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Abstract: Phenomics is a technology-driven approach with promising future to obtain unbiased data
of biological systems. Image acquisition is relatively simple. However data handling and analysis
are not as developed compared to the sampling capacities. We present a system based on machine
learning (ML) algorithms and computer vision intended to solve the automatic phenotype data
analysis in plant material. We developed a growth-chamber able to accommodate species of various
sizes. Night image acquisition requires near infrared lightning. For the ML process, we tested three
different algorithms: k-nearest neighbour (kNN), Naive Bayes Classifier (NBC), and Support Vector
Machine. Each ML algorithm was executed with different kernel functions and they were trained
with raw data and two types of data normalisation. Different metrics were computed to determine the
optimal configuration of the machine learning algorithms. We obtained a performance of 99.31% in
kNN for RGB images and a 99.34% in SVM for NIR. Our results show that ML techniques can speed
up phenomic data analysis. Furthermore, both RGB and NIR images can be segmented successfully
but may require different ML algorithms for segmentation.

Keywords: computer vision; image segmentation; machine learning; data normalisation;
circadian clock

1. Introduction

The advent of the so-called omics technologies has been a major change in the way experiments
are designed and has driven new ways to approach biology. One common aspect to these
technology-driven approaches is the continuous decrease in price in order to achieve high throughput.
As a result biology has become a field where big data accumulates, and which requires analytical
tools [1]. The latest newcomer in the field of automatic sampling is the so-called phenomics.
It comprises any tool that will help acquire quantitative data of phenotypes. Plant growth and
development can be considered as a combination of a default program that interacts with biotic and
abiotic stresses, light and temperature to give external phenotypes. And measuring, not only the
outcome or end point, but also kinetics and their changes is becoming increasingly important to
understand plants as a whole and become more precise at experimental designs. One of the newest
developments is automatic image acquisition [2].

One of the fields where automatic image acquisition has defined its development is circadian clock
analysis as promoters driving reporter genes such as luciferase or Green Fluorescent Protein allowed
the identification of mutants and further characterization of the gene network at the transcriptional
level [3,4]. Artificial vision systems have been used to study different aspects of plant growth and
development such as root development [5], leaf growth [6], flowers and shoots [7] or seedling [8].
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An important challenge of image acquisition in plant biology is the signalling effect of different light
wavelengths including blue light, red and far red. As a result image acquisition in the dark requires
infrared lightning [7,9].

Phenotyping of small plants such as Arabidopsis thaliana can be performed with a vertical camera
taking pictures of rosettes at time intervals [10]. Larger plants or the parallel phenotyping of several
traits require image acquisition from lateral positions [11]. Thus obtaining lateral images or the
reconstruction of 3-dimensional images is performed by combination of cameras or moving them to
acquire images [12].

Although hardware development requires a multidisciplinary approach, the bottleneck lies in
image analysis. Ideally images should be analysed in an automatic fashion. The number of images
to be processed when screening populations or studying kinetics can easily go into the thousands.
The partition of digital images into segments, known as segmentation is a basic process allowing the
acquisition of quantitative data that may be a number of pixels of a bidimensional field, determining
the boundaries of interest in an object [13]. Segmentation discriminates between background and
defines the region under study and is the basis for further data acquision.

The development of artificial intelligence processes based on machine learning (ML) has
been an important step in the development of software for omic analysis and modelling [14].
Examples include support vector machines (SVM) for Illumina base calling [15], k-nearest neighbour
(kNN) classification for protein localization [16] or Naïve Bayes Classifiers for phylogenetic
reconstructions [17]. Furthermore, ML approaches have been used extensively in image analysis
applied to plant biology and agriculture [18,19].

