor
respectively, whose positions are illustrated in Figure 6b.

Table 1. The mechanical properties of LY12.

Material Yield Strength (MPa) Young Modulus (MPa) Tensile Strength (MPa)

LY12 342 69,580 448

The experimental setup is illustrated in Figure 7. The material test system MTS810 was used for
applying the fatigue load. The multi-channel PZT array scanning system developed by the authors’
group [33] was employed to perform the active Lamb wave based monitoring. A 5-cycle tone-burst
signal with the center frequency of 290 kHz and ˘10 V amplitude was used as the excitation signal,
which is expressed in Equation (38). Lamb wave signals were sampled at 10 MHz:

u ptq “ A
ˆ

1´ cos
2π fct

Nc

˙

sin p2π fctq (38)

where Nc = 5, fc is the central frequency, A is the amplitude.
In this validation research, a tensile test was conducted at first for the specimen T6. The ultimate

tensile load of the specimen T6 was obtained as 45 kN. Referring to this result, a sinusoidal load with
peak value Pmax = 15 kN was chosen for the fatigue experiments of the specimens T1 to T5, with the
frequency of 10 Hz and the load ratio R = Pmin/Pmax = 0.1.
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Figure 7. The experimental setup.

3.2. Fatigue Crack Propagation and Damage Indices

The signal under the initial state of each specimen was collected as the baseline signal. Figure 8
illustrates a set of typical Lamb wave signals obtained as the fatigue crack propagation of the specimen
T1. It is observed that the amplitudes and phases of the signals are influenced by the increasing
crack lengths.

Figure 8. The typical Lamb wave signals of specimen T1: (a) Whole signal; (b) Local magnification.

As illustrated in Figure 9, the fatigue crack propagation results of the specimens T1–T5 are
recorded at 2 mm crack length intervals.
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Figure 9. The crack lengths versus the loading cycles.

Obvious uncertainties can be seen in the results. The corresponding damage indices are presented
in Figure 10. It can be observed that the damage indices of each specimen are capable of representing
the crack propagation process, and likewise measurement uncertainty exists.

Figure 10. The damage indices versus the crack lengths.

3.3. On-Line Crack Propagation Estimation and Prognosis of the Specimen T5

In this validation research, the specimen T5 was used as the target structure and deemed as
unknown. For the on-line crack propagation prognosis of the specimen T5, the information of the crack
propagation of this kind of structure should be extracted to establish the state space model. Thus, the
fatigue experiments of the specimens T1–T4 were conducted ahead to establish the state space model
of the specimen T5.

3.3.1. Establishing the State Space Model for the Specimen T5

As the process described in Section 2, the expression of ∆K was obtained as Equation (39):

∆K “ 0.016x3 ´ 0.728x2 ` 19.322x` 466.826 (39)

The material parameters
 

rlnpCjq, mjs, j “ 1, ..., 4
(

of the specimens T1–T4 were calculated as
shown in Table 2, where the subscript j represents the specimen Tj. The mean values ln(C) = ´32, and
m = 3.897 were chosen as the material constants C and m in the state equation.
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Table 2. The material parameters calculated from the specimens T1–T4.

Specimen ln(C) m

T1 ´32.949 4.050
T2 ´30.932 3.739
T3 ´32.153 3.924
T4 ´31.966 3.874

Mean ´32.000 3.897

The variance of the crack propagation uncertainty was approximated as σ2
ω “ 0.1662 with the

method mentioned above. The state equation is expressed as Equation (40):

xk “ xk´1 ` exppωq ˆ expp´32q ˆ p0.016xk´1
3 ´ 0.728xk´1

2 ` 19.322xk´1 ` 466.826q
3.897

∆N (40)

To obtain the measurement equation, the mean values of the damage indices were calculated by
Equation (14) excluding the singular point. As shown in Figure 11, the 3rd order polynomial fit is
applied for the mean values, which gives Equation (41):

y “ ´2.962ˆ 10´5 ¨ x3 ` 0.00156x2 ´ 0.00656x` 0.00798 (41)

Figure 11. The relationship of damage index versus the crack length.

The variance of the measurement uncertainty was approximated from the experimental data
as expressed in Equation (16). The maximum value pσ2

ν qmax “ 0.0752 was adopted in this paper.
As a result, the measurement equation was obtained as Equation (42):

yk “ ´2.962ˆ 10´5 ¨ x3
k ` 0.00156x2

k ´ 0.00656xk ` 0.00798` ν (42)

where the variable ν subjects to normal distribution Np0, 0.0752q.

