Microfluidic Devices for Terahertz Spectroscopy of Live Cells Toward Lab-on-a-Chip Applications
Abstract
:1. Introduction
2. Microfluidic Chip
2.1. Chip Design and Fabrication
2.2. Cell Trapping
2.3. Thermal Distribution
3. THz Spectroscopy of the Live Cell Microfluidic Chip
3.1. Configuration
3.2. Measurement Procedure
4. Results
4.1. E. coli Solution
4.2. T-cell Solution
4.3. Chip Optimization Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
CW | Continuous-wave |
DEP | Dielectrophoresis |
E. coli | Escherichia coli |
LB | Luria Bertani |
PDMS | Polydimethylsiloxane |
RPMI | Roswell Park Memorial Institute |
SNR | Signal-to-noise ratio |
THz | Terahertz |
TDS | Time-domain spectroscopy |
References
- Siegel, P.H. Terahertz technology in biology and medicine. IEEE Trans. Microw. Theory Tech. 2004, 52, 2438–2446. [Google Scholar] [CrossRef]
- Wilmink, G.J.; Grundt, J.E. Current state of research on biological effects of terahertz radiation. J. Infrared Millim. Terahertz Waves 2011, 32, 1074–1122. [Google Scholar] [CrossRef]
- Heilweil, E.J.; Plusquellic, D.F. Terahertz spectroscopy of biomolecules. In Terahertz Spectrocopy: Principles and Applications. Optical Science and Engineering; CRC Press: Boca Raton, USA, 2007; pp. 269–297. [Google Scholar]
- Markelz, A.; Roitberg, A.; Heilweil, E. Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz. Chem. Phys. Lett. 2000, 320, 42–48. [Google Scholar] [CrossRef]
- Kistner, C.; André, A.; Fischer, T.; Thoma, A.; Janke, C.; Bartels, A.; Gisler, T.; Maret, G.; Dekorsy, T. Hydration dynamics of oriented DNA films investigated by time-domain terahertz spectroscopy. Appl. Phys. Lett. 2007. [Google Scholar] [CrossRef]
- Born, B.; Weingärtner, H.; Bründermann, E.; Havenith, M. Solvation dynamics of model peptides probed by terahertz spectroscopy. Observation of the onset of collective network motions. J. Am. Chem. Soc. 2009, 131, 3752–3755. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Plaxco, K.W.; Allen, S.J. Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy. Protein Sci. 2006, 15, 1175–1181. [Google Scholar] [CrossRef] [PubMed]
- Globus, T.; Dorofeeva, T.; Sizov, I.; Gelmont, B.; Lvovska, M.; Khromova, T.; Chertihin, O.; Koryakina, Y. Sub-THz vibrational spectroscopy of bacterial cells and molecular components. Am. J. Biomed. Eng. 2012, 2, 143–154. [Google Scholar] [CrossRef]
- Globus, T.; Moyer, A.M.; Gelmont, B.; Khromova, T.; Lvovska, M.I.; Sizov, I.; Ferrance, J. Highly resolved Sub-Terahertz vibrational spectroscopy of biological macromolecules and cells. IEEE Sens. J. 2013, 13, 72–79. [Google Scholar] [CrossRef]
- George, P.A.; Hui, W.; Rana, F.; Hawkins, B.G.; Smith, A.E.; Kirby, B.J. Microfluidic devices for terahertz spectroscopy of biomolecules. Opt. Express 2008, 16, 1577–1582. [Google Scholar] [CrossRef] [PubMed]
- Laurette, S.; Treizebre, A.; Bocquet, B. Co-integrated microfluidic and THz functions for biochip devices. J. Micromech. Microeng. 2011. [Google Scholar] [CrossRef]
- Fan, F.; Gu, W.H.; Wang, X.H.; Chang, S.J. Real-time quantitative terahertz microfluidic sensing based on photonic crystal pillar array. Appl. Phys. Lett. 2013, 102. [Google Scholar] [CrossRef]
- Mendis, R.; Astley, V.; Liu, J.; Mittleman, D.M. Terahertz microfluidic sensor based on a parallel-plate waveguide resonant cavity. Appl. Phys. Lett. 2009, 95. [Google Scholar] [CrossRef]
- Green, N.; Ramos, A.; González, A.; Morgan, H.; Castellanos, A. Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements. Phys. Rev. E. 2000, 61, 4011–4018. [Google Scholar] [CrossRef]