Plant growth occurs in a gated manner i.e., it has a major peak during the late night in hypocotyls,
stems or large leaves [11,20,21]. This is the result of circadian clock regulation of genes involved in
auxin and gibberellin signalling and cell expansion [22]. One of the inputs to the circadian clock is
blue light transmitted through proteins that act as receptors such as ZEITLUPE/FLAVIN-BINDING,
KELCH REPEAT, F-BOX and LOV KELCH PROTEIN2 [23,24]. Phytochromes absorb red and far red
light such as PHYTOCHROME A [25,26]. As a result night image acquisition has to be done with
near infrared (NIR) light giving the so-called extended night signal [27]. The aim of this work was to
develop the corresponding algorithms to obtain data from day and night imaging. We used machine
learning to analyse a set of images taken from different species during day and night. We used the
aforementioned SVM, NBC and kNN to obtain image segmentations. Our results demonstrate that
ML has great potential to tackle complex problems of image segmentation.

2. Materials and Methods

Figure 1a shows a schematic of the system. The data acquisition system is composed of four
modules which we describe below.
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2.1. Ilumination Subsystem

We pursued two goals with the illumination subsystem. First we wanted to grow plants under
conditions close to their natural environments and second we wanted to acquire pictures during the
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night-time without interfering with the behaviour of the plant. For this purpose, we have established
two illumination periods: daytime and night-time. The illumination subsystem is composed of two
LED (light-emitting diode) panels which, allows to carry-out the capture image process and the same
time it allows to supply the precise combination of the wavelengths for growing up correctly.

The daytime LED panel is formed by a combination of five types of LEDs emitting wavelengths
with peaks in UV light (290 nm), blue light (450 and 460 nm) and red light (630 and 660 nm). The LED
panel has a power of fifty watts. It is usually used for indoor growing of crop plants. The merging of
wavelengths produces an illumination with a pink-red appearance (Figure 2a).

The night-time LED panel is composed by a bar of 132 NIR LEDs (three rows of forty four LEDs)
with a wavelength of 850 nm (Figure 2b).

We programmed a system that would give a day/night timing whereby day light was created
by turning on the daytime LED. In order to capture night images, the night-time LED panel was
turned on for a period between 3 and 5 s coupled to an image capture trigger. The system can be
programmed by the user for different periods of day and night lengths and time course of picture
acquisition. The minimal period is one picture every 6 s and the maximal is one picture in 24 h.
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2.2. Capture Subsystem

The capture module is in charge of image capture during day and night and the control of
the illumination subsystem. The main capture subsystem element is a multispectral 2-channel
Charge-Coupled Device (CCD) camera. A prism placed in the same optical path between the lens and
CCDs allows a simultaneous capture the visible (or RGB) and NIR image (see Figure 3a). This feature
has reduced the amount of cameras being used by the system and has avoided the construction
of a mechanical system to move the lenses or the cameras in front of the plants. The camera has
a resolution of 1024 (h) ˆ 768 (v) active pixels per channel. During day and night a resolution of 8 bit
per pixel was used in all the channels (R-G-B-NIR). Figure 3b,c shows the response of the NIR-CCD
and RGB-CCD of the multispectral camera.

Capture and illumination subsystems are controlled via a GUI developed in C/C++ (Figure 4a,b).
It comprises eight digital input/output channels and six analog ones in an USB-GPIO module
(Figure 5a). The system had 10 bit resolution. It was configured using the termios Linux library
in C/C++.

The second component was the optocoupler relay module. It had four optocoupled outputs,
optocoupled to a relay triggering at voltages between 3 and 24 V. Both day light and night light LEDs
were connected to two relays (Figure 5b), in such a way that the configuration via the control software
dictates the beginning of image acquisition, triggers light turning on or off coordinating the light
pulses with the camera during the day and night.
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2.3. Image Processing Module

Each experiment generates two types of images: one NIR image during the night-time and another
RGB image during the daytime. In order to obtain an automatic image segmentation, we designed
an algorithm to classify the objects from the images of the experiment in two groups: organs and
background. The algorithm developed is divided in three stages.

2.3.1. Extraction of Samples of Images Representative from the Different Classes

During the first stage of the algorithm we have selected a set of representative samples formed by
n matrix with size of k ˆ k pixels of each class. The size of the regions can be of 1 ˆ 1, 16 ˆ 16, 32 ˆ 32,
64 ˆ 64 or 128 ˆ 128 pixels. This will depend of size and morphology of the organ to be classified and
of the period of the daytime or night-time involved. During the day we used a single pixel per channel
while we used the larger pixel regions to increase the information obtained in the IR channel.