3.3.2. On-Line Crack Propagation Estimation and Prognosis

The particle number and the resampling threshold of the PF algorithm was set to Ns “ 2000,
Nth “ 0.8Ns respectively. The loading cycle step was chosen as ∆N = 50 cycles. The initial crack length
is 3 mm. The Ns random samples from the distribution Np3, 0.62q were adopted as the initial particles
to obtain a diverse particle set. When the crack length exceeds the predefined threshold xth “ 31 mm,
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the structure is considered to be in a very critical state where the crack tip is close to the structure
boundary, and is defined as structural failure.

The specimen T5 was regarded as unknown and monitored by the active Lamb wave method.
The damage indices extracted from the specimen T5 were used as the measurements of the actual crack
lengths to estimate the posterior pdf of the crack length. The damage index was sequentially collected
on-line. Once a new damage index was obtained, it was used for updating the weight. Figure 12
illustrates the posterior estimation and prognosis procedures with the proposed LW-PF based method.
After the posterior pdf of the crack length is obtained using the available damage indices, the prognosis
procedure is conducted based on the obtained posterior pdf. Each particle with the corresponding
weight represents a possible crack propagation path. Taking all the possible paths, the prognostic
values of the crack length in the future can be calculated, as well as the failure cycle.

Figure 12. The estimation and prognosis procedures of the crack length with the LW-PF.

As shown in Figure 13, the posterior estimations of the crack length considering all the damage
indices are closer to the experiment results comparing with the results calculated directly by Paris’
law. This is because the LW-PF-based method takes advantage of the on-line monitored information
with the crack propagation model. Table 3 gives the crack lengths estimated at N = 7848, N = 17,281,
N = 23,286 cycles. As to the experimental results, it can be found that the errors of the LW-PF-based
method are smaller than those obtained by Paris’ law.

Figure 13. The crack propagation paths estimated with LW-PF and Paris’ Law.
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Table 3. The posterior estimation of the crack length for the specimen T5.

Fatigue Load (Cycles) N = 7848 N = 17,281 N = 23,286

Experimental result (mm) 7 15 23
Posterior estimation (mm) 7.71 15.92 23.99

Result of the Paris’ law (mm) 7.74 16.97 27
Error of the posterior estimation (mm) 0.71 0.92 0.99

Error of the Paris’ law (mm) 0.74 1.97 4

Moreover, the crack propagation paths predicted at loading cycles N = 7848, N = 17,281, N = 23,286
are shown in Figure 14. From these figures, it can be observed that the prognostic values of the crack
lengths gradually approach the experimental results. Considering the prognostic value of the crack
length at the future loading cycles N = 26,620, the results obtained at different cycles are shown in
Table 4. The prognostic value of the proposed method becomes closer to the experimental value
as more damage indices are available. Furthermore, the standard deviation of the prognostic pdf
represented by the particles and corresponding weights decreases, which indicates the capability of
uncertainty reduction of the proposed method.

Figure 14. The crack propagation prognosis of the specimen T5 at: (a) N = 7848; (b) N = 17,281;
(c) N = 23,286 cycles.
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Table 4. The prognostic crack length of the specimen T5 for N = 26,620 cycles.

Fatigue Load (Cycles) N = 7848 N = 17,281 N = 23,286 Paris’ Law Experiment Result

Mean (mm) 40.2 35.1 32.7 43.1 31
Error of the mean (mm) 9.2 4.1 1.7 12.1 N/A
Standard deviation (mm) 5.99 5.16 3.27 N/A N/A

3.3.3. Failure Cycle Estimation of the Specimen T5

The crack length threshold is defined as xth “ 31 mm. Once the crack length exceeds this
threshold, the cracked structure is regarded as failed and the estimation of the failure cycle is obtained
as expressed in Equation (37). The relative error of the failure cycle is specified as the percentage of the
experimental failure cycle as shown in Equation (43):

Relative error “
Estimated failure cycle-Experimental failure cycle

Experimental failure cycle
ˆ 100% (43)

As illustrated in Table 5, the estimations of the failure cycle at N = 7848, 17,281, 23,286 cycles
are obtained, respectively. From the relative error of the estimated failure cycle, it can be found that
the results have been improved by using the proposed method. As more damage indices become
available, the prognostic estimation becomes more accurate, which shows the advantages of the
proposed method.