- Wong, P.K.; Chen, C.Y.; Wang, T.H.; Ho, C.M. Electrokinetic bioprocessor for concentrating cells and molecules. Anal. Chem. 2004, 76, 6908–6914. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Marshall, D. Microfluidics for single cell analysis. Curr. Opin. Biotechnol. 2012, 23, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Pethig, R. Dielectrophoresis: Status of the theory, technology, and applications. Biomicrofluidics 2010, 4, 1–35. [Google Scholar] [CrossRef] [PubMed]
- Pethig, R. Dielectrophoresis: An assessment of its potential to aid the research and practice of drug discovery and delivery. Adv. Drug Deliv. Rev. 2013, 65, 1589–1599. [Google Scholar] [CrossRef] [PubMed]
- Ning, Y.; Multari, C.; Luo, X.; Palego, C.; Cheng, X.; Hwang, J.C.M.; Denzi, A.; Merla, C.; Apollonio, F.; Liberti, M. Broadband electrical detection of individual biological cells. IEEE Trans. Microw. Theory Tech. 2014, 62, 1905–1911. [Google Scholar] [CrossRef]
- Leroy, J.; Dalmay, C.; Landoulsi, A.; Hjeij, F.; Mélin, C.; Bessette, B.; Bounaix Morand du Puch, C.; Giraud, S.; Lautrette, C.; Battu, S.; et al. Microfluidic biosensors for microwave dielectric spectroscopy. Sens. Actuators A Phys. 2014, 229, 172–181. [Google Scholar] [CrossRef]
- Abduljabar, A.A.; Yang, X.; Barrow, D.A.; Porch, A. Modelling and measurements of the microwave dielectric properties of microspheres. IEEE Trans. Microw. Theory Tech. 2015, 63, 4492–4500. [Google Scholar] [CrossRef]
- Grenier, K.; Dubuc, D.; Poleni, P.E.; Kumemura, M.; Toshiyoshi, H.; Fujii, T.; Fujita, H. New broadband and contact less RF / microfluidic sensor dedicated to bioengineering. In Proceedings of Microwave Symposium Digest, 2009. MTT '09. IEEE MTT-S International, Boston, MA, USA, 7–12 June 2009; pp. 1329–1332.
- Nuss, M.C.; Joseph, O. Terahertz time-domain spectroscopy. In Millimeter and Submillimeter Wave Spectroscopy of Solids; Grüner, G., Ed.; Springer-Verlag: Berlin Heidelberg: Germany, 1998; Volume 74, pp. 7–50. [Google Scholar]
- Mickan, S.P.; Xu, J.; Munch, J.; Zhang, X.C.; Abbott, D. The limit of spectral resolution in THz time-domain spectroscopy. In Proceedings of SPIE 5277, Photonics: Design, Technology, and Packaging, Perth, Australia, 25 March 2004; pp. 54–64.
- Podzorov, A.; Gallot, G. Low-loss polymers for terahertz applications. Appl. Opt. 2008, 47, 3254–3257. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Liang, M.; Xin, H. Terahertz Metasurface for Potential Live Cell Sensing Application. In Proceedings of IEEE International Symposium on Antennas and Propagation and USNC-URSI National Radio Science Meeting, Orlando, FL, USA, 7–13 July 2013.
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, Q.; Liang, M.; Lu, Y.; Wong, P.K.; Wilmink, G.J.; Zhang, D.D.; Xin, H. Microfluidic Devices for Terahertz Spectroscopy of Live Cells Toward Lab-on-a-Chip Applications. Sensors 2016, 16, 476. https://doi.org/10.3390/s16040476
Tang Q, Liang M, Lu Y, Wong PK, Wilmink GJ, Zhang DD, Xin H. Microfluidic Devices for Terahertz Spectroscopy of Live Cells Toward Lab-on-a-Chip Applications. Sensors. 2016; 16(4):476. https://doi.org/10.3390/s16040476
Chicago/Turabian StyleTang, Qi, Min Liang, Yi Lu, Pak Kin Wong, Gerald J. Wilmink, Donna D. Zhang, and Hao Xin. 2016. "Microfluidic Devices for Terahertz Spectroscopy of Live Cells Toward Lab-on-a-Chip Applications" Sensors 16, no. 4: 476. https://doi.org/10.3390/s16040476
APA StyleTang, Q., Liang, M., Lu, Y., Wong, P. K., Wilmink, G. J., Zhang, D. D., & Xin, H. (2016). Microfluidic Devices for Terahertz Spectroscopy of Live Cells Toward Lab-on-a-Chip Applications. Sensors, 16(4), 476. https://doi.org/10.3390/s16040476