2.3.2. Features Vector

The feature vector is usually composed by a wide variety of different types of features. The most
utilized features are related to: intensity of image pixels [28], geometries [29] and textures (first
and second-order statistical features) [30,31]. In addition the feature vector is computed over image
transformations such as Fourier, Gabor, and Wavelet [32]. Colour images comprise three channels for
R, G and B. As a result the amount of information is multiplied by three and the number of possible
combinations and image transformations are incremented.

We have applied two types of features vector techniques depending whether the image was
captured during daytime (RGB image) or night-time (NIR images). We tested several colour spaces to
construct the features vector of daytime: RGB primary space, HSV perceptual space and CIE L*a*b*
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luminance-chrominance space [33]. The use of a single colour space produced poor results. In order to
improve the performance we increased the number of feature vectors. We used cross combinations of
the RGB, CIE L*a*b*, HSV and found that the best performance was with RGB and CIE L*a*b*. Thus we
constructed the features vector formed by the pixel the corresponding pixel values. In the NIR images,
we used a features vector computed over two decomposition levels of the Haar wavelet transform.

Colour Images

The features vector of the colour images is composed of six elements extracted from the pixel
values of two colour spaces: RGB and CIE L*a*b*. We selected a large set of random pixels of each class
to construct the features vector Figure 6a (organs-class1-green and background-class2-white). It was
necessary to convert RGB colour space of the original image to CIE L*a*b* colour space. Figure 6b
shows the twenty values of the features vector of class 1.
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NIR Images

Discrete Wavelet Transformation (DWT) generates a set of values formed by the “wavelet
coefficients”. Being f (x, y) an image of M ˆ N size, each level of wavelet decomposition is formed by
the convolution of the image f (x, y) with two filters: a low-pass filter (LPF) and a high-pass filter (HPF).
The different combinations of these filters result in four images here described as LL, LH, HL and HH.
In the first decomposition level four subimages or bands are produced: one smooth image, also called
approximation, f p1qLL px, yq, that represents an approximation of the original image f (x, y) and three detail

subimages f p1qLH px, yq, f p1qHL px, yq and f p1qHH px, yq, which represent the horizontal, vertical and diagonal
details respectively. There are several wavelet mother functions that can be employed, like Haar,
Daubechies, Coiflet, Meyer, Morlet, and Bior, depending on the specific problem to be identified [34,35].
Figure 7 shows the pyramid algorithm of wavelet transform in the first decomposition level.
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In this work we have computed a features vector based on the wavelet transform with basis
Haar [36]. The features vector is formed of four elements: maximum, minimum, mean and Shannon
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entropy of coefficients wavelets calculated in the horizontal, vertical and diagonal subimages in two
decomposition levels (see Equations (1)–(5)): We have eliminated the approximation subimage due to
it contains a representation decimated of the original image:

f1, .., 6 “ max
!

f plqLH px, yq , f plqLH px, yq , f plqLH px, yq
)

,@l “ 1, 2 (1)

f7,..,12 “ min
!

f plqLH px, yq , f plqLH px, yq , f plqLH px, yq
)

, @l “ 1, 2 (2)

f13,..,18 “ mean
!

f plqLH px, yq , f plqLH px, yq , f plqLH px, yq
)

, @l “ 1, 2 (3)

f19, ..,24 “ shannon_entropy
!

f plqLH px, yq , f plqLH px, yq , f plqLH px, yq
)

,@l “ 1, 2 (4)

Shannon Entropy is calculated as the Equation (5):

shannon_entropy
´

fplqs

¯

“ ´

M{2l
ÿ

i“1

N{2l
ÿ

j“1

p
`

wij
˘

log2
`

p
`

wij
˘˘

(5)

The letter l represents the value of the wavelet decomposition level, s the subimages (LL, HL, LH,
HH) created in the wavelet decomposition, and wij represents the wavelet coefficient (i, j), located
in the s-subimage, at l-decomposition level. p represents the occurrence probability of the wavelet
coefficient wij.