Table 5. The estimation of the failure cycle for the specimen T5.

Fatigue Load (Cycles) N = 7848 N = 17,281 N = 23,286 Paris’ Law Eexperimental Data

Failure cycle (cycles) 25,116 25,903 26,357 23,840 26,620
Relative error 5.6% 2.6% 1.0% 10% N/A

3.4. Cross Validation Performed on the Specimen T3

For better validating the proposed method, a leave-one-out cross validation approach was
employed by picking a different specimen as the target structure. In this validation, the specimen T3

was picked as the validation specimen instead, while the experimental data of the specimens T1, T2,
T4, T5 was used for calculating the state space model parameters. By the same procedure, the state
space model parameters of the specimen T3 were obtained as shown in Table 6.

Table 6. The state space model parameters of the specimens T3.

Parameter ln(C) m σ2
ω Measurement Mapping σ2

v

Value ´32.405 3.960 0.1692 y “ ´4.234 ˆ 10´5x3 ` 2.104 ˆ 10´3x2 ´ 1.183 ˆ

10´2x ` 1.963 ˆ 10´ 2 0.1042

The parameters of the PF algorithm, including the particle number, the resampling threshold, and
the loading cycle step were set as the same values of the specimen T5. Figure 15 shows the posterior
estimation of the crack propagation path considering all the damage indices. Similarly, the posterior
estimations are closer to their experimental results comparing with the results using the Paris’ law.
The estimations of the LW-PF based method at load cycles N = 7266, N = 16,514, N = 22,588 are shown
in Table 7.
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Figure 15. The posterior estimation of the specimen T3 considering all the damage indices.

Table 7. The posterior estimations of the crack length for the specimen T3.

Fatigue Load (Cycles) N = 7266 N = 16,514 N = 22,588

Experimental result (mm) 7 15 23
Posterior estimation (mm) 7.28 15.71 23.51

Result of the Paris’ law (mm) 7.4 16.61 27.3
Error of the posterior estimation (mm) 0.28 0.71 0.51

Error of the Paris’ law (mm) 0.4 1.61 4.3

The crack propagation paths of the specimen T3 predicted at loading cycles N = 7266, N = 14,514,
N = 22,588 are obtained as shown in Figure 16. In addition, Table 8 presents the prognostic crack length
of the specimen T3 at future loading cycles N = 26,091. On the other hand, the estimations of the failure
cycle obtained at loading cycles N = 7266, N = 16,514, N = 22,588 are shown in Table 9.

Figure 16. Cont.
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Figure 16. The crack propagation prognosis of the specimen T3 at: (a) N = 7266; (b) N = 16,514;
(c) N = 22,588 cycles.

Table 8. The prognostic crack length of the specimen T3 for N = 26,091 cycles.

Fatigue Load (Cycles) N = 7266 N = 16,514 N = 22,588 Paris’ Law Experiment Result

Mean (mm) 36.7 34.9 31.5 36.9 31
Error of the mean (mm) 5.7 3.9 0.5 5.9 N/A
Standard deviation (mm) 7.4 6.2 4.0 N/A N/A

Table 9. The estimation of the failure cycle for the specimen T3.

Fatigue Load (Cycles) N = 7266 N = 16,514 N = 22,588 Paris Law Eexperimental
Data

Failure cycle (cycles) 24,851 25,160 25,936 24,820 26,091
Relative error 4.7% 3.5% 0.6% 8.8% N/A

The validation experiment of the specimen T3 have also shown the advantage of the proposed
method. By integrating the on-line monitored damage indices, the posterior estimations are more
accurate than those obtained by Paris’ Law. Moreover, the prognostic crack propagation paths are
improved as more damage indices are available, as well as the estimations of the failure cycle.

4. Conclusions

This paper proposes a LW-PF-based method for on-line crack propagation prognosis.
In this method, the active Lamb wave-based method is employed for on-line crack monitoring.
The cross-correlation damage indexes extracted from Lamb wave signals are used for measuring the
actual crack length. To implement the PF algorithm, the parameters of the physical model-based state
equation and the measurement equation are proposed to be predetermined through finite element
analysis and data driven methods. The PF gives the probabilistic result for the crack propagation
prognosis and the failure cycle estimation by integrating the on-line crack length measurements.
The validation experiments performed on the hole-edge crack specimens have shown the capability of
the proposed method.
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