Feature vector has been obtained applying the Equations (1)–(5) to each region in two wavelet
decomposition levels with Haar basis. The result was a feature vector of twenty-four elements ( f1,..,24)
per region of size k ˆ k.

2.3.3. Classification Process

We have tested three machine-learning algorithms: (1) k-nearest neighbour (kNN); (2) naive Bayes
classifier (NBC), and Support Vector Machine (SVM). The algorithms selected belong to the type of
supervised classification. These type of algorithms require of a training stage before performing the
classification process.

kNN classifier is a non-parametric method for classifying objects in a multi-dimensional space.
After being trained, kNN assigns a specific class to a new object depending on the majority of votes
from its neighbours. This measure is based in metrics such as Euclidean, Hamming or Mahalanobis
distances. In the implementation of kNN algorithm it is necessary to assign an integer value to k.
This parameter represents the k-neighbors used to carry-out the voting classification. A k optimal
determination will allow that the good model adjusts to future data [37]. It is recommendable to use
data normalisation coupled to kNN classifiers in order to avoid the predominance of big values over
small values in the features vector.

NBC uses a probabilistic learning classification. Classifiers based on Bayesian methods utilize
training data to calculate an observed probability of each class based on feature values. When the
classifier is used later on unlabeled data, it uses the observed probabilities to predict the most likely
class for the new features. As NBC works with probabilities it does not need data normalization.

SVM is a supervised learning algorithm where given labeled training data, it outputs a boundary
which divides data by categories and categorizes new examples. The goal of a SVM is to create
a boundary, called hyperplane, which leads to homogeneous partitions of data on either side. SVMs
can also be extended to problems were the data are not linearly separable. SVMs can be adapted for
use with nearly any type of learning task, including both classification and numeric prediction. SVM
classifier tend to perform better after data normalisation.

In this work we have used raw data and two types of normalisation procedures which have
been computed over features space: dn0: without normalisation; dn1: mean and standard-deviation
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normalization and dn2: mode and standard-deviation normalisation. Features space of each class is
composed by a m ˆ n matrix (see Equation (6)):
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Being i-th row, the vector of features i-th of features space formed by n features. m represents the
number of vectors in the features space and nC represents the number of classes in th space.

The normalised features space, Fnc
ij , depending on the normalisation types (dn0, dn1, dn2) is

computed as is shown in the Equation (7):
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(7)

To obtain the best result in classification process, the ML algorithms were tested with different
configuration parameters. kNN was tested with Euclidean and Minkowski distances with three type
of data normalisation, NBC was tested with Gauss and Kernel Smoothing Functions (KSF) without
data normalisation, and SVM was tested with linear and quadratic functions, on three types of data
normalisation. The ML algorithms used two classes of objects. One for the plant organs and a second
one for the background. In all of them we applied the leave-out cross validation (LOOCV) method
to measure of the error of the classifier. Basically LOOCV method extracts a sample of the training
set and it constructs the classifier with the remaining of the training samples. Then it evaluates the
classification error and the process is repeated for all the training samples. At end the LOOCV method
computes the mean of the errors and it obtains a measure of how model is adjusted to data. This
method allows comparing the results of the different ML algorithms, provided that they will be applied
to same sample data. Table 1 shows a summary of parameters used for the classification process.

Table 1. kNN, NBC and SVM configuration parameters.

Configuration kNN NBC SVM

method Euclidean, Minkowski Gauss, KSF Linear, quadratic
data normalisation dn0, dn1, dn2 dn0 dn1, dn2

metrics LOOCV, ROC LOOCV, ROC LOOCV, ROC
classes 2 2 2
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2.4. Experimental Validation

In order to test and validate the functioning of the system and ML methods, acquired pictures
of Antirrhinum majus and Antirrhinum linkianum were used to analyse growth kinetics. The camera
was positioned above the plants under study. The daylight LED panel was above the plants while the
night-time LED was at a 45˝. Data acquisition was performed for a total of six days. We obtained one
image every 10 min during day and night. Day night cycles were set to 12:12 h and triggering of the
NIR LED for image acquisition during the night was done for a total of 6 s.

In the experiment we obtained 864 colour images from the RGB sensor which were transformed
to CIE L*a*b* colour space and 864 gray scale images from the NIR sensor. From each group (RGB
and NIR images) we obtained fifty ground-truth images which were segmented manually by human
experts. From the fifty ground-truth colour images, we selected 1200 samples of 1 pixel, which we
used to train the RGB image processing ML algorithms. From the second fifty ground-truth NIR
images we took 1200 regions of 32 ˆ 32 pixels which were to train the NIR image processing ML
algorithms. In both cases we selected 600 samples belonging to organs class and 600 samples belonging
to background class.

Figure 8 shows two images from each day of the experiment for different capture periods. We can
distinguish easily the growth stages of the two species during the daytime and night-time.
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3. Results and Discussion

We evaluated the results of training stage of the ML algorithms with a leave-one-out
cross-validation method (LOOCV) and with the Receiver Operating Characteristic (ROC) curve over
data training sets obtained from RGB and NIR images. LOOCV and ROC curves have been applied
under the different ML configurations shown in the Table 1. This allowed to select the optimal ML
algorithm to be applied to each type of image depending on when it was captured: during daytime or
night-time. Once we determined the optimal ML algorithm for each image set, we used the metric
miss-classification [37] to evaluate the final performance of the implemented ML algorithms.

3.1. LOOCV

Table 2 shown the errors obtained after to apply LOOCV to the two images groups respectively.
In both images groups the minimum error in data model adjust is produced with kNN classifier. Data
normalisation based on in the mean (dn1) produced the best result in both cases, too. The maximum
error is produced by the NBC classifier, with KSF and Gauss kernel, respectively.
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Table 2. Colour images and NIR images. LOOCV error for kNN, NBC, SVM.

Classifier kNN NBC SVM

Configuration Euclidean Minkowski Gauss KSF Linear Quadratic

Colour
dn0 0.0283 0.0433 0.0750 0.0758 - -
dn1 0.0242 0.0467 - - 0.0533 0.0383
dn2 0.0283 0.0433 - - 0.0667 0.0450

NIR
dn0 0.0288 0.0394, 0.0356 0.0319 - -
dn1 0.0169 0.0281 - - 0.0326 0.0319
dn2 0.0288 0.0394 - - 0.0344 0.0325

3.2. ROC Curves

We evaluated the performance of the ML algorithms using Receiver Operating Characteristic
(ROC) curve. The ROC curve is created by comparing the sensitivity (the rate of true positives TP, see
Equation (8)), versus 1-specificity (the rate of false positives FP see Equation (9)), at various threshold
levels [38]. The ROC curves, shown in Figures 8 and 9 allow comparing the results between of ML
algorithms per each groups of images:

Sensitivity “
TP

TP` FN
(8)

Speci f icity “
TN

TN ` FP
(9)

The Area Under the Curve (AUC) is usually used by ML to compare statistical models. AUC can
be interpreted as the probability that the classifier will assign a higher score to a randomly chosen
positive example than to a randomly chosen negative example [39,40].

Figure 9 shows ROC curves computed over the set of colour images training. The higher values of
AUC were obtained by kNN classifier with Euclidean distance. Concerning the data normalisation, we
achieved similar results with raw data and normalisation based on the mode and standard deviation
(dn0 and dn1).

Figure 10 shows ROC curves computed over the set of NIR images training. We can observe that
the best results were obtained with the SVM classifier with quadratic functions and using a normalised
data based on the mean and standard deviation (dn1). Table 3 shows AUC values obtained from ROC
curves of the Figures 9 and 10.

In both cases after classification stages, we performed a postprocessing stage composed of
morphological operations and an area filter to eliminate noise and small particles. The segmented
images were merged with the original images (Figures 11 and 12).
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Figure 9. ROC results for training colour images. (a) kNN classifier with distance Euclidean and data
normalisation: dn0, dn1 and dn2; (b) kNN classifier with distance Minkowski and data normalisation:
dn0, dn1 and dn2; (c) BN classifier with Gauss and KSF kernels and data normalisation dn0; (d) SVM
classifier with lineal and quadratic polynomial functions and data normalisation: dn1 and dn2.
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Figure 10. ROC results for training NIR images. (a) kNN classifier with distance Euclidean and data
normalisation: dn0, dn1 and dn2; (b) kNN classifier with distance Minkowski and data normalisation:
dn0, dn1 and dn2; (c) BN classifier with Gauss and KSF kernels and data normalisation dn0; (d) SVM
classifier with lineal and quadratic polynomial functions and data normalisation: dn1 and dn2.
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Table 3. Colour images and NIR images. AUC for kNN, NBC, SVM.

Classifier kNN NBC SVM

Configuration Euclidean Minkowski Gauss KSF Linear Quadratic

Colour
dn0 0.9984 0.9974 0.9542 0.9778 - -
dn1 0.9979 0.9976 - - 0.9622 0.9875
dn2 0.9984 0.9974 - - 0.9496 0.9886

NIR
dn0 0.9987 0.9979 0.9877 0.9963 - -
dn1 0.9975 0.9993 - - 0.9867 1.000
dn2 0.9987 0.9979 - - 0.9868 0.9932
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Figure 12. Results of the NIR image segmentation based on SVM. Left shows four NIR images chosen
at different growth stages growing during night-time. The second column shows the segmentation
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3.3. Error Segmentation

The misclassification error (ME) represents the percentage of the background pixels that are
incorrectly allocated to the object (i.e., to the foreground) or vice versa. The error can be calculated by
means of Equation (10), where BGT (Background Ground-Truth image) and OGT (Object Ground-Truth
image) represent the ground-truth image of the background and of the object taken as reference, and
BT (Background Test) and OT (Object Test) represent the image to be assessed. In the event that the
test image coincides with the pattern image, the classification error will be zero and therefore the
performance of the segmentation will be the maximum [41].

ME “
|BGT X BT| ` |OGT XOT|

|BGT| ` |OGT|
(10)

The performance of the implemented algorithms is assessed according to the Equation (11):

η “ 100¨ p1´MEq (11)

Table 4 shows mean values computed after to segment the fifty ground-truth images of each
group with optimal ML algorithm (kNN and SVM) selected in the previous subsection.

Table 4. Performance in the image segmentation.

Classifier kNN SVM

Performance 99.311% 99.342%

The performance of the image segmentation calculated shows excellent results in both groups
(Table 4). It has been necessary to increase the complexity of the features vector in the NIR images
(using Wavelet transform) to obtain a similar results of performance. This is probably an expected
result as RGB images had three times more of information than a NIR image.

4. Conclusions and Future Work

In this work we have developed a system based on ML algorithms and computer vision intended
to solve the automatic phenotype data analysis. The system is composed by a growth-chamber with
capacities to perform experiments with numerous species. The design of the growth-chamber has
allowed easy positioning of different cameras and illuminations. The system can take thousands of
images through the capture subsystem, capture spectral images and it creates time-lapse series of the
specie during the experiment. One of the main goals of this work has been to capture images during
the night-time without affecting plant growth.

We have used three different ML algorithms for image segmentation: k-nearest neighbour (kNN),
Naive Bayes classifier (NBC), and Support Vector Machine. Each ML algorithm was executed with
different kernel functions: kNN with Euclidean and Minkowski distances, NBC with Gauss and KSF
functions and SVM with linear and quadratic functions. Furthermore ML algorithms have been trained
with two types of data normalisation: dn0 (raw data), dn1 (mean and standard deviation) and dn2
(mode & standard deviation). Our results show that RGB images are better classified with the kNN
classifier, Euclidean distance and without data normalisation. In contrast, NIR images performed
better with SVM classifier with quadratic function and with data normalisation dn1.

In the last stage we have applied ME metrics to measure the image segmentation performance.
We have achieved a performance of 99.3% in both ground-truth colour images and ground-truth NIR
images. Currently the algorithms are being used in an automatic image segmentation processing
to study circadian rhythm in wild type lines, transposon-tagged mutants and transgenic lines with
modifications in genes involved in the control of growth and the circadian clock. Regarding future
work, we consider important to identify a new feature vector which produces better performance rates,
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improve the illumination subsystem, reduce the computation time of the windowing segmentation in
NIR images.